Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 379
Filtrar
1.
Fish Shellfish Immunol ; 144: 109219, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952850

RESUMO

Based on the structural knowledge of TLR5 surface and using blind docking platforms, peptides derived from a truncated HMGB1 acidic tail from Salmo salar was designed as TLR5 agonistic. Additionally, a template peptide with the native N-terminal of the acidic tail sequence as a reference was included (SsOri). Peptide binding poses complexed on TLR5 ectodomain model from each algorithm were filtrated based on docking scoring functions and predicted theoretical binding affinity of the complex. The best peptides, termed 6WK and 5LWK, were selected for chemical synthesis and experimental functional assay. The agonist activity by immunoblotting and immunocytochemistry was determined following the NF-κBp65 phosphorylation (p-NF-κBp65) and the nuclear translocation of the NF-κBp65 subunit from the cytosol, respectively. HeLa cells stably expressing a S. salar TLR5 chimeric form (TLR5c7) showed increased p-NF-κBp65 levels regarding extracts from flagellin-treated cells. No statistically significant differences (p > 0.05) were found in the detected p-NF-κBp65 levels between cellular extracts treated with peptides or flagellin by one-way ANOVA. The image analysis of NF-κBp65 immunolabeled cells obtained by confocal microscopy showed increased nuclear NF-κBp65 co-localization in cells both 5LWK and flagellin stimulated, while 6WK and SsOri showed less effect on p65 nuclear translocation (p < 0.05). Also, an increased transcript expression profile of proinflammatory cytokines such as TNFα, IL-1ß, and IL-8 in HKL cells isolated from Salmo salar was evidenced in 5LWK - stimulated by RT-PCR analysis. Overall, the result indicates the usefulness of novel peptides as a potential immunostimulant in S. salar.


Assuntos
Proteína HMGB1 , Salmo salar , Animais , Humanos , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo , Flagelina/farmacologia , Flagelina/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Células HeLa , NF-kappa B/metabolismo , Cauda , Citocinas/genética , Citocinas/metabolismo
2.
Fish Shellfish Immunol ; 151: 109729, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942252

RESUMO

Monitoring stress levels of farmed Atlantic salmon (Salmo salar) is important to ensure fish welfare and optimize farm operations. Feces could be a promising matrix for assessing stress responses in fish, based on their properties of low-invasive sampling and allowing repeated sampling over time. Meanwhile, elevated levels of cortisol metabolites (CMs) in feces indicate the increases in plasma cortisol levels (PLA) after exposure to acute stress. However, the dynamics of fecal CMs following acute stress in Atlantic salmon remain unclear. In this study, a confinement stress involving chasing and crowding was conducted to investigate the responses of gastrointestinal CMs to an acute stressor in Atlantic salmon. The post-smolts, with an average weight of 155.21 g, were sampled before and at 30 min, 1.5, 6, 12, 18, 24, 36, and 48 h after the onset of stress. Blood and gastrointestinal contents from the stomach, proximal intestine, and distal intestine of each fish were collected and subsequently analyzed, using competitive enzyme-linked immunosorbent assay (ELISA). The results demonstrated that the pre-stress level of PLA was low (4.28 ± 6.13 ng/ml) and reached a peak within 30 min following stress. The levels of CMs in gastrointestinal contents from stomach (SCMs), proximal intestine (PCMs), and distal intestine (DCMs) in pre-stress group were 0.82 ± 0.50, 18.31 ± 6.14 and 16.04 ± 6.69 ng/g, respectively. Gastrointestinal CMs increased significantly within 30 min and the peak levels of SCMs (3.51 ± 3.75 ng/g), PCMs (68.19 ± 23.71 ng/g) and DCMs (65.67 ± 23.37 ng/g) were found at 1.5 h post-stress. The significant increases in PCMs and DCMs post-stress validate the biological relevance of measuring intestinal CMs for assessing acute stress responses in Atlantic salmon. No significant difference was noted between PCMs and DCMs across all samples, suggesting that intestinal contents can serve as a suitable matrix compared with feces when measuring the responses of CMs to acute stress. The time lag between the peak of PLA levels and their reflection in the intestinal contents exceeded 1 h, indicating that using intestinal contents as a matrix to assess stress levels in fish can extend and delay the sampling window. This study highlights valuable guidance for determining the optimal times to utilize intestinal contents for measuring stress responses, providing further insights into the dynamics of fecal CM following acute stress.

3.
J Fish Biol ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38872475

RESUMO

Investigating the age at sea departure of returning Atlantic salmon is critical to better understand the role of emigration timing in survival. Among the methods available, the use of otolith chemistry can be challenging in anadromous fish, as the elements frequently used (i.e., magnesium, manganese, and zinc) can jointly reflect individual metabolism and environmental conditions. Here, we present a new unsupervised and robust method for successfully estimating the outmigration age of Atlantic salmon in the Bay of Biscay, based on otolith zinc concentrations.

4.
J Fish Biol ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38679466

RESUMO

The migratory behavior of Atlantic salmon (Salmo salar) post-smolts in coastal waters is poorly understood. In this collaborative study, 1914 smolts, from 25 rivers, in four countries were tagged with acoustic transmitters during a single seasonal migration. In total, 1105 post-smolts entered the marine study areas and 438 (39.6%) were detected on a network of 414 marine acoustic receivers and an autonomous underwater vehicle. Migration pathways (defined as the shortest distance between two detections) of up to 575 km and over 100 days at sea were described for all 25 populations. Post-smolts from different rivers, as well as individuals from the same river, used different pathways in coastal waters. Although difficult to generalize to all rivers, at least during the year of this study, no tagged post-smolts from rivers draining into the Irish Sea were detected entering the areas of sea between the Hebrides and mainland Scotland, which is associated with a high density of finfish aquaculture. An important outcome of this study is that a high proportion of post-smolts crossed through multiple legislative jurisdictions and boundaries during their migration. This study provides the basis for spatially explicit assessment of the impact risk of coastal pressures on salmon during their first migration to sea.

5.
J Fish Biol ; 104(3): 698-712, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37926443

RESUMO

Reservoir formation in a river system changes a lotic environment to more lacustrine conditions, with impacts throughout the ecosystem. In this study, a river reach containing typical salmonid riffle/run habitat was flooded to create a large, deep pool from June to September in each of 3 years. We test the hypothesis that juvenile Atlantic salmon (Salmo salar) with their preference for run/riffle habitats will respond to the transformation to a lentic environment by moving into adjacent lotic environments. Movements of juvenile Atlantic salmon were monitored using a combination of biotelemetry (radio- and passive integrated transponder-tagging) and electrofishing. Results showed that no tracked fish moved away from the created pool habitat. Mass-specific growth rates showed the created pool habitat resulted in net growth of juveniles. The results confirm that fish may not immediately (i.e., at least for an approximate 2 months) respond to rapid, large-scale habitat alterations by moving to find similar habitat conditions outside the altered habitat. This is most probably related to plasticity of behavior and habitat use, and no change in biological conditions to a point that would negatively impact fish growth and survival, for example food availability, competition, or predation. The results also support the hypothesis that the relative importance of physical habitat variables is not universal among streams and populations, therefore limiting the value of applying standard habitat suitability criteria and use.


Assuntos
Ecossistema , Salmo salar , Animais , Rios , Comportamento Predatório
6.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612511

RESUMO

Piscirickettsia salmonis is the pathogen that most affects the salmon industry in Chile. Large quantities of antibiotics have been used to control it. In search of alternatives, we have developed [Cu(NN1)2]ClO4 where NN1 = 6-((quinolin-2-ylmethylene)amino)-2H-chromen-2-one. The antibacterial capacity of [Cu(NN1)2]ClO4 was determined. Subsequently, the effect of the administration of [Cu(NN1)2]ClO4 on the growth of S. salar, modulation of the immune system and the intestinal microbiota was studied. Finally, the ability to protect against a challenge with P. salmonis was evaluated. The results obtained showed that the compound has an MIC between 15 and 33.9 µg/mL in four isolates. On the other hand, the compound did not affect the growth of the fish; however, an increase in the transcript levels of IFN-γ, IL-12, IL-1ß, CD4, lysozyme and perforin was observed in fish treated with 40 µg/g of fish. Furthermore, modulation of the intestinal microbiota was observed, increasing the genera of beneficial bacteria such as Lactobacillus and Bacillus as well as potential pathogens such as Vibrio and Piscirickettsia. Finally, the treatment increased survival in fish challenged with P. salmonis by more than 60%. These results demonstrate that the compound is capable of protecting fish against P. salmonis, probably by modulating the immune system and the composition of the intestinal microbiota.


Assuntos
Anti-Infecciosos , Infecções por Piscirickettsiaceae , Salmo salar , Animais , Cobre , Infecções por Piscirickettsiaceae/tratamento farmacológico , Infecções por Piscirickettsiaceae/veterinária , Antibacterianos/farmacologia
7.
BMC Genomics ; 24(1): 161, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991327

RESUMO

BACKGROUND: Infectious Salmon Anaemia Virus (ISAV) is an Orthomixovirus that represents a large problem for salmonid aquaculture worldwide. Current prevention and treatment methods are only partially effective. Genetic selection and genome engineering have the potential to develop ISAV resistant salmon stocks. Both strategies can benefit from an improved understanding of the genomic regulation of ISAV pathogenesis. Here, we used single-cell RNA sequencing of an Atlantic salmon cell line to provide the first high dimensional insight into the transcriptional landscape that underpins host-virus interaction during early ISAV infection. RESULTS: Salmon head kidney (SHK-1) cells were single-cell RNA sequenced at 24, 48 and 96 h post-ISAV challenge. At 24 h post infection, cells showed expression signatures consistent with viral entry, with genes such as PI3K, FAK or JNK being upregulated relative to uninfected cells. At 48 and 96 h, infected cells showed a clear anti-viral response, characterised by the expression of IFNA2 or IRF2. Uninfected bystander cells at 48 and 96 h also showed clear transcriptional differences, potentially suggesting paracrine signalling from infected cells. These bystander cells expressed pathways such as mRNA sensing, RNA degradation, ubiquitination or proteasome; and up-regulation of mitochondrial ribosome genes also seemed to play a role in the host response to the infection. Correlation between viral and host genes revealed novel genes potentially key for this fish-virus interaction. CONCLUSIONS: This study has increased our understanding of the cellular response of Atlantic salmon during ISAV infection and revealed host-virus interactions at the cellular level. Our results highlight various potential key genes in this host-virus interaction, which can be manipulated in future functional studies to increase the resistance of Atlantic salmon to ISAV.


Assuntos
Doenças dos Peixes , Isavirus , Infecções por Orthomyxoviridae , Salmo salar , Animais , Salmo salar/genética , Isavirus/genética , Regulação para Cima , Linhagem Celular , Análise de Sequência de RNA , Doenças dos Peixes/genética , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/veterinária
8.
Fish Shellfish Immunol ; 139: 108887, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37290611

RESUMO

Piscirickettsiosis outbreaks due to Piscirickettsia salmonis occur globally in the Chilean salmon aquaculture generating significant monetary losses in the industry. P. salmonis secretes outer membrane vesicles (OMVs) which are naturally non-replicating and highly immunogenic spherical nanoparticles. P. salmonis OMVs has been shown to induce immune response in zebrafish; however, the immune response induced by these vesicles in salmonids has not been evaluated. In this study, we inoculated Atlantic salmon with 10 and 30 µg doses of P. salmonis OMVs and took samples for 12 days. qPCR analysis indicated an inflammatory response. Thus, the inflammatory genes evaluated were up- or down-regulated at several times in liver, head kidney and spleen. In addition, the liver was the organ most immune-induced, mainly in the 30 µg-dose. Interestingly, co-expression of pro- and anti-inflammatory cytokines was evidenced by the prominent expression of il-10 at day 1 in spleen and also in head kidney on days 3, 6 and 12, while il-10 and tgf-ß were up-regulated on days 3, 6 and 12 in liver. Importantly, we detected the production of IgM against proteins of P. salmonis in the serum collected from immunized fish after 14 days. Thus, 40 and 400 µg OMVs induced the production of highest IgM levels; however, no statistical difference in the immunoglobulin levels produced by these OMVs doses were detected. The current study provides evidence that OMVs released by P. salmonis induced a pro-inflammatory responses and IgM production in S. salar, while regulatory genes were induced in order to regulate their effects and achieve the balance of the inflammatory response.


Assuntos
Doenças dos Peixes , Piscirickettsia , Infecções por Piscirickettsiaceae , Salmo salar , Animais , Salmo salar/genética , Interleucina-10 , Peixe-Zebra , Piscirickettsia/fisiologia , Imunoglobulina M , Infecções por Piscirickettsiaceae/veterinária
9.
Fish Shellfish Immunol ; 143: 109210, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951318

RESUMO

Sea lice (Lepeophtheirus salmonis) and infectious salmon anemia virus (ISAv) are two of the most important pathogens in Atlantic salmon (Salmo salar) farming and typically cause substantial economic losses to the industry. However, the immune interactions between hosts and these pathogens are still unclear, especially in the scenario of co-infection. In this study, we artificially infected Atlantic salmon with sea lice and ISAv, and investigated the gene expression patterns of Atlantic salmon head kidneys in response to both lice only and co-infection with lice and ISAv by transcriptomic analysis. The challenge experiment indicated that co-infection resulted in a cumulative mortality rate of 47.8 %, while no mortality was observed in the lice alone infection. We identified 240 differentially expressed genes (DEGs) under the lice alone infection, of which 185 were down-regulated and 55 were up-regulated, while a total of 994 DEGs were identified in the co-infection, of which 206 were down-regulated and 788 were significantly up-regulated. The pathway enrichment analysis revealed that single-infection significantly suppressed the innate immune system (e.g., the complement system), whereas co-infection induced a strong immune response, leading to the activation of immune-related signaling pathways such as Toll-like receptors and NOD-like receptors pathways, as well as significant upregulation of genes related to the activation of interferon and MH class I protein complex. Our results provide the first global transcriptomic study of gene expression in the Atlantic salmon head kidney in response to co-infection with sea lice and ISAv, and provided the baseline knowledge for understanding the immune responses during co-infection.


Assuntos
Coinfecção , Copépodes , Doenças dos Peixes , Isavirus , Salmo salar , Animais , Salmo salar/genética , Copépodes/fisiologia , Isavirus/genética , Coinfecção/veterinária , Perfilação da Expressão Gênica/veterinária , Transcriptoma , Imunidade , Rim
10.
Fish Shellfish Immunol ; 140: 108975, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37488040

RESUMO

The parr-smolt transformation in salmonids involves a critical period characterized by systemic changes associated with the fish's immune response. In this context, as a dietary ingredient in functional diets, microalgae offer an alternative due to their nutritional and bioactive compounds that could strengthen the immune status. This study evaluated the effect of a diet supplemented with Schizochytrium spp and Nannochloropsis gaditana on the expression of genes associated with the antibacterial response. Additionally, the study assessed the effect on the leukocyte population and erythrocyte maturity in Salmo salar blood. Fish were fed for 30 days with a microalgal mixture (1:1) at a 10% inclusion. Each diet was randomly assigned to a tank using a completely randomized design (CRD) with four replications. Each tank was stocked with 70 Atlantic salmon fingerlings with an initial mean weight of 78.87 ± 0.84. Transcription levels were quantified and analyzed by qRT-PCR from cell isolates and mucus tissue. Furthermore, cell count and identification of leukocytes and classification of cellular maturity of erythrocytes using a neural network with a multilayer perceptron (MLP) were performed. Our results showed a significant (p < 0.05) increase in fold change expression of C3 (2.54 ± 0.65) and NK-Lysine (6.84 ± 0.94) in erythrocytes of microalgae-supplemented fish. Moreover, a significant increase of 1.59 and 2.35 times in monocytes and immature erythrocytes, respectively, was observed in the same group of fish (p < 0.05). This study's results indicate that dual microalgae (Schizochytrium spp and N. gaditana) supplementation can increase innate humoral antibacterial components, particularly in erythrocyte tissue, and increase phagocytic cells and immature erythrocytes in S. salar blood.


Assuntos
Microalgas , Salmo salar , Estramenópilas , Animais , Dieta/veterinária , Imunidade Inata , Eritrócitos , Antibacterianos , Ração Animal/análise
11.
Mar Drugs ; 21(5)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37233488

RESUMO

Information on the bioaccessibility of minerals is essential to consider a food ingredient as a potential mineral fortifier. In this study, the mineral bioaccessibility of protein hydrolysates from salmon (Salmo salar) and mackerel (Scomber scombrus) backbones and heads was evaluated. For this purpose, the hydrolysates were submitted to simulated gastrointestinal digestion (INFOGEST method), and the mineral content was analyzed before and after the digestive process. Ca, Mg, P, Fe, Zn, and Se were then determined using an inductively coupled plasma spectrometer mass detector (ICP-MS). The highest bioaccessibility of minerals was found in salmon and mackerel head hydrolysates for Fe (≥100%), followed by Se in salmon backbone hydrolysates (95%). The antioxidant capacity of all protein hydrolysate samples, which was measured by Trolox Equivalent Antioxidant Capacity (TEAC), increased (10-46%) after in vitro digestion. The heavy metals As, Hg, Cd, and Pb were determined (ICP-MS) in the raw hydrolysates to confirm the harmlessness of these products. Except for Cd in mackerel hydrolysates, all toxic elements were below the legislation levels for fish commodities. These results suggest the possibility of using protein hydrolysates from salmon and mackerel backbones and heads for food mineral fortification, as well as the need to verify their safety.


Assuntos
Perciformes , Salmo salar , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Hidrolisados de Proteína/metabolismo , Cádmio/metabolismo , Minerais/metabolismo , Perciformes/metabolismo
12.
J Fish Dis ; 46(5): 535-543, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36787245

RESUMO

A Multi-Locus Variable number of tandem repeat Analysis (MLVA) genotyping scheme was developed for the epidemiological study of Moritella viscosa, which causes 'winter ulcer' predominantly in sea-reared Atlantic salmon (Salmo salar L.). The assay involves multiplex PCR amplification of six Variable Number of Tandem Repeat (VNTR) loci, followed by capillary electrophoresis and data interpretation. A collection of 747 spatiotemporally diverse M. viscosa isolates from nine fish species was analysed, the majority from farmed Norwegian salmon. MLVA distributed 76% of the isolates across three major clonal complexes (CC1, CC2 and CC3), with the remaining forming minor clusters and singletons. While 90% of the salmon isolates belong to either CC1, CC2 or CC3, only 20% of the isolates recovered from other fish species do so, indicating a considerable degree of host specificity. We further highlight a series of 'clonal shifts' amongst Norwegian salmon isolates over the 35-year sampling period, with CC1 showing exclusive predominance prior to the emergence of CC2, which was later supplanted by CC3, before the recent re-emergence of CC1. Apparently, these shifts have rapidly swept the entire Norwegian coastline and conceivably, as suggested by typing of a small number of non-Norwegian isolates, the Northeast Atlantic region as a whole.


Assuntos
Doenças dos Peixes , Moritella , Salmo salar , Animais , Genótipo , Agricultura
13.
J Fish Dis ; 46(12): 1337-1342, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37675858

RESUMO

Recently, we showed that Atlantic salmon vaccinated against Piscirickettsia salmonis lose their protection upon coinfection with Caligus rogercresseyi (sea lice). However, the causes of the overriding effect of C. rogercresseyi infection have not been elucidated, and the molecular basis of the cellular and humoral immune responses upon C. rogercresseyi infection has not been described for vaccinated salmon. Therefore, we studied changes in the transcription of immune genes in vaccinated Atlantic salmon that were experimentally challenged by co-infecting them with C. rogercresseyi and P. salmonis. In general, coinfection treatments showed immune gene expression similar to treatments with a single P. salmonis infection, showing a decreased cellular response. However, a high variance was found between individual fish in the case of crucial cellular immune genes, with a few fish reacting overwhelmingly highly compared to the majority. This supports our previous findings on vaccination response variation and reinforces the idea that vaccination failures in the field might be caused by an overwhelming amount of vaccinated fish that display a deficient immune response to the infection.


Assuntos
Coinfecção , Copépodes , Doenças dos Peixes , Ftirápteros , Piscirickettsia , Salmo salar , Animais , Copépodes/fisiologia , Coinfecção/veterinária , Imunidade
14.
Genomics ; 114(6): 110503, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36244592

RESUMO

Salmon rickettsial septicaemia (SRS), caused by the bacteria Piscirickettsia salmonis (P. salmonis), is responsible for significant mortality in farmed Atlantic salmon in Chile. Currently there are no effective treatments or preventive measures for this disease, although genetic selection or genome engineering to increase salmon resistance to SRS are promising strategies. The accuracy and efficiency of these strategies are usually influenced by the available biological background knowledge of the disease. The aim of this study was to investigate DNA methylation changes in response to P. salmonis infection in the head kidney and liver tissue of Atlantic salmon, and the interaction between gene expression and DNA methylation in the same tissues. The head kidney and liver methylomes of 66 juvenile salmon were profiled using reduced representation bisulphite sequencing (RRBS), and compared between P. salmonis infected animals (3 and 9 days post infection) and uninfected controls, and between SRS resistant and susceptible fish. Methylation was correlated with matching RNA-Seq data from the same animals, revealing that methylation in the first exon leads to an important repression of gene expression. Head kidney methylation showed a clear response to the infection, associated with immunological processes such as actin cytoskeleton regulation, phagocytosis, endocytosis and pathogen associated pattern receptor signaling. Our results contribute to the growing understanding of the role of methylation in regulation of gene expression and response to infectious diseases and could inform the incorporation of epigenetic markers into genomic selection for disease resistant and the design of diagnostic epigenetic markers to better manage fish health in salmon aquaculture.


Assuntos
Salmo salar , Animais , Salmo salar/genética , Metilação de DNA , Genômica , Epigenômica
15.
J Fish Biol ; 102(2): 537-541, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36448734

RESUMO

Future warming scenarios are predicted to result in an increased frequency of high, and potentially stressful, temperatures in aquatic ecosystems. Here we examined whether the performance of wild underyearling Atlantic salmon (Salmo salar) in Scottish streams stocked with identical egg densities was influenced by thermal stress. Biomass and density declined with degree hours exceeding 23°C, indicating apparent mortality or emigration as a possible result of exposure to high temperatures. These results strengthen the need for further action such as riparian tree planting to reduce stream summer temperatures.


Assuntos
Salmo salar , Animais , Temperatura , Rios , Ecossistema , Estações do Ano
16.
Fish Physiol Biochem ; 49(1): 97-116, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36574113

RESUMO

Farmed Atlantic salmon (Salmo salar) welfare and performance can be strongly influenced by stress episodes caused by handling during farming practices. To better understand the changes occurring after an acute stress response, we exposed a group of Atlantic salmon parr to an acute stressor, which involved netting and transferring fish to several new holding tanks. We describe a time-course response to stress by sampling parr in groups before (T0) and 10, 20, 30, 45, 60, 120, 240, 300, and 330 min post-stress. A subgroup of fish was also subjected to the same stressor for a second time to assess their capacity to respond to the same challenge again within a short timeframe (ReStressed). Fish plasma was assessed for adrenocorticotropic hormone (ACTH), cortisol, and ions levels. Mucus cortisol levels were analyzed and compared with the plasma cortisol levels. At 5 selected time points (T0, 60, 90, 120, 240, and ReStressed), we compared the head kidney transcriptome profile of 10 fish per time point. The considerably delayed increase of ACTH in the plasma (60 min post-stress), and the earlier rise of cortisol levels (10 min post-stress), suggests that cortisol release could be triggered by more rapidly responding factors, such as the sympathetic system. This hypothesis may be supported by a high upregulation of several genes involved in synaptic triggering, observed both during the first and the second stress episodes. Furthermore, while the transcriptome profile showed few changes at 60 min post-stress, expression of genes in several immune-related pathways increased markedly with each successive time point, demonstrating the role of the immune system in fish coping capacity. Although many of the genes discussed in this paper are still poorly characterized, this study provides new insights regarding the mechanisms occurring during the stress response of salmon parr and may form the basis for a useful guideline on timing of sampling protocols.


Assuntos
Salmo salar , Animais , Hidrocortisona , Rim Cefálico , Transcriptoma , Muco , Hormônio Adrenocorticotrópico
17.
BMC Genomics ; 23(1): 775, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443659

RESUMO

BACKGROUND: Infectious Salmon Anaemia virus (ISAV) is an orthomyxovirus responsible for large losses in Atlantic salmon (Salmo salar) aquaculture. Current available treatments and vaccines are not fully effective, and therefore selective breeding to produce ISAV-resistant strains of Atlantic salmon is a high priority for the industry. Genomic selection and potentially genome editing can be applied to enhance the disease resistance of aquaculture stocks, and both approaches can benefit from increased knowledge on the genomic mechanisms of resistance to ISAV. To improve our understanding of the mechanisms underlying resistance to ISAV in Atlantic salmon we performed a transcriptomic study in ISAV-infected salmon with contrasting levels of resistance to this virus. RESULTS: Three different tissues (gills, head kidney and spleen) were collected on 12 resistant and 12 susceptible fish at three timepoints (pre-challenge, 7 and 14 days post challenge) and RNA sequenced. The transcriptomes of infected and non-infected fish and of resistant and susceptible fish were compared at each timepoint. The results show that the responses to ISAV are organ-specific; an important response to the infection was observed in the head kidney, with up-regulation of immune processes such as interferon and NLR pathways, while in gills and spleen the response was more moderate. In addition to immune related genes, our results suggest that other processes such as ubiquitination and ribosomal processing are important during early infection with ISAV. Moreover, the comparison between resistant and susceptible fish has also highlighted some interesting genes related to ubiquitination, intracellular transport and the inflammasome. CONCLUSIONS: Atlantic salmon infection by ISAV revealed an organ-specific response, implying differential function during the infection. An immune response was observed in the head kidney in these early timepoints, while gills and spleen showed modest responses in comparison. Comparison between resistance and susceptible samples have highlighted genes of interest for further studies, for instance those related to ubiquitination or the inflammasome.


Assuntos
Isavirus , Salmo salar , Animais , Rim Cefálico , Salmo salar/genética , Baço , Brânquias , Transcriptoma , Inflamassomos
18.
Mol Ecol ; 31(9): 2712-2729, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35243721

RESUMO

Due to multigeneration domestication selection, farmed and wild Atlantic salmon diverge genetically, which raises concerns about potential genetic interactions among escaped farmed and wild populations and disruption of local adaptation through introgression. When farmed strains of distant geographic origin are used, it is unknown whether the genetic consequences posed by escaped farmed fish will be greater than if more locally derived strains are used. Quantifying gene transcript expression differences among divergent farmed, wild and F1  hybrids under controlled conditions is one of the ways to explore the consequences of hybridization. We compared the transcriptomes of fry at the end of yolk sac absorption of a European (EO) farmed ("StofnFiskur", Norwegian strain), a North American (NA) farmed (Saint John River, NB strain), a Newfoundland (NF) wild population with EO ancestry, and related F1  hybrids using 44 K microarrays. Our findings indicate that the wild population showed greater transcriptome differences from the EO farmed strain than that of the NA farmed strain. We also found the largest differences in global gene expression between the two farmed strains. We detected the fewest differentially expressed transcripts between F1  hybrids and domesticated/wild maternal strains. We also found that the differentially expressed genes between cross types over-represented GO terms associated with metabolism, development, growth, immune response, and redox homeostasis processes. These findings suggest that the interbreeding of escaped EO/NA farmed and NF wild population would alter gene transcription, and the consequences of hybridization would be greater from escaped EO farmed than NA farmed salmon, resulting in potential effects on the wild populations.


Assuntos
Salmo salar , Adaptação Fisiológica , Animais , Hibridização Genética , América do Norte , Salmo salar/genética , Transcriptoma/genética
19.
Ecol Appl ; 32(2): e2492, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34773666

RESUMO

Aquatic habitats are severely threatened by human activities. For anadromous species, managing freshwater habitats to maximize production of more, larger juveniles could improve resilience to threats in marine habitats and enhance population viability. In some juvenile salmonid habitats, complexity created by large substrates provides resources and reduces competitive interactions, thereby promoting juvenile production. In lowland rivers, which lack large substrates, aquatic plants might provide similar complexity and enhance fish productivity. To test the influence of aquatic plants on juvenile Atlantic salmon and sympatric brown trout in a lowland river, we directly manipulated the cover of the dominant macrophyte, Ranunculus, in nine sites during summer and autumn for two years. We quantified the abundance, site retention and growth of salmon and trout under high, medium or low Ranunculus cover. To investigate the effects of Ranunculus cover on feeding opportunities and interspecific competition, we quantified available prey biomass and body size, fish diet composition and compared dietary niche overlap. Experimentally increased Ranunculus cover supported higher salmon abundance in summer and autumn, and higher site retention and growth of salmon in summer. Trout abundance and growth were not influenced by Ranunculus cover, but trout site retention doubled in high, relative to low, cover sites. Despite the weak effects of Ranunculus cover on prey availability, salmon and trout inhabiting high cover sites consumed larger prey and a higher biomass of prey. Furthermore, dietary niche overlap was lower in high, relative to low, cover sites, suggesting that abundant Ranunculus reduced interspecific competition. This field experiment shows that high Ranunculus cover can support more and better growing juvenile salmon, and facilitate foraging and co-existence of sympatric salmonid species. Maintaining or enhancing natural macrophyte cover can be achieved through sympathetic in-river and riparian vegetation management and mitigating pressures on them, such as sediment inputs and low flows, or through planting. Further research should test whether macrophyte cover benefits propagate to subsequent life stages, particularly juvenile overwintering associated with high mortality. This knowledge, in combination with our findings, would further clarify whether beneficial juvenile habitat can improve the viability of at-risk salmonid populations. Overall, our findings suggest that the aims of river restoration might be achieved through promotion of in-stream aquatic vegetation.


Assuntos
Salmo salar , Animais , Água Doce , Rios , Estações do Ano , Truta
20.
Microb Ecol ; 84(4): 1294-1298, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34741645

RESUMO

Gut microbiota of wild Baltic salmon (a sub-population of Atlantic salmon Salmo salar L.) parr was first analyzed using microbial profiling of the 16S rRNA gene (V3-V4 region) and high taxonomic richness was revealed. At the phylum level, the gut microbiota was dominated by Firmicutes, Actinobacteria, and Proteobacteria, the most numerous of which were Firmicutes. The phylum Tenericutes (mainly assigned to Mycoplasmataceae), which is common both in wild North- and East- Atlantic salmon parr, was not detected in Baltic salmon parr. Across all samples, unique amplicon sequence variants (ASVs) belonging to the unclassified Bacilli, Actinomycetales, and Rhizobiales were identified as the major taxa. Fifteen ASVs at the family level were found in all gut samples of Baltic salmon parr, the majority of which were Mycobacteriaceae, Cryptosporangiaceae, Microbacteriaceae, and Planctomycetaceae. At the genus level, Mycobacterium, Clostridium sensu stricto, and Hyphomicrobium were dominant but at low levels in all gut samples. Our study has revealed that the gut microbial community of wild Baltic salmon parr differs from those of wild North- and East-Atlantic salmon parr. This can be due to biogeographical differences or host-selective pressures, as the Baltic salmon population is believed to have split from the Atlantic salmon population in the Ancylian period.


Assuntos
Actinobacteria , Microbioma Gastrointestinal , Salmo salar , Animais , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Bactérias/genética , Firmicutes/genética , Actinobacteria/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa