Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 556
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Environ Res ; 242: 117810, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042516

RESUMO

Land use/land cover (LULC) is a crucial factor that directly influences the hydrology and water resources of a watershed. In order to assess the impacts of LULC changes on river runoff in the Danjiang River source area, we analyzed the characteristics of LULC data for three time periods (2000, 2010, and 2020). The LULC changes during these periods were quantified, and three Soil and Water Assessment Tool (SWAT) models were established and combined with eight LULC scenarios to quantitatively analyze the effects of LULC changes on river runoff. The results revealed a decrease in the cropland area and an increase in the forest, grassland, and urban land areas from 2000 to 2020. Grassland, forest, and cropland collectively accounted for over 94% of the total area, and conversions among these land types were frequent. The SWAT models constructed based on the LULC data demonstrated good calibration and validation results. Based on the LULC data in three periods, the area of each LULC type changed slightly, so the simulation results were not significantly different. In the subsequent LULC scenarios, we found that the expansion of cropland, grassland, and urban areas was associated with increased river runoff, while an increase in forest area led to a decrease in river runoff. Among the various LULC types, urban land exerted the greatest influence on changes in river runoff. This study establishes three SWAT models and combines multiple LULC scenarios, which is novel and innovative. It can provide scientific basis for the rational allocation of water resources and the optimization of LULC structure in the Danjiang River source area.


Assuntos
Solo , Movimentos da Água , Rios , Água , Hidrologia/métodos , China
2.
Environ Res ; 259: 119515, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38969318

RESUMO

China is the largest global orchard distribution area, where high fertilization rates, complex terrain, and uncertainties associated with future climate change present challenges in managing non-point source pollution (NPSP) in orchard-dominant growing areas (ODGA). Given the complex processes of climate, hydrology, and soil nutrient loss, this study utilized an enhanced Soil and Water Assessment Tool model (SWAT-CO2) to investigate the impact of future climate on NPSP in ODGA in a coastal basin of North China. Our investigation focused on climate-induced variations in hydrology, nitrogen (N), and phosphorus (P) losses in soil, considering three Coupled Model Intercomparison Project phase 6 (CMIP6) climate scenarios: SSP1-2.6, SSP2-4.5, and SSP5-8.5. Research results indicated that continuous changes in CO2 levels significantly influenced evapotranspiration (ET) and water yield in ODGA. Influenced by sandy soils, nitrate leaching through percolation was the principal pathway for N loss in the ODGA. Surface runoff was identified as the primary pathway for P loss. Compared to the reference period (1971-2000), under three future climate scenarios, the increase in precipitation of ODGA ranged from 15% to 28%, while the growth rates of P loss and surface runoff were the most significant, both exceeding 120%. Orchards in the northwest basin proved susceptible to nitrate leaching, while others were more sensitive to N and P losses via surface runoff. Implementing targeted strategies, such as augmenting organic fertilizer usage and constructing terraced fields, based on ODGA's response characteristics to future climate, could effectively improve the basin's environment.


Assuntos
Mudança Climática , Poluição Difusa , Fósforo , China , Fósforo/análise , Poluição Difusa/prevenção & controle , Poluição Difusa/análise , Nitrogênio/análise , Solo/química , Agricultura/métodos , Monitoramento Ambiental/métodos , Modelos Teóricos
3.
Clin Trials ; : 17407745241238444, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576071

RESUMO

BACKGROUND: The Online Resource for Recruitment in Clinical triAls (ORRCA) and the Online Resource for Retention in Clinical triAls (ORRCA2) were established to organise and map the literature addressing participant recruitment and retention within clinical research. The two databases are updated on an ongoing basis using separate but parallel systematic reviews. However, recruitment and retention of research participants is widely acknowledged to be interconnected. While interventions aimed at addressing recruitment challenges can impact retention and vice versa, it is not clear how well they are simultaneously considered within methodological research. This study aims to report the recent update of ORRCA and ORRCA2 with a special emphasis on assessing crossover of the databases and how frequently randomised studies of methodological interventions measure the impact on both recruitment and retention outcomes. METHODS: Two parallel systematic reviews were conducted in line with previously reported methods updating ORRCA (recruitment) and ORRCA2 (retention) with publications from 2018 and 2019. Articles were categorised according to their evidence type (randomised evaluation, non-randomised evaluation, application and observation) and against the recruitment and retention domain frameworks. Articles categorised as randomised evaluations were compared to identify studies appearing in both databases. For randomised studies that were only in one database, domain categories were used to assess whether the methodological intervention was likely to impact on the alternate construct. For example, whether a recruitment intervention might also impact retention. RESULTS: In total, 806 of 17,767 articles screened for the recruitment database and 175 of 18,656 articles screened for the retention database were added as result of the update. Of these, 89 articles were classified as 'randomised evaluation', of which 6 were systematic reviews and 83 were randomised evaluations of methodological interventions. Ten of the randomised studies assessed recruitment and retention and were included in both databases. Of the randomised studies only in the recruitment database, 48/55 (87%) assessed the content or format of participant information which could have an impact on retention. Of the randomised studies only in the retention database, 6/18 (33%) assessed monetary incentives, 4/18 (22%) assessed data collection location and methods and 3/18 (17%) assessed non-monetary incentives, all of which could have an impact on recruitment. CONCLUSION: Only a small proportion of randomised studies of methodological interventions assessed the impact on both recruitment and retention despite having a potential impact on both outcomes. Where possible, an integrated approach analysing both constructs should be the new standard for these types of evaluations to ensure that improvements to recruitment are not at the expense of retention and vice versa.

4.
J Water Health ; 22(4): 639-651, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38678419

RESUMO

Stream flow forecasting is a crucial aspect of hydrology and water resource management. This study explores stream flow forecasting using two distinct models: the Soil and Water Assessment Tool (SWAT) and a hybrid M5P model tree. The research specifically targets the daily stream flow predictions at the MH Halli gauge stations, located along the Hemvati River in Karnataka, India. A 14-year dataset spanning from 2003 to 2017 is divided into two subsets for model calibration and validation. The SWAT model's performance is evaluated by comparing its predictions to observed stream flow data. Residual time series values resulting from this comparison are then resolved using the M5P model tree. The findings reveal that the hybrid M5P tree model surpasses the SWAT model in terms of various evaluation metrics, including root-mean-square error, coefficient of determination (R2), Nash-Sutcliffe efficiency, and degree of agreement (d) for the MH Halli stations. In conclusion, this study shows the effectiveness of the hybrid M5P tree model in stream flow forecasting. The research contributes valuable insights into improved water resource management and underscores the importance of selecting appropriate models based on their performance and suitability for specific hydrological forecasting tasks.


Assuntos
Modelos Teóricos , Chuva , Índia , Rios , Movimentos da Água , Hidrologia , Monitoramento Ambiental/métodos , Previsões
5.
J Environ Manage ; 367: 121978, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067339

RESUMO

Human activities continuously impact water balances and cycling in watersheds, making it essential to accurately identify the responses of runoff to dynamic changes in land use types. Although machine learning models demonstrate promise in capturing the intricate interplay between hydrological factors, their "black box" nature makes it challenging to identify the dynamic drivers of runoff. To overcome this challenge, we employed an interpretable machine learning method to inversely deduce the dynamic determinants within hydrological processes. In this study, we analyzed land use changes in the Ningxia section of the middle Yellow River across four periods, laying the foundation for revealing how these changes affect runoff. The sub-watershed attributes and meteorological characteristics generated by the Soil and Water Assessment Tool (SWAT) model were used as input variables of the Extreme Gradient Boosting (XGBoost) model to simulate substantial sub-watershed rainfall runoff in the region. The XGBoost was interpreted using the SHapley Additive exPlanations (SHAP) to identify the dynamic responses of runoff to the land use changes over different periods. The results revealed increasingly frequent interchanges between the land use types in the study area. The XGBoost effectively captured the characteristics of the hydrological processes in the SWAT-derived sub-watersheds. The SHAP analysis results demonstrated that the promoting effect of agricultural land (AGRL) on runoff gradually weakens, while forests (FRST) continuously strengthen their restraining effect on runoff. Relevant land use policies provide empirical support for these findings. Furthermore, the interaction between meteorological variables and land use impacts the runoff generation mechanism and exhibits a threshold effect, with the thresholds for relative humidity (RH), maximum temperature (MaxT), and minimum temperature (MinT) determined to be 0.8, 25 °C, and 15 °C, respectively. This reverse deduction method can reveal hydrological patterns and the mechanisms of interaction between variables, helping to effectively addressing constantly changing human activities and meteorological conditions.


Assuntos
Aprendizado de Máquina , Hidrologia , Agricultura , Rios , Chuva , Humanos , Modelos Teóricos , Monitoramento Ambiental/métodos
6.
J Environ Manage ; 367: 121933, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39083936

RESUMO

Hydrological models are vital tools in environmental management. Weaknesses in model robustness for hydrological parameters transfer uncertainties to the model outputs. For streamflow, the optimized parameters are the primary source of uncertainty. A reliable calibration approach that reduces prediction uncertainty in model simulations is crucial for enhancing model robustness and reliability. The optimization of parameter ranges is a key aspect of parameter calibration, yet there is a lack of literature addressing the optimization of parameter ranges in hydrological models. In this paper, we introduce a parameter calibration strategy that applies a clustering technique, specifically the Self-Organizing Map (SM), to intelligently navigate the parameter space during the calibration of the Soil and Water Assessment Tool (SWAT) model for monthly streamflow simulation in the Baishan Basin, Jilin Province, China. We selected the representative algorithm, the Sequential Uncertainty Fitting version 2 (SUFI-2), from the commonly used SWAT Calibration and Uncertainty Programs for comparison. We developed three schemes: SUFI-2, SUFI-2-Narrowing Down (SUFI-2-ND), and SM. Multiple diagnostic error metrics were used to compare simulation accuracy and prediction uncertainty. Among all schemes, SM outperformed the others in describing watershed streamflow, particularly excelling in the simulation of spring snowmelt runoff (baseflow period). Additionally, the prediction uncertainty was effectively controlled, demonstrating the SM's adaptability and reliability in the interval optimization process. This provides managers with more credible prediction results, highlighting its potential as a valuable calibration tool in hydrological modeling.


Assuntos
Hidrologia , Calibragem , Modelos Teóricos , Algoritmos , Incerteza , China , Solo
7.
J Environ Manage ; 369: 122292, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39232328

RESUMO

Global warming is profoundly impacting snowmelt runoff processes in seasonal freeze-thaw zones, thereby altering the risk of rain-on-snow (ROS) floods. These changes not only affect the frequency of floods but also alter the allocation of water resources, which has implications for agriculture and other key economic sectors. While these risks present a significant threat to our lives and economies, the risk of ROS floods triggered by climate change has not received the attention it deserves. Therefore, we chose Changbai Mountain, a water tower in a high-latitude cold zone, as a typical study area. The semi-distributed hydrological model SWAT is coupled with CMIP6 meteorological data, and four shared socioeconomic pathways (SSP126, SSP245, SSP370, and SSP585) are selected after bias correction, thus quantifying the impacts of climate change on hydrological processes in the Changbai Mountain region as well as future evolution of the ROS flood risk. The results indicate that: (1) Under future climate change scenarios, snowmelt in most areas of the Changbai Mountains decreases. The annual average snowmelt under SSP126, SSP245, SSP370, and SSP585 is projected to be 148.65 mm, 135.63 mm, 123.44 mm, and 116.5 mm, respectively. The onset of snowmelt is projected to advance in the future. Specifically, in the Songhua River (SR) and Yalu River (YR) regions, the start of snowmelt is expected to advance by 1-11 days. Spatially, significant reductions in snowmelt were observed in both the central part of the watershed and the lower reaches of the river under SSP585 scenario. (2) In 2021-2060, the frequency of ROS floods decreases sequentially for different scenarios, with SSP 126 > SSP 245 > SSP 370 > SSP 585. The frequency increments of ROS floods in the source area for the four scenarios were 0.12 days/year, 0.1 d/yr, 0.13 days/year, and 0.15 days/year, respectively. The frequency of high-elevation ROS events increases in the YR in the low emission scenario. Conversely, in high emission scenarios, YR high-elevation ROS events will only increase in 2061-2100. This phenomenon is more pronounced in the Tumen River (TR), where floods become more frequent with increasing elevation.

8.
J Environ Manage ; 365: 121538, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38905798

RESUMO

The current study focuses on analyzing the impacts of climate change and land use/land cover (LULC) changes on sediment yield in the Puthimari basin, an Eastern Himalayan sub-watershed of the Brahmaputra, using a hybrid SWAT-ANN model approach. The analysis was meticulously segmented into three distinct time spans: 2025-2049, 2050-2074, and 2075-2099. This innovative method integrates insights from multiple climate models under two Representative Concentration Pathways (RCP4.5 and RCP8.5), along with LULC projections generated through the Cellular Automata Markov model. By combining the strengths of the Soil and Water Assessment Tool (SWAT) and artificial neural network (ANN) techniques, the study aims to improve the accuracy of sediment yield simulations in response to changing environmental conditions. The non-linear autoregressive with external input (NARX) method was adopted for the ANN component of the hybrid model. The adoption of the hybrid SWAT-ANN approach appears to be particularly effective in improving the accuracy of sediment yield simulation compared to using the SWAT model alone, as evidenced by the higher coefficient of determination value of 0.74 for the hybrid model compared to 0.35 for the standalone SWAT model. In the context of the RCP4.5 scenario, during 2075-99, the study noted a 29.34% increase in sediment yield, accompanied by simultaneous rises of 42.74% in discharge and 27.43% in rainfall during the Indian monsoon season, spanning from June to September. In contrast, under the RCP8.5 scenario, for the same period, the increases in sediment yield, discharge, and rainfall for the monsoon season were determined to be 116.56%, 103.28%, and 64.72%, respectively. The present study's comprehensive analysis of the factors influencing sediment supply in the Puthimari River basin fills an important knowledge gap and provides valuable insights for designing proactive flood and erosion management strategies. The findings from this research are crucial for understanding the vulnerability of the Puthimari basin to climate and land use changes, and by incorporating these findings into policy and decision-making processes, stakeholders can work towards enhancing resilience and sustainability in the face of future hydrological and environmental challenges.


Assuntos
Mudança Climática , Sedimentos Geológicos , Redes Neurais de Computação , Monitoramento Ambiental/métodos , Modelos Teóricos , Solo/química
9.
J Environ Manage ; 356: 120637, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520859

RESUMO

Land use/land cover (LULC) change, often a consequence of natural or anthropogenic drivers, plays a decisive role in governing global catchment dynamics, and subsequent impact on regional hydrology. Insight into the complex relationship between the drivers of LULC change and catchment hydrology is of utmost importance to decision makers. Contemplating the dynamic rainfall-runoff response of the Indian catchments, this study proposes an integrated modeling-based approach to identify the drivers and relative contribution to catchment hydrology. The proposed approach was evaluated in the tropical climate Nagavali River Basin (NRB) (9512 km2) of India. The Soil and Water Assessment Tool (SWAT) hydrological model, which uses daily-scale rainfall, temperature, wind speed, relative humidity, solar radiation, and streamflow information was integrated with the Indicators of Hydrologic Alteration (IHA) technique to characterize the plausible changes in the flow regime of the NRB. Subsequently, the Partial Least Squares Regression (PLSR) based modeling analysis was performed to quantify the relative contribution of individual LULC components on the catchment water balance. The outcomes of the study revealed that forest land has been significantly converted to agricultural land (45-59%) across the NRB resulting in mean annual streamflow increase of 3.57 m3/s during the monsoon season. The affinity between land use class and streamflow revealed that barren land (CN = 83-87) exhibits the maximum positive response to streamflow followed by the built-up land (CN = 89-91) and fallow land (CN = 88-93). The period 1985-1995 experienced an increased ET scenario (911-1050 mm), while the recent period (2005-2020) experienced reduced ET scenario owing to conversion of forest to agricultural land. Certainly, the study endorses adopting the developed methodology for understanding the complex land use and catchment-scale hydrologic interactions across global-scales for early watershed management planning.


Assuntos
Hidrologia , Solo , Agricultura , Temperatura , Rios , Água
10.
J Environ Manage ; 364: 121433, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878574

RESUMO

Lake eutrophication caused by nitrogen and phosphorus has led to frequent harmful algal blooms (HABs), especially under the unknown challenges of climate change, which have seriously damaged human life and property. In this study, a coupled SWAT-Bayesian Network (SWAT-BN) model framework was constructed to elucidate the mechanisms between non-point source nitrogen pollution in agricultural lake watersheds and algal activities. A typical agricultural shallow lake basin, the Taihu Basin (TB), China, was chosen in this study, aiming to investigate the effectiveness of best management practices (BMPs) in controlling HABs risks in TB. By modeling total nitrogen concentration of Taihu Lake from 2007 to 2022 with four BMPs (filter strips, grassed waterway, fertilizer application reduction and no-till agriculture), the results indicated that fertilizer application reduction proved to be the most effective BMP with 0.130 of Harmful Algal Blooms Probability Reduction (HABs-PR) when reducing 40% of fertilizer, followed by filter strips with 0.01 of HABs-PR when 4815ha of filter strips were conducted, while grassed waterway and no-till agriculture showed no significant effect on preventing HABs. Furthermore, the combined practice between 40% fertilizer application reduction and 4815ha filter strips construction showed synergistic effects with HABs-PR increasing to 0.171. Precipitation and temperature data were distorted to model scenarios of extreme events. As a result, the combined approach outperformed any single BMP in terms of robustness under extreme climates. This research provides a watershed-level perspective on HABs risks mitigation and highlights the strategies to address HABs under the influence of climate change.


Assuntos
Agricultura , Teorema de Bayes , Proliferação Nociva de Algas , Lagos , Agricultura/métodos , Fertilizantes/análise , Nitrogênio/análise , China , Mudança Climática , Fósforo/análise , Eutrofização , Modelos Teóricos
11.
J Environ Manage ; 367: 121985, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39074432

RESUMO

Balancing environmental protection and social-economic development in agricultural land use management is a dilemma for decision-makers. Based on the modelling of the impacts of land use changes on river water pollution by SWAT model, the tradeoff between tea plantation expansion and river water quality was detected. SWAT model performs well in simulating the non-point source (NPS) pollution in agricultural watershed. The results showed that the tea plantation area expanded dramatically from 44 km2 in 2000 to 169 km2 in 2020 at the high cost of forest land. Consequently, the mean contents of NO3--N and TN have significantly increased by 100% and 91% respectively in the past 20 years. And the NO3--N in river water accounted for over 80% of TN in the tea plantation area. The NO3--N and TN concentrations were positively related with the proportions of tea plantation area (Tea%) at different periods. The high pollution levels of NO3--N and TN are priority control targets for river water quality management. The results indicated that the proportion of tea plantation thresholds lead to abrupt changes in river water quality. When the Tea% exceeded 3.0% in 2000, the probability of N pollution increased sharply. Whereas in 2020, it is suggested that the Tea% should not exceeds 18% to avoid sudden deterioration of water quality. The critical interval value of the Tea% for sudden change in N pollution showed an obvious increase tendency. The accelerating of nutrient pollution in rivers reduced the sensitivity of water quality to tea plantation expansion. Our results can provide new insights and empirical evidence for balancing the tradeoff between agricultural development and river water quality protection by demonstrating the carrying capacity threshold of river water environment for the expansion tea plantation.


Assuntos
Agricultura , Rios , Poluição da Água , Rios/química , Poluição da Água/análise , Qualidade da Água , Monitoramento Ambiental
12.
J Environ Manage ; 368: 122137, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39153319

RESUMO

Global warming is altering the frequency of extreme rainfall events and introducing uncertainties for non-point source pollution (NPSP). This research centers on orchard-influenced planting areas (OIPA) in the Wulong River Watershed of Shandong Province, China, which are known for their heightened nitrogen (N) and phosphorus (P) pollution. Leveraging meteorological data from both historical (1989-2018) and projected future periods (2041-2100), this research identified five extreme rainfall indices (ERI): R10 (moderate rain), R20 (heavy rain), R50 (rainstorm), R95p (Daily rainfall between the 95th and 99th percentile of the rainfall), and R99p (>99th percentile). Utilizing an advanced watershed hydrological model, SWAT-CO2, this study carried out a comparison between ERI and average conditions and evaluated the effects of ERI on the hydrology and nutrient losses in this coastal watershed. The findings revealed that the growth multiples of precipitation in the OIPA for five ERI varied between 16 and 59 times for the historical period and 14 to 65 times for future climate scenarios compared to the average conditions. The most pronounced increases in surface runoff and total phosphorus (TP) loss were observed with R50, R95p, and R99p, showing growth multiples as high as 352 and 330 times, and total nitrogen (TN) growth multiples varied between 4.6 and 30.3 times. The contribution rates of R50 and R99p for surface runoff and TP loss in the OIPA during all periods exceeded 55%, however, TN exhibited the opposite trend, primarily due to the dominated NO3-N leaching in the sandy soil. This research revealed how the OIPA reacts to different ERI and pinpointed essential elements influencing water and nutrient losses.


Assuntos
Hidrologia , Nitrogênio , Fósforo , Chuva , Fósforo/análise , Nitrogênio/análise , Nutrientes/análise , China , Rios/química , Monitoramento Ambiental
13.
J Environ Manage ; 363: 121372, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38843730

RESUMO

Managing landscape change is increasingly challenging due to rapid anthropogenic shifts. A delicate balance must be struck between the environment and change to ensure landscapes can withstand these impacts. This study conducted in the Tunca River sub-basin of Edirne province, aims to assess landscape sensitivity by examining the influence of land use/land cover (LULC) and climate change on landscape function processes. For this purpose, a methodology was developed based on ecosystem services to determine landscape sensitivity. The results revealed a LULC transformation that could lead to a 60% reduction in forest areas and a 5% and 20% increase in urban and irrigated agricultural areas, respectively. Water and erosion emerged as the most affected landscape function processes. Future scenarios from 2050 to 2070 indicate noteworthy changes in landscape sensitivity, showing an increase in sensitivity in the upper regions of the basin. The study identified high sensitivity in forested areas, moderate sensitivity in agricultural zones, and low sensitivity in micro-basins near residential areas. Protection and improvement strategies are recommended for areas with high and moderate sensitivity, while use-oriented strategies are suggested for those with low sensitivity. This study also establishes a scientific foundation for guiding the protection and management of ecologically sensitive basin areas, offering insights into the effects of landscape change processes at the micro-basin level in connection with climate change models.


Assuntos
Agricultura , Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Rios , Florestas
14.
J Environ Manage ; 366: 121829, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39018853

RESUMO

Rain barrels/cisterns are a type of green infrastructure (GI) practice that can help restore urban hydrology. Roof runoff captured and stored by rain barrels/cisterns can serve as a valuable resource for landscape irrigation, which would reduce municipal water usage and decrease runoff that other stormwater infrastructures need to treat. The expected benefits of rainwater harvesting and reuse with rain barrels/cisterns are comprehensive but neither systematically investigated nor well documented. A comprehensive tool is needed to help stakeholders develop efficient strategies to harvest rainwater for landscape irrigation with rain barrels/cisterns. This study further improved the Soil and Water Assessment Tool (SWAT) in simulating urban drainage networks by coupling the Storm Water Management Model (SWMM)'s closed pipe drainage network (CPDN) simulation methods with the SWAT model that was previously improved for simulating the impacts of rainwater harvesting for landscape irrigation with rain barrels/cisterns. The newly improved SWAT or SWAT-CPDN was applied to simulate the urban hydrology of the Brentwood watershed (Austin, TX) and evaluate the long-term effects of rainwater harvesting for landscape irrigation with rain barrels/cisterns at the field and watershed scales. The results indicated that the SWAT-CPDN could improve the prediction accuracy of urban hydrology with good performance in simulating discharges (15 min, daily, and monthly), evapotranspiration (monthly), and leaf area index (monthly). The impacts of different scenarios of rainwater harvesting and reuse strategies (rain barrel/cistern sizes, percentages of suitable areas with rain barrels/cisterns implemented, auto landscape irrigation rates, and landscape irrigation starting times) on each indicator (runoff depth, discharge volume, peak runoff, peak discharge, combined sewer overflow-CSO, freshwater demand, and plant growth) at the field or watershed scale varied, providing insights for the long-term multi-functional impacts (stormwater management and rainwater harvesting/reuse) of rainwater harvesting for landscape irrigation with rain barrels/cisterns. The varied rankings of scenarios found for achieving each goal at the field or watershed scale indicated that tradeoffs in rainwater harvesting and reuse strategies exist for various goals, and the strategies should be evaluated individually for different goals to optimize the strategies. Efficient rainwater harvesting and reuse strategies at the field or watershed scale can be created by stakeholders with the assist of the SWAT-CPDN to reduce runoff depth, discharge volume, peak runoff, peak discharge, CSO, and freshwater demand, as well as improve plant growth.


Assuntos
Chuva , Recursos Hídricos , Modelos Teóricos , Hidrologia , Conservação dos Recursos Hídricos/métodos , Abastecimento de Água , Conservação dos Recursos Naturais/métodos
15.
J Environ Manage ; 361: 121267, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38815427

RESUMO

The establishment of river water quality monitoring network is crucial for watershed protection. However, the evaluation process of monitoring network layout involves significant subjectivity and has not yet to form a complete indicator system. This study constructed an indicator system based on the DPSR (Driving-Pressure-State-Response) framework in the Liao River Basin, China. SWAT model and ArcGIS were used to quantify the indicators. And the entropy weight-TOPSIS method was employed to rank monitoring points. The results showed that pressure and state indicators had a greater impact on the network layout, with the indicator for proportion of land use in residential areas carrying the largest weight of 0.136. It suggested that the risk of river pollution remained high, and the governance strategies needed to be improved. Priority monitoring points were mainly located in the east and middle of the basin, consistent with the distribution of human activities such as urban areas and farmland. In addition, the redundancy of points should be avoided, and evaluation results should be adjusted based on the actual situation. The study provided an evaluation method for the layout of monitoring points.


Assuntos
Monitoramento Ambiental , Rios , Qualidade da Água , China , Monitoramento Ambiental/métodos , Entropia , Modelos Teóricos
16.
Water Sci Technol ; 89(6): 1497-1511, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557714

RESUMO

Identifying vulnerable areas to erosion within the watershed and implementing best management practices (BMPs) are crucial steps in mitigating watershed degradation by minimizing sediment yields. The present study evaluates and identifies the BMPs in the Seybouse basin, northeastern Algeria, using the Soil and Water Assessment Tool (SWAT) model. After successful calibration and validation, the model demonstrated a satisfactory ability to simulate monthly discharge and sediment. Then, the calibrated model was employed to evaluate the efficacy of diverse management practices in sediment control. In the SWAT, three soil and conservation practices, as well as vegetated filter strips (VFSs), grade stabilization structures (GSSs), and terracing were evaluated. The average annual sediment yield in the Seybouse watershed is determined to be 14.43 t/ha year, constituting 71% of the total soil loss. VFS demonstrated a sediment reduction of 37.30%, GSS 20.40%, and terracing 42.30%. Among these strategies, terracing results in the greatest reduction, followed by VFS. The results of this study area can be useful for informed decision-making regarding optimal watershed management strategies.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Sedimentos Geológicos/química , Rios , Argélia , Modelos Teóricos , Solo , Água
17.
Environ Model Softw ; 176: 1-14, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38994237

RESUMO

The first phase of a national scale Soil and Water Assessment Tool (SWAT) model calibration effort at the HUC12 (Hydrologic Unit Code 12) watershed scale was demonstrated over the Mid-Atlantic Region (R02), consisting of 3036 HUC12 subbasins. An R-programming based tool was developed for streamflow calibration including parallel processing for SWAT-CUP (SWAT- Calibration and Uncertainty Programs) to streamline the computational burden of calibration. Successful calibration of streamflow for 415 gages (KGE ≥0.5, Kling-Gupta efficiency; PBIAS ≤15%, Percent Bias) out of 553 selected monitoring gages was achieved in this study, yielding calibration parameter values for 2106 HUC12 subbasins. Additionally, 67 more gages were calibrated with relaxed PBIAS criteria of 25%, yielding calibration parameter values for an additional 150 HUC12 subbasins. This first phase of calibration across R02 increases the reliability, uniformity, and replicability of SWAT-related hydrological studies. Moreover, the study presents a comprehensive approach for efficiently optimizing large-scale multi-site calibration.

18.
Environ Monit Assess ; 196(3): 294, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38383760

RESUMO

The current study investigates the joint impact of projected land use/land cover change (LULCC) and climate change on the discharge of river Puthimari using Soil and Water Assessment Tool (SWAT). Puthimari, flowing through part of Bhutan and the northeastern region of India, earns its significance by contributing a fairly huge amount of discharge to the mainstream Brahmaputra causing frequent floods downstream, specifically in the monsoon season. The analysis was carried out from 2025 to 2099, by dividing this entire period into three sub-periods, 2025‒2049, 2050‒2074, and 2075‒2099, each of 25 years duration. To evaluate the impact of climate change, this study considered future climate data of five different CMIP5 (Coupled Model Intercomparison Project) climate models and their ensemble for RCP4.5 and RCP8.5 (Representative Concentration Pathways). The changes in LULC were incorporated by projecting the future LULC for 2035, 2065, and 2085 for each of the periods using the CA (Cellular Automata)-Markov model. SWAT performed well for both calibration and validation. The respective Nash-Sutcliffe efficiency (NSE) values for calibration and validation were found to be 0.74 and 0.77. Also, 0.75 and 0.79 coefficient of determination (R2) values were obtained for calibration and validation, respectively. The analyses reveal a 19.76% increase in rural settlement, and a 6.30%, 16.45%, and 8.76% decrease in forest, cropland, and waterbodies in the watershed by the end of this century. The average monsoon rainfall would increase by 14.16% and 38.92%, with a corresponding increase in discharge by 34.27% and 64.67%, under RCP 4.5 and RCP 8.5, respectively. This comprehensive study represents a pioneering effort to thoroughly analyze the future hydrological dynamics of the Puthimari River. This research serves as a vital resource for policymakers and government agencies, offering valuable insights to guide both structural and non-structural measures aimed at safeguarding the river from potential flood devastation. Additionally, it provides essential information to support the implementation of effective watershed management practices.


Assuntos
Monitoramento Ambiental , Modelos Teóricos , Inundações , Florestas , Índia , Mudança Climática , Solo
19.
Environ Monit Assess ; 196(3): 270, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358427

RESUMO

The study investigated the impact of climate and land cover change on water quality. The novel contribution of the study was to investigate the individual and combined impacts of climate and land cover change on water quality with high spatial and temporal resolution in a basin in Turkey. The global circulation model MPI-ESM-MR was dynamically downscaled to 10-km resolution under the RCP8.5 emission scenario. The Soil and Water Assessment Tool (SWAT) was used to model stream flow and nitrate loads. The land cover model outputs that were produced by the Land Change Modeler (LCM) were used for these simulation studies. Results revealed that decreasing precipitation intensity driven by climate change could significantly reduce nitrate transport to surface waters. In the 2075-2100 period, nitrate-nitrogen (NO3-N) loads transported to surface water decreased by more than 75%. Furthermore, the transition predominantly from forestry to pastoral farming systems increased loads by about 6%. The study results indicated that fine-resolution land use and climate data lead to better model performance. Environmental managers can also benefit greatly from the LCM-based forecast of land use changes and the SWAT model's attribution of changes in water quality to land use changes.


Assuntos
Mudança Climática , Nitratos , Monitoramento Ambiental , Transporte Biológico , Agricultura , Solo
20.
Environ Monit Assess ; 196(2): 173, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236442

RESUMO

This study establishes a calibrated SWAT (Soil and Water Assessment Tool) model for the Huntai Basin, driven by SSP126, SSP245, SSP585, and multi-model ensemble (MME) models in CMIP6 (Coupled Model Intercomparison Project-6), to investigate the effects of climate change on hydrological processes and pollution load in the Huntai Basin. The results show that the annual mean temperature and the annual precipitation will gradually increase. The nitrogen and phosphorus pollution loads in the basin exhibit a trend of decreasing-increasing-decreasing. The correlation between the nitrogen-phosphorus pollution load and the hydrological process strengthens with increasing radiative forcing. In the four scenarios, CO2 is a primary driving factor that contributes greatly to nitrogen and phosphorus pollution. The main differences are in the total driving factors, and SSP126 and SSP245 are less than those of other models. The total phosphorus and total nitrogen pollution in different climate models were higher than the average level during the benchmark period, except for ammonia nitrogen pollution, which was lower. The nitrogen and phosphorus pollution in SSP126 and SSP245 modes will reach the maximum in 2040s, and the pollution in other periods will be lower than that in SSP585 and MME scenarios. In the long run, the development state between SSP126 and SSP245 may be better appropriate for the Huntai Basin's future sustainable development. This paper analyzes the occurrence and influencing factors of nitrogen and phosphorus pollution under climate change to provide reference to the protection of water environment under changing environments.


Assuntos
Mudança Climática , Endrin/análogos & derivados , Monitoramento Ambiental , Nitrogênio , Fósforo , Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa