Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Biol ; 32(21): 4719-4726.e4, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36137547

RESUMO

DNA double-strand breaks (DSBs) are deleterious lesions, which must be repaired precisely to maintain genomic stability. During meiosis, programmed DSBs are repaired via homologous recombination (HR) while repair using the nonhomologous end joining (NHEJ) pathway is inhibited, thereby ensuring crossover formation and accurate chromosome segregation.1,2 How DSB repair pathway choice is implemented during meiosis is unknown. In C. elegans, meiotic DSB repair takes place in the context of the fully formed, highly dynamic zipper-like structure present between homologous chromosomes called the synaptonemal complex (SC).3,4,5,6,7,8,9 The SC consists of a pair of lateral elements bridged by a central region composed of the SYP proteins in C. elegans. How the structural components of the SC are regulated to maintain the architectural integrity of the assembled SC around DSB repair sites remained unclear. Here, we show that SYP-4, a central region component of the SC, is phosphorylated at Serine 447 in a manner dependent on DSBs and the ATM/ATR DNA damage response kinases. We show that this SYP-4 phosphorylation is critical for preserving the SC structure following exogenous (γ-IR-induced) DSB formation and for promoting normal DSB repair progression and crossover patterning following SPO-11-dependent and exogenous DSBs. We propose a model in which ATM/ATR-dependent phosphorylation of SYP-4 at the S447 site plays important roles both in maintaining the architectural integrity of the SC following DSB formation and in warding off repair via the NHEJ repair pathway, thereby preventing aneuploidy.


Assuntos
Proteínas de Caenorhabditis elegans , Quebras de DNA de Cadeia Dupla , Animais , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Reparo do DNA , Meiose , DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
2.
G3 (Bethesda) ; 9(6): 1933-1943, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-30992318

RESUMO

Identifying protein localization is a useful tool in analyzing protein function. Using GFP-fusion tags, researchers can study the function of endogenous proteins in living tissue. However, these tags are considerably large, making them difficult to insert, and they can potentially affect the normal function of these proteins. To improve on these drawbacks, we have adopted the split sfGFP system for studying the localization of proteins in the Caenorhabditis elegans germline. This system divides the "super folder" GFP into 2 fragments, allowing researchers to use CRISPR/Cas9 to tag proteins more easily with the smaller subunit, while constitutively expressing the larger subunit from another locus. These two parts are able to stably interact, producing a functional GFP when both fragments are in the same cellular compartment. Our data demonstrate that the split sfGFP system can be adapted for use in C. elegans to tag endogenous proteins with relative ease. Strains containing the tags are homozygous viable and fertile. These small subunit tags produce fluorescent signals that matched the localization patterns of the wild-type protein in the gonad. Thus, our study shows that this approach could be used for tissue-specific GFP expression from an endogenous locus.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Células Germinativas/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas Recombinantes de Fusão/genética , Animais , Biomarcadores , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Clonagem Molecular , Fertilidade , Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Imagem Molecular , Proteínas Recombinantes de Fusão/metabolismo
3.
Elife ; 62017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28346135

RESUMO

The synaptonemal complex (SC) is an ultrastructurally conserved proteinaceous structure that holds homologous chromosomes together and is required for the stabilization of pairing interactions and the completion of crossover (CO) formation between homologs during meiosis I. Here, we identify a novel role for a central region component of the SC, SYP-4, in negatively regulating formation of recombination-initiating double-strand breaks (DSBs) via a feedback loop triggered by crossover designation in C. elegans. We found that SYP-4 is phosphorylated dependent on Polo-like kinases PLK-1/2. SYP-4 phosphorylation depends on DSB formation and crossover designation, is required for stabilizing the SC in pachytene by switching the central region of the SC from a more dynamic to a less dynamic state, and negatively regulates DSB formation. We propose a model in which Polo-like kinases recognize crossover designation and phosphorylate SYP-4 thereby stabilizing the SC and making chromosomes less permissive for further DSB formation.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Quebras de DNA de Cadeia Dupla , Retroalimentação Fisiológica , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Fosforilação
4.
Elife ; 62017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28486097

RESUMO

The scaffolding that holds chromosome pairs together plays a key role in limiting the levels of double-strand breaks.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Complexo Sinaptonêmico , Animais , Caenorhabditis elegans/genética , Meiose , Proteínas Nucleares , Fosforilação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa