Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Virol J ; 20(1): 172, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37533043

RESUMO

Acute flaccid paralysis (AFP) is a rare side effect of the oral polio vaccine but can be associated with outbreaks and permanent disability in patients harboring circulating vaccine-derived polioviruses (cVDPVs). With the advancement of polio abolition in a glimpse, cVDPVs are causing outbreaks and slowing the polio eradication process. The polio virus protein 1 (VP1) contains the binding site that is key for virus transmission. Understanding the evolution of VP1 among AFP patients could yield more insight into the early events of cVDPVs. Polioviruses were identified from stool specimens of AFP patients using cell culture; and confirmed by the real time RT PCR intra-typic differentiation and vaccine-derived poliovirus assays. Seventy-nine (79) Sabin-like poliovirus 1 (SL1) and 86 Sabin-like poliovirus 3 (SL3) were sequenced. The VP1 amino acid substitutions T106A in Sabin poliovirus 1 and A54V in Sabin poliovirus 3 were common among the AFP patients as has been found in previous studies. Other substitutions that were associated with AFP were: T290A and A54T in SL1 and SL3 respectively. Nucleotide mutations that were common among the AFP patients included T402C, C670A, and T816C in SL1, and G22A, C375Y, A472R, and A694T in SL3 polioviruses. Characterizing mutations that are associated with AFP could contribute to efforts pursued to mitigate the risk of vaccine-derived polioviruses and promote development of safer vaccines.


Assuntos
Enterovirus , Poliomielite , Poliovirus , Humanos , Poliovirus/genética , Uganda/epidemiologia , alfa-Fetoproteínas , Poliomielite/epidemiologia , Poliomielite/prevenção & controle , Vacina Antipólio Oral/efeitos adversos , Paralisia
2.
Vaccine ; 42(9): 2475-2484, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38503660

RESUMO

Sabin Inactivated Poliovirus Vaccine (sIPV) has become one of the preferred vaccination options for the last step in the Poliovirus eradication program. Sequencing of poliovirus samples is needed during the manufacturing of poliovirus vaccines to assure the safety and immunogenicity of these vaccines. Next-generation sequencing analysis is the current costly and time-consuming gold standard for monitoring the manufacturing processes. We developed a low-cost and quick, highly sensitive, and allele-specific locked nucleic acid-probe-based reverse transcription quantitative PCR alternative that can accurately detect mutations in poliovirus vaccine samples during process development, scaling up, and release. Using the frequently in vitro occurring and viral replication-impacting VP1-E295K mutation as a showcase, we show that this technology can accurately detect E295K mutations in poliovirus 2 samples to similar levels as NGS. The qPCR technology was developed employing a synthetic dsDNA fragment-based standard curve containing mixes of E295K-WT (wildtype) and Mut (mutant) synthetic dsDNA fragments ranging from 1 × 107 copies/µL to 1 × 102 copies/µL to achieve a linear correlation with R2 > 0.999, and PCR efficiencies of 95-105 %. Individual standard concentration levels achieved accuracies of ≥92 % (average 96 %) and precisions of ≤17 % (average 3.3 %) RSD. Specificity of locked nucleic acid (LNA)-probes was confirmed in the presence and absence of co-mutations in the probe-binding region. Application of the developed assay to Sabin Poliovirus type 2 production run samples, illustrated a linear relationship with an R2 of 0.994, and an average accuracy of 97.2 % of the variant (allele)-specific AS LNA qPCR result, compared to NGS. The assay showed good sensitivity for poliovirus samples, containing E295K mutation levels between 0 % and 95 % (quantification range). In conclusion, the developed AS LNA qPCR presents a valuable low-cost, and fast tool, suitable for the process development and quality control of polio vaccines.


Assuntos
Oligonucleotídeos , Poliomielite , Poliovirus , Humanos , Poliomielite/prevenção & controle , Vacina Antipólio Oral/genética , Poliovirus/genética , Vacina Antipólio de Vírus Inativado , Mutação , Controle de Qualidade
3.
Hum Vaccin Immunother ; 14(12): 2940-2949, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30047808

RESUMO

Background: With the goal of global eradication of poliomyelitis due to wild-type viruses within sight, WHO now recommends that infants receive at least one dose of trivalent inactivated poliovirus vaccine (IPV) with bivalent OPV (types 1 and 3) replacing trivalent OPV. Limited manufacturing capacity and new regulations on manufacturers' use of wild-type viruses is driving the development of IPV based on attenuated Sabin type polioviruses. Takeda are developing a Sabin-based IPV (sIPV) to augment global capacity and supply. Methods: This study was performed to evaluate three dosages (low, medium and high) of the sIPV when administered as a combination vaccine with diphtheria-tetanus-acellular pertussis antigens (DTaP-sIPV) as a three dose primary series or as booster dose in Japanese infants and toddlers. Results: All formulations were immunogenic and well-tolerated with no safety concerns in either infants or toddlers. There was a dosage-dependent induction of neutralizing antibodies against Sabin polioviruses, the only statistically significant differences being between the low-dose and medium- and high-dose sIPVs. There was good correlation of neutralizing antibodies against Sabin and wild-type polioviruses. No sIPV dose had an observable effect on immune responses to DTaP components or the reactogenicity profile of the combined vaccine. Conclusion: When administered as a DTaP-sIPV combination, Takeda's sIPV vaccine was well-tolerated and highly immunogenic in infant and toddler schedules. The medium-dose formulation offers the optimal balance between immunogenicity and potential dose-sparing to provide a new source of sIPV to enhance the global supply, while mitigating the environmental risks associated with manufacturing vaccines with wild-type viruses.

4.
Vaccine ; 33(35): 4307-12, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25858858

RESUMO

Polio is expected to be eradicated within only a few years from now. Upon polio eradication, the use of oral polio vaccines, which can cause circulating and virulent vaccine derived polio viruses, will be stopped. From this moment onwards, inactivated polio vaccines (IPV) will be used for worldwide vaccination against polio. An increased demand for IPV is thus anticipated. As a result, process development studies regarding the IPV production process, developed in the 1960s, have intensified. Studies on yield optimization aiming at costs reduction as well as the use of alternative polio viruses, which are more biosafe for manufacturing, are actual. Here our strategy to setup a new IPV production process using attenuated Sabin polio virus strains is presented. Moreover, aspects on reduction of the costs of goods and the impact of process optimization on sIPV costs are reviewed.


Assuntos
Vacina Antipólio de Vírus Inativado/economia , Vacina Antipólio de Vírus Inativado/normas , Poliovirus/crescimento & desenvolvimento , Poliovirus/imunologia , Animais , Anticorpos Antivirais/biossíntese , Custos e Análise de Custo , Humanos , Poliomielite/prevenção & controle , Vacina Antipólio de Vírus Inativado/efeitos adversos , Vacina Antipólio de Vírus Inativado/imunologia , Vacina Antipólio Oral , Cultura de Vírus
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa