Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Yeast ; 39(1-2): 69-82, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34961959

RESUMO

The wild yeast Saccharomyces paradoxus has become a new model in ecology and evolutionary biology. Different lineages of S. paradoxus have been recognized across the world, but the distribution and genetic diversity of the species remain unknown in China, where the origin of its sibling species S. cerevisiae lies. In this study, we investigated the ecological and geographic distribution of S. paradoxus through an extensive field survey in China and performed population genomic analysis on a set of S. paradoxus strains, including 27 strains, representing different geographic and ecological origins within China, and 59 strains representing all the known lineages of the species recognized in the other regions of the world so far. We found two distinct lineages of S. paradoxus in China. The majority of the Chinese strains studied belong to the Far East lineage, and six strains belong to a novel highly diverged lineage. The distribution of these two lineages overlaps ecologically and geographically in temperate to subtropical climate zones in China. With the addition of the new China lineage, the Eurasian population of S. paradoxus exhibits higher genetic diversity than the American population. We observed more possible lineage-specific introgression events from the Eurasian lineages than from the American lineages. Our results expand the knowledge on ecology, genetic diversity, biogeography, and evolution of S. paradoxus.


Assuntos
Saccharomyces cerevisiae , Saccharomyces , China , Genômica , Saccharomyces/genética , Saccharomyces cerevisiae/genética
2.
Appl Environ Microbiol ; 88(8): e0203021, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35389250

RESUMO

Yeast killer toxins are widely distributed in nature, conferring a competitive advantage to the producer yeasts over nonkiller ones when nutrients are scarce. Most of these toxins are encoded on double-stranded RNAs (dsRNAs) generically called M. L-A members of the viral family Totiviridae act as helper viruses to maintain M, providing the virion proteins that separately encapsidate and replicate L-A and M genomes. M genomes are organized in three regions, a 5' region coding the preprotoxin, followed by an internal poly(A) stretch and a 3' noncoding region. In this work, we report the characterization of K74 toxin encoded on M74 dsRNA from Saccharomyces paradoxus Q74.4. In M74, there is a 5' upstream sequence of 141 nucleotides (nt), which contains regulatory signals for internal translation of the preprotoxin open reading frame (ORF) at the second AUG codon. The first AUG close to the 5' end is not functional. For K74 analysis, M74 viruses were first introduced into laboratory strains of Saccharomyces cerevisiae. We show here that the mature toxin is an α/ß heterodimer linked by disulfide bonds. Though the toxin (or preprotoxin) confers immunity to the carrier, cells with increased K74 loads have a sick phenotype that may lead to cell death. Thus, a fine-tuning of K74 production by the upstream regulatory sequence is essential for the host cell to benefit from the toxin it produces and, at the same time, to safely avoid damage by an excess of toxin. IMPORTANCE Killer yeasts produce toxins to which they are immune by mechanisms not well understood. This self-immunity, however, is compromised in certain strains, which secrete an excess of toxin, leading to sick cells or suicidal phenotypes. Thus, a fine-tuning of toxin production has to be achieved to reach a balance between the beneficial effect of toxin production and the stress imposed on the host metabolism. K74 toxin from S. paradoxus is very active against Saccharomyces uvarum, among other yeasts, but an excess of toxin production is deleterious for the host. Here, we report that the presence of a 5' 141-nt upstream sequence downregulates K74 toxin precursor translation, decreasing toxin levels 3- to 5-fold. Thus, this is a special case of translation regulation performed by sequences on the M74 genome itself, which have been presumably incorporated into the viral RNA during evolution for that purpose.


Assuntos
RNA de Cadeia Dupla , Saccharomyces cerevisiae , Humanos , Fatores Matadores de Levedura/genética , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Saccharomyces , Saccharomyces cerevisiae/genética , Regiões não Traduzidas
3.
Yeast ; 38(5): 326-335, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33444464

RESUMO

We have previously isolated heterothallic haploid strains from original homothallic diploids of two yeast species in the family Saccharomycetaceae. In this study, heterothallic haploid strains were isolated from an original homothallic diploid of Saccharomyces kudriavzevii type strain, followed by investigation of sexual interactions among these yeast strains, in addition to S. cerevisiae laboratory strains. It has been shown that prezygotic reproductive isolation was observed between Kazachstania naganishii and S. cerevisiae with α-factor mating pheromones representing crossaction with each other beyond the genus boundary. Using heterothallic strains, postzygotic reproductive isolation system was shown to reside in the genus Saccharomyces by mass mating and cell-cell contact experiments. In mass mating experiments, crossaction of α-factor and a-factor mating pheromones and sexual agglutination effectively occurred beyond species boundaries among S. kudriavzevii, S. paradoxus, and S. cerevisiae. When the fates of cell-cell pairs from these Saccharomyces yeast species were systematically chased one by one, interspecific F1 hybrids were effectively produced, while sporulations were partially prohibited, with spore germination perfectly blocked in the hybrids. These results indicated that postzygotic reproductive isolation definitively resides among these Saccharomyces yeast species and that disorder of chromosome organization had to some extent occurred in interspecific F1 hybrids.


Assuntos
Isolamento Reprodutivo , Saccharomyces/genética , DNA Fúngico/genética , Haploidia , Hibridização Genética , Filogenia , Saccharomyces/classificação , Saccharomyces/metabolismo , Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Esporos Fúngicos
4.
Yeast ; 38(1): 81-89, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33202071

RESUMO

Spore activation is one of the most important developmental decisions in fungi as it initiates the transition from dormant and stress-resistant cells to vegetative cells. Because in many species mating follows spore activation and germination, signals that trigger this developmental transition can also contribute to species reproductive barriers. Here, we examine the biochemical signals triggering spore activation in a natural species complex of budding yeast, Saccharomyces paradoxus (lineages SpA, SpB, SpC and SpC*). We first demonstrate that we can quantitatively monitor spore activation in these closely related lineages. Second, we dissect the composition of culture media to identify components necessary and/or sufficient to activate spores in the four lineages. We show that, contrary to expectation, glucose is necessary but not sufficient to trigger spore activation. We also show that two of the North American lineages (SpC and SpC*) diverge from the other North American (SpB) and European (SpA) lineages in terms of germination signal as their spore activation requires inorganic phosphate. Our results show that the way budding yeast interpret environmental conditions during spore activation diverged among closely related and incipient species, which means that it may play a role in their ecological differentiation and reproductive isolation. TAKE AWAY: Sensing of multiple compounds allows spore activation in non-domesticated budding yeast. Spore activation cues differ among Saccharomyces paradoxus lineages. Dextrose and phosphate signal activation in SpC and SpC* spores.


Assuntos
Glucose/metabolismo , Saccharomyces/genética , Saccharomyces/fisiologia , Saccharomycetales/metabolismo , Esporos Fúngicos/fisiologia , Meios de Cultura , Glucose/farmacologia , Fosfatos/farmacologia , Saccharomyces/efeitos dos fármacos , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/genética , Saccharomycetales/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/genética
5.
Mol Biol Evol ; 36(12): 2861-2877, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31397846

RESUMO

Mutations, recombinations, and genome duplications may promote genetic diversity and trigger evolutionary processes. However, quantifying these events in diploid hybrid genomes is challenging. Here, we present an integrated experimental and computational workflow to accurately track the mutational landscape of yeast diploid hybrids (MuLoYDH) in terms of single-nucleotide variants, small insertions/deletions, copy-number variants, aneuploidies, and loss-of-heterozygosity. Pairs of haploid Saccharomyces parents were combined to generate ancestor hybrids with phased genomes and varying levels of heterozygosity. These diploids were evolved under different laboratory protocols, in particular mutation accumulation experiments. Variant simulations enabled the efficient integration of competitive and standard mapping of short reads, depending on local levels of heterozygosity. Experimental validations proved the high accuracy and resolution of our computational approach. Finally, applying MuLoYDH to four different diploids revealed striking genetic background effects. Homozygous Saccharomyces cerevisiae showed a ∼4-fold higher mutation rate compared with its closely related species S. paradoxus. Intraspecies hybrids unveiled that a substantial fraction of the genome (∼250 bp per generation) was shaped by loss-of-heterozygosity, a process strongly inhibited in interspecies hybrids by high levels of sequence divergence between homologous chromosomes. In contrast, interspecies hybrids exhibited higher single-nucleotide mutation rates compared with intraspecies hybrids. MuLoYDH provided an unprecedented quantitative insight into the evolutionary processes that mold diploid yeast genomes and can be generalized to other genetic systems.


Assuntos
Evolução Molecular , Técnicas Genéticas , Hibridização Genética , Mutação , Polimorfismo Genético , Diploide , Genoma Fúngico , Saccharomyces cerevisiae
6.
Yeast ; 37(11): 585-595, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32776370

RESUMO

Telomere length is measured using Southern blotting of the chromosomal terminal restriction fragments (TRFs) released by endonuclease digestion in cells from yeast to human. In the budding yeast Saccharomyces cerevisiae, XhoI or PstI is applied to cut the subtelomere Y' element and release TRFs from the 17 subtelomeres. However, telomeres from other 15 X-element-only subtelomeres are omitted from analysis. Here, we report a method for measuring all 32 telomeres in S. cerevisiae using the endonuclease MmeI. Based on analyses of the endonuclease cleavage sites, we found that the TRFs generated by MmeI displayed two distinguishable bands in the sizes of ~500 and ~700 bp comprising telomeres (300 bp) and subtelomeres (200-400 bp). The modified MmeI-restricted TRF (mTRF) method recapitulated telomere shortening and lengthening caused by deficiencies of YKu and Rif1 respectively in S. cerevisiae. Furthermore, we found that mTRF was also applicable to telomere length analysis in S. paradoxus strains. These results demonstrate a useful tool for simultaneous detection of telomeres from all chromosomal ends with both X-element-only and Y'-element subtelomeres in S. cerevisiae species.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Telômero/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Telômero/genética , Encurtamento do Telômero , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
7.
Yeast ; 37(7-8): 373-388, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32639041

RESUMO

Subtelomere Y' elements get amplified by homologous recombination in sustaining the survival and division of the budding yeast Saccharomyces cerevisiae. However, current method for measurement of the subtelomere structures uses Southern blotting with labelled specific probes, which is laborious and time-consuming. By multiple sequence alignment analysis of all 19 subtelomere Y' elements across the 13 chromosomes of the sequenced S288C strain deposited in the yeast genome SGD database, we identified 12 consensus and relative longer fragments and 14 pairs of unique primers for real-time quantitative PCR analysis. With a PAC2 or ACT1 located near the centromere of chromosome V and VI as internal controls, these primers were applied to real-time quantitative PCR analysis, so the relative Y' element intensity normalised to that of wild type (WT) cells was calculated for subtelomere Y' element copy numbers across all different chromosomes using the formula: 2^[-((CTmutant Y' - CTmutant control ) - (CTWT Y' - CTWT control ))]. This novel quantitative subtelomere amplification assay across chromosomes by real-time PCR proves to be a much simpler and more sensitive way than the traditional Southern blotting method to analyse the Y' element recombination events in survivors derived from telomerase deficiency or recruitment failure.


Assuntos
Cromossomos , Genômica , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Actinas/genética , Sequência de Bases , DNA Fúngico/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerase/genética , Telomerase/metabolismo
8.
Yeast ; 36(11): 657-668, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31348543

RESUMO

Saccharomyces yeasts are emerging as model organisms for ecology and evolution, and researchers need environmental Saccharomyces isolates to test ecological and evolutionary hypotheses. However, methods for isolating Saccharomyces from nature have not been standardized, and isolation methods may influence the genotypes and phenotypes of studied strains. We compared the effectiveness and potential biases of an established enrichment culturing method against a newly developed direct plating method for isolating forest floor Saccharomyces spp. In a European forest, enrichment culturing was both less successful at isolating Saccharomyces paradoxus per sample collected and less labour intensive per isolated S. paradoxus colony than direct isolation. The two methods sampled similar S. paradoxus diversity: The number of unique genotypes sampled (i.e., genotypic diversity) per S. paradoxus isolate and average growth rates of S. paradoxus isolates did not differ between the two methods, and growth rate variances (i.e., phenotypic diversity) only differed in one of three tested environments. However, enrichment culturing did detect rare Saccharomyces cerevisiae in the forest habitat and also found two S. paradoxus isolates with outlier phenotypes. Our results validate the historically common method of using enrichment culturing to isolate representative collections of environmental Saccharomyces. We recommend that researchers choose a Saccharomyces sampling method based on resources available for sampling and isolate screening. Researchers interested in discovering new Saccharomyces phenotypes or rare Saccharomyces species from natural environments may also have more success using enrichment culturing. We include step-by-step sampling protocols in the supplemental materials.


Assuntos
Florestas , Técnicas Microbiológicas/métodos , Saccharomyces/genética , Saccharomyces/isolamento & purificação , Microbiologia do Solo , Genótipo , Fenótipo
9.
Proc Natl Acad Sci U S A ; 113(8): 2247-51, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26787874

RESUMO

The reproductive ecology of Saccharomyces cerevisiae is still largely unknown. Recent evidence of interspecific hybridization, high levels of strain heterozygosity, and prion transmission suggest that outbreeding occurs frequently in yeasts. Nevertheless, the place where yeasts mate and recombine in the wild has not been identified. We found that the intestine of social wasps hosts highly outbred S. cerevisiae strains as well as a rare S. cerevisiae×S. paradoxus hybrid. We show that the intestine of Polistes dominula social wasps favors the mating of S. cerevisiae strains among themselves and with S. paradoxus cells by providing a succession of environmental conditions prompting cell sporulation and spores germination. In addition, we prove that heterospecific mating is the only option for European S. paradoxus strains to survive in the gut. Taken together, these findings unveil the best hidden secret of yeast ecology, introducing the insect gut as an environmental alcove in which crosses occur, maintaining and generating the diversity of the ascomycetes.


Assuntos
Saccharomyces/genética , Saccharomyces/fisiologia , Vespas/microbiologia , Animais , Biodiversidade , Cruzamentos Genéticos , Microbioma Gastrointestinal , Reprodução/genética , Reprodução/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Esporos Fúngicos/genética , Esporos Fúngicos/fisiologia
10.
Mol Biol Evol ; 34(9): 2173-2186, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28482005

RESUMO

Identifying the molecular changes that lead to ecological specialization during speciation is one of the major goals of molecular evolution. One question that remains to be thoroughly investigated is whether ecological specialization derives strictly from adaptive changes and their associated trade-offs, or from conditionally neutral mutations that accumulate under relaxed selection. We used whole-genome sequencing, genome annotation and computational analyses to identify genes that have rapidly diverged between two incipient species of Saccharomyces paradoxus that occupy different climatic regions along a south-west to north-east gradient. As candidate loci for ecological specialization, we identified genes that show signatures of adaptation and accelerated rates of amino acid substitutions, causing asymmetric evolution between lineages. This set of genes includes a glycyl-tRNA-synthetase, GRS2, which is known to be transcriptionally induced under heat stress in the model and sister species S. cerevisiae. Molecular modelling, expression analysis and fitness assays suggest that the accelerated evolution of this gene in the Northern lineage may be caused by relaxed selection. GRS2 arose during the whole-genome duplication (WGD) that occurred 100 million years ago in the yeast lineage. While its ohnolog GRS1 has been preserved in all post-WGD species, GRS2 has frequently been lost and is evolving rapidly, suggesting that the fate of this ohnolog is still to be resolved. Our results suggest that the asymmetric evolution of GRS2 between the two incipient S. paradoxus species contributes to their restricted climatic distributions and thus that ecological specialization derives at least partly from relaxed selection rather than a molecular trade-off resulting from adaptive evolution.


Assuntos
Especiação Genética , Filogeografia/métodos , Saccharomyces/genética , Ecologia , Evolução Molecular , Duplicação Gênica/genética , Genes Fúngicos/genética , Genoma Fúngico/genética , Filogenia , Saccharomyces cerevisiae/genética , Especificidade da Espécie
11.
J Evol Biol ; 30(3): 538-548, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27933674

RESUMO

The performance of hybrids relative to their parents is an important factor in speciation research. We measured the growth of 46 Saccharomyces yeast F1 interspecific and intraspecific hybrids, relative to the growth of each of their parents, in pairwise competition assays. We found that the growth of a hybrid relative to the average of its parents, a measure of mid-parent heterosis, correlated with the difference in parental growth relative to their hybrid, a measure of phenotypic divergence, which is consistent with simple complementation of low fitness alleles in one parent by high fitness alleles in the other. Interspecific hybrids showed stronger heterosis than intraspecific hybrids. To manipulate parental phenotypic divergence independently of genotype, we also measured the competitive growth of a single interspecific hybrid relative to its parents in 12 different environments. In these assays, we not only identified a strong relationship between parental phenotypic divergence and mid-parent heterosis as before, but, more tentatively, a weak relationship between phenotypic divergence and best-parent heterosis, suggesting that complementation of deleterious mutations was not the sole cause of interspecific heterosis. Our results show that mating between different species can be beneficial, and demonstrate that competition assays between parents and offspring are a useful way to study the evolutionary consequences of hybridization.


Assuntos
Vigor Híbrido , Hibridização Genética , Saccharomyces cerevisiae/genética , Evolução Biológica , Saccharomyces
12.
BMC Genomics ; 17: 305, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27113450

RESUMO

BACKGROUND: Cryptic unstable transcripts (CUTs) are a largely unexplored class of nuclear exosome degraded, non-coding RNAs in budding yeast. It is highly debated whether CUT transcription has a functional role in the cell or whether CUTs represent noise in the yeast transcriptome. We sought to ascertain the extent of conserved CUT expression across a variety of Saccharomyces yeast strains to further understand and characterize the nature of CUT expression. RESULTS: We sequenced the WT and rrp6Δ transcriptomes of three S.cerevisiae strains: S288c, Σ1278b, JAY291 and the S.paradoxus strain N17 and utilized a hidden Markov model to annotate CUTs in these four strains. Utilizing a four-way genomic alignment we identified a large population of CUTs with conserved syntenic expression across all four strains. By identifying configurations of gene-CUT pairs, where CUT expression originates from the gene 5' or 3' nucleosome free region, we observed distinct gene expression trends specific to these configurations which were most prevalent in the presence of conserved CUT expression. Divergent pairs correlate with higher expression of genes, and convergent pairs correlate with reduced gene expression. CONCLUSIONS: Our RNA-seq based method has greatly expanded upon previous CUT annotations in S.cerevisiae underscoring the extensive and pervasive nature of unstable transcription. Furthermore we provide the first assessment of conserved CUT expression in yeast and globally demonstrate possible modes of CUT-based regulation of gene expression.


Assuntos
Regulação Fúngica da Expressão Gênica , Estabilidade de RNA , RNA não Traduzido/genética , Saccharomyces/genética , Exossomos/genética , Genoma Fúngico , Cadeias de Markov , Nucleossomos/genética , RNA Fúngico/genética , Saccharomyces/classificação , Análise de Sequência de RNA , Sintenia , Transcriptoma
13.
Ecol Lett ; 19(3): 289-98, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26777785

RESUMO

Persistence by adaptation is called evolutionary rescue. Evolutionary rescue is more likely in populations that have been previously exposed to lower doses of the same stressor. Environmental fluctuations might also reduce the possibility of rescue, but little is known about the effect of evolutionary history on the likelihood of rescue. In this study, we hypothesised that the ubiquitous operation of generalised stress responses in many organisms increases the likelihood of rescue after exposure to other stressors. We tested this hypothesis with experimental populations that had been exposed to long-term starvation and were then selected on different, unrelated stressors. We found that prior adaptation to starvation imposes contrary effects on the plastic and evolutionary responses of populations to subsequent stressors. When first exposed to new stressors, such populations become extinct more often. If they survive the initial exposure to the new stressors, however, they are more likely to undergo evolutionary rescue.


Assuntos
Evolução Biológica , Saccharomyces/fisiologia , Seleção Genética , Adaptação Fisiológica , Saccharomyces/genética
14.
FEMS Yeast Res ; 16(3)2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26880797

RESUMO

Spores from wild yeast isolates often show great variation in the size of colonies they produce, for largely unknown reasons. Here we measure the colonies produced from single spores from six different wild Saccharomyces paradoxus strains. We found remarkable variation in spore colony sizes, even among spores that were genetically identical. Different strains had different amounts of variation in spore colony sizes, and variation was not affected by the number of preceding meioses, or by spore maturation time. We used time-lapse photography to show that wild strains also have high variation in spore germination timing, providing a likely mechanism for the variation in spore colony sizes. When some spores from a laboratory strain make small colonies, or no colonies, it usually indicates a genetic or meiotic fault. Here, we demonstrate that in wild strains spore colony size variation is normal. We discuss and assess potential adaptive and non-adaptive explanations for this variation.


Assuntos
Saccharomyces/crescimento & desenvolvimento , Esporos Fúngicos/crescimento & desenvolvimento , Microscopia , Saccharomyces/isolamento & purificação , Imagem com Lapso de Tempo
15.
Proc Biol Sci ; 281(1777): 20132472, 2014 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-24403328

RESUMO

Exploring the ability of organisms to locally adapt is critical for determining the outcome of rapid climate changes, yet few studies have addressed this question in microorganisms. We investigated the role of a heterogeneous climate on adaptation of North American populations of the wild yeast Saccharomyces paradoxus. We found abundant among-strain variation for fitness components across a range of temperatures, but this variation was only partially explained by climatic variation in the distribution area. Most of fitness variation was explained by the divergence of genetically distinct groups, distributed along a north-south cline, suggesting that these groups have adapted to distinct climatic conditions. Within-group fitness components were correlated with climatic conditions, illustrating that even ubiquitous microorganisms locally adapt and harbour standing genetic variation for climate-related traits. Our results suggest that global climatic changes could lead to adaptation to new conditions within groups, or changes in their geographical distributions.


Assuntos
Adaptação Biológica , Mudança Climática , Aptidão Genética , Saccharomyces/crescimento & desenvolvimento , Saccharomyces/genética , Canadá , Clima , Longevidade , Temperatura , Estados Unidos
16.
Yeast ; 31(12): 449-62, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25242436

RESUMO

Yeast researchers need model systems for ecology and evolution, but the model yeast Saccharomyces cerevisiae is not ideal because its evolution has been affected by domestication. Instead, ecologists and evolutionary biologists are focusing on close relatives of S. cerevisiae, the seven species in the genus Saccharomyces. The best-studied Saccharomyces yeast, after S. cerevisiae, is S. paradoxus, an oak tree resident throughout the northern hemisphere. In addition, several more members of the genus Saccharomyces have recently been discovered. Some Saccharomyces species are only found in nature, while others include both wild and domesticated strains. Comparisons between domesticated and wild yeasts have pinpointed hybridization, introgression and high phenotypic diversity as signatures of domestication. But studies of wild Saccharomyces natural history, biogeography and ecology are only beginning. Much remains to be understood about wild yeasts' ecological interactions and life cycles in nature. We encourage researchers to continue to investigate Saccharomyces yeasts in nature, both to place S. cerevisiae biology into its ecological context and to develop the genus Saccharomyces as a model clade for ecology and evolution.


Assuntos
Evolução Biológica , Ecossistema , Variação Genética , Saccharomyces/classificação , Saccharomyces/genética
17.
Mol Ecol ; 23(17): 4362-72, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25039979

RESUMO

Reproductive isolation is a critical step in the process of speciation. Among the most important factors driving reproductive isolation are genetic incompatibilities. Whether these incompatibilities are already present before extrinsic factors prevent gene flow between incipient species remains largely unresolved in natural systems. This question is particularly challenging because it requires that we catch speciating populations in the act before they reach the full-fledged species status. We measured the extent of intrinsic postzygotic isolation within and between phenotypically and genetically divergent lineages of the wild yeast Saccharomyces paradoxus that have partially overlapping geographical distributions. We find that hybrid viability between lineages progressively decreases with genetic divergence. A large proportion of postzygotic inviability within lineages is associated with chromosomal rearrangements, suggesting that chromosomal differences substantially contribute to the early steps of reproductive isolation within lineages before reaching fixation. Our observations show that polymorphic intrinsic factors may segregate within incipient species before they contribute to their full reproductive isolation and highlight the role of chromosomal rearrangements in speciation. We propose different hypotheses based on adaptation, biogeographical events and life history evolution that could explain these observations.


Assuntos
Especiação Genética , Hibridização Genética , Isolamento Reprodutivo , Saccharomyces/genética , Cromossomos Fúngicos , Rearranjo Gênico , Cariótipo , América do Norte , Fenótipo
18.
FEMS Yeast Res ; 14(2): 281-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24119009

RESUMO

We examined the northern limit of Saccharomyces cerevisiae and Saccharomyces paradoxus in northeast America. We collected 876 natural samples at 29 sites and applied enrichment methods for the isolation of mesophilic yeasts. We uncovered a large diversity of yeasts, in some cases, associated with specific substrates. Sequencing of the ITS1, 5.8S and ITS2 loci allowed to assign 226 yeast strains at the species level, including 41 S. paradoxus strains. Our intensive sampling suggests that if present, S. cerevisiae is rare at these northern latitudes. Our sampling efforts spread across several months of the year revealed that successful sampling increases throughout the summer and diminishes significantly at the beginning of the fall. The data obtained on the ecological context of yeasts corroborate what was previously reported on Pichiaceae, Saccharomycodaceae, Debaryomycetaceae and Phaffomycetaceae yeast families. We identified 24 yeast isolates that could not be assigned to any known species and that may be of taxonomic, medical, or biotechnological importance. Our study reports new data on the taxonomic diversity of yeasts and new resources for studying the evolution and ecology of S. paradoxus.


Assuntos
Biodiversidade , Microbiologia Ambiental , Saccharomyces cerevisiae/isolamento & purificação , Saccharomyces/isolamento & purificação , Canadá , Meio Ambiente , América do Norte , Saccharomyces/classificação , Saccharomyces/genética , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/genética , Estações do Ano , Temperatura
19.
Genome ; 57(5): 303-8, 2014 May.
Artigo em Francês | MEDLINE | ID: mdl-25188289

RESUMO

Gene conversions are nonreciprocal sequence exchanges between genes. They are relatively common in Saccharomyces cerevisiae, but few studies have investigated the evolutionary fate of gene conversions or their functional impacts. Here, we analyze the evolution and impact of gene conversions between the two genes encoding 2-deoxyglucose-6-phosphate phosphatase in S. cerevisiae, Saccharomyces paradoxus and Saccharomyces mikatae. Our results demonstrate that the last half of these genes are subject to gene conversions among these three species. The greater similarity and the greater percentage of GC nucleotides in the converted regions, as well as the absence of long regions of adjacent common converted sites, suggest that these gene conversions are frequent and occur independently in all three species. The high frequency of these conversions probably result from the fact that they have little impact on the protein sequences encoded by these genes.


Assuntos
Proteínas Fúngicas/genética , Monoéster Fosfórico Hidrolases/genética , Saccharomyces/classificação , Saccharomyces/genética , Composição de Bases , Sequência de Bases , Sequência Conservada , Evolução Molecular , Conversão Gênica , Filogenia
20.
bioRxiv ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38895255

RESUMO

Domesticated strains of Saccharomyces cerevisiae have adapted to resist copper and sulfite, two chemical stressors commonly used in winemaking. S. paradoxus, has not adapted to these chemicals despite being consistently present in sympatry with S. cerevisiae in vineyards. This contrast represents a case of apparent evolutionary constraints favoring greater adaptive capacity in S. cerevisiae. In this study, we used a comparative mutagenesis approach to test whether S. paradoxus is mutationally constrained with respect to acquiring greater copper and sulfite resistance. For both species, we assayed the rate, effect size, and pleiotropic costs of resistance mutations and sequenced a subset of 150 mutants isolated from our screen. We found that the distributions of mutational effects displayed by the two species were very similar and poorly explained the natural pattern. We also found that chromosome VIII aneuploidy and loss of function mutations in PMA1 confer copper resistance in both species, whereas loss of function mutations in REG1 were only a viable route to copper resistance in S. cerevisiae. We also observed a single de novo duplication of the CUP1 gene in S. paradoxus but none in S. cerevisiae. For sulfite, loss of function mutations in RTS1 and KSP1 confer resistance in both species, but mutations in RTS1 have larger average effects in S. paradoxus. Our results show that even when the distributions of mutational effects are largely similar, species can differ in the adaptive paths available to them. They also demonstrate that assays of the distribution of mutational effects may lack predictive insight concerning adaptive outcomes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa