Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Parasitology ; 149(9): 1173-1178, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35570667

RESUMO

The cestode Schistocephalus solidus is a common parasite in freshwater threespine stickleback populations, imposing strong fitness costs on their hosts. Given this, it is surprising how little is known about the timing and development of infections in natural stickleback populations. Previous work showed that young-of-year stickleback can get infected shortly after hatching. We extended this observation by comparing infection prevalence of young-of-year stickleback from 3 Alaskan populations (Walby, Cornelius and Wolf lakes) over 2 successive cohorts (2018/19 and 2019/20). We observed strong variation between sampling years (2018 vs 2019 vs 2020), stickleback age groups (young-of-year vs 1-year-old) and sampling populations.


Assuntos
Infecções por Cestoides , Doenças dos Peixes , Smegmamorpha , Alaska/epidemiologia , Animais , Infecções por Cestoides/epidemiologia , Infecções por Cestoides/veterinária , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia , Interações Hospedeiro-Parasita , Lagos/parasitologia , Smegmamorpha/parasitologia
2.
Parasitol Res ; 121(6): 1607-1619, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35435510

RESUMO

Since 2012, a massive invasion of the three-spined stickleback (Gasterosteus aculeatus) has taken place into the pelagic area of Lake Constance. This species, which had previously been restricted to the littoral zone, is now the dominant pelagic fish and the previously dominant whitefish (Coregonus wartmanni) has suffered severe reductions in growth and recruitment. In this study, in total, 2871 sticklebacks were collected via monthly sessions over a 4-year period in pelagic and benthic areas of Lake Constance and examined for signs of infection with Schistocephalus solidus, a parasite known to be potentially fatal. The infection risk to sticklebacks increases throughout the course of the year and is size- and sex-dependent. Habitat has only a marginal impact. All parasite-induced harm is imparted after stickleback spawning and parental care is over. The results did not support the hypothesis that the invasion of the pelagic area might be driven by parasite-avoiding behaviour. Furthermore, the impact of the parasite is likely to be limited to post-reproductive adults, thereby ensuring stable reproduction of the hosts despite high rates of transmission and mortality. In consequence, stickleback stock development is independent of S. solidus infection, leading to secure coexistence of host and parasite even at extraordinary high host levels.


Assuntos
Cestoides , Infecções por Cestoides , Doenças dos Peixes , Parasitos , Salmonidae , Smegmamorpha , Animais , Infecções por Cestoides/parasitologia , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia , Interações Hospedeiro-Parasita , Smegmamorpha/parasitologia
3.
J Fish Biol ; 101(3): 453-463, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35598110

RESUMO

As climate change progresses, thermal stress is expected to alter the way that host organisms respond to infections by pathogens and parasites, with consequences for the fitness and therefore population processes of both host and parasite. The authors used a correlational natural experiment to examine how temperature differences shape the impact of the cestode parasite Schistocephalus solidus on its host, the three-spined stickleback (Gasterosteus aculeatus). Previous laboratory work has found that high temperatures benefit S. solidus while being detrimental to the stickleback. The present study sought to emulate this design in the wild, repeatedly sampling naturally infected and uninfected fish at matched warmer and cooler locations in the Baltic Sea. In this wild study, the authors found little evidence that temperature was associated with the host-parasite interaction. Although infection reduced host condition and reproductive status overall, these effects did not vary with temperature. Host fitness indicators correlated to some extent with temperature, with cooler capture sites associated with larger size but warmer sites with improved reproductive potential. Parasite fitness (prevalence or size) was not correlated with temperature at the capture site. These mismatches between laboratory and field outcomes illustrate how findings from well-controlled laboratory experiments may not fully reflect processes in more variable natural settings. Nonetheless, the findings of this study indicate that temperature can influence host fitness regardless of infection, with potential consequences for both host demography and parasite transmission dynamics in this complex system.


Assuntos
Cestoides , Infecções por Cestoides , Doenças dos Peixes , Parasitos , Smegmamorpha , Animais , Infecções por Cestoides/veterinária , Doenças dos Peixes/parasitologia , Interações Hospedeiro-Parasita , Temperatura
4.
Proc Biol Sci ; 288(1959): 20211758, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34547906

RESUMO

Epidemiological traits of host-parasite associations depend on the effects of the host, the parasite and their interaction. Parasites evolve mechanisms to infect and exploit their hosts, whereas hosts evolve mechanisms to prevent infection and limit detrimental effects. The reasons why and how these traits differ across populations still remain unclear. Using experimental cross-infection of three-spined stickleback Gasterosteus aculeatus and their species-specific cestode parasites Schistocephalus solidus from Alaskan and European populations, we disentangled host, parasite and interaction effects on epidemiological traits at different geographical scales. We hypothesized that host and parasite main effects would dominate both within and across continents, although interaction effects would show geographical variation of natural selection within and across continents. We found that mechanisms preventing infection (qualitative resistance) occurred only in a combination of hosts and parasites from different continents, while mechanisms limiting parasite burden (quantitative resistance) and reducing detrimental effects of infection (tolerance) were host-population specific. We conclude that evolution favours distinct defence mechanisms on different geographical scales and that it is important to distinguish concepts of qualitative resistance, quantitative resistance and tolerance in studies of macroparasite infections.


Assuntos
Cestoides , Infecções por Cestoides , Doenças dos Peixes , Parasitos , Smegmamorpha , Animais , Infecções por Cestoides/veterinária , Interações Hospedeiro-Parasita
5.
Glob Chang Biol ; 27(1): 94-107, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33067869

RESUMO

Global climate change can influence organismic interactions like those between hosts and parasites. Rising temperatures may exacerbate the exploitation of hosts by parasites, especially in ectothermic systems. The metabolic activity of ectotherms is strongly linked to temperature and generally increases when temperatures rise. We hypothesized that temperature change in combination with parasite infection interferes with the host's immunometabolism. We used a parasite, the avian cestode Schistocephalus solidus, which taps most of its resources from the metabolism of an ectothermic intermediate host, the three-spined stickleback. We experimentally exposed sticklebacks to this parasite, and studied liver transcriptomes 50 days after infection at 13°C and 24°C, to assess their immunometabolic responses. Furthermore, we monitored fitness parameters of the parasite and examined immunity and body condition of the sticklebacks at 13°C, 18°C and 24°C after 36, 50 and 64 days of infection. At low temperatures (13°C), S. solidus growth was constrained, presumably also by the more active stickleback's immune system, thus delaying its infectivity for the final host to 64 days. Warmer temperature (18°C and 24°C) enhanced S. solidus growth, and it became infective to the final host already after 36 days. Overall, S. solidus produced many more viable offspring after development at elevated temperatures. In contrast, stickleback hosts had lower body conditions, and their immune system was less active at warm temperature. The stickleback's liver transcriptome revealed that mainly metabolic processes were differentially regulated between temperatures, whereas immune genes were not strongly affected. Temperature effects on gene expression were strongly enhanced in infected sticklebacks, and even in exposed-but-not-infected hosts. These data suggest that the parasite exposure in concert with rising temperature, as to be expected with global climate change, shifted the host's immunometabolism, thus providing nutrients for the enormous growth of the parasite and, at the same time suppressing immune defence.


Assuntos
Infecções por Cestoides , Doenças dos Peixes , Parasitos , Smegmamorpha , Animais , Mudança Climática , Interações Hospedeiro-Parasita , Temperatura
6.
Proc Biol Sci ; 287(1925): 20200412, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32290804

RESUMO

Parasites with complex life cycles have been proposed to manipulate the behaviour of their intermediate hosts to increase the probability of reaching their final host. The cause of these drastic behavioural changes could be manipulation factors released by the parasite in its environment (the secretome), but this has rarely been assessed. We studied a non-cerebral parasite, the cestode Schistocephalus solidus, and its intermediate host, the threespine stickleback (Gasterosteus aculeatus), whose response to danger becomes significantly diminished when infected. These altered behaviours appear only during late infection, when the worm is ready to reproduce in its final avian host. Sympatric host-parasite pairs show higher infection success for parasites, suggesting that the secretome effects could differ for allopatric host-parasite pairs with independent evolutionary histories. We tested the effects of secretome exposure on behaviour by using secretions from the early and late infection of S. solidus and by injecting them in healthy sticklebacks from a sympatric and allopatric population. Contrary to our prediction, secretome from late infection worms did not result in more risky behaviours, but secretome from early infection resulted in more cautious hosts, only in fish from the allopatric population. Our results suggest that the secretome of S. solidus contains molecules that can affect host behaviour, that the causes underlying the behavioural changes in infected sticklebacks are multifactorial and that local adaptation between host-parasite pairs may extend to the response to the parasite's secretome content.


Assuntos
Comportamento Animal , Interações Hospedeiro-Parasita , Smegmamorpha/parasitologia , Animais , Cestoides , Infecções por Cestoides/parasitologia , Doenças dos Peixes/parasitologia , Parasitos
7.
Proc Biol Sci ; 287(1938): 20201158, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33143588

RESUMO

Many prey species have evolved collective responses to avoid predation. They rapidly transfer information about potential predators to trigger and coordinate escape waves. Predation avoidance behaviour is often manipulated by trophically transmitted parasites, to facilitate their transmission to the next host. We hypothesized that the presence of infected, behaviourally altered individuals might disturb the spread of escape waves. We used the tapeworm Schistocephalus solidus, which increases risk-taking behaviour and decreases social responsiveness of its host, the three-spined stickleback, to test this hypothesis. Three subgroups of sticklebacks were placed next to one another in separate compartments with shelter. The middle subgroup contained either uninfected or infected sticklebacks. We confronted an outer subgroup with an artificial bird strike and studied how the escape response spread through the subgroups. With uninfected sticklebacks in the middle, escape waves spread rapidly through the entire shoal and fish remained in shelter thereafter. With infected sticklebacks in the middle, the escape wave was disrupted and uninfected fish rarely used the shelter. Infected individuals can disrupt the transmission of flight responses, thereby not only increasing their own predation risk but also that of their uninfected shoal members. Our study uncovers a potentially far-reaching fitness consequence of grouping with infected individuals.


Assuntos
Infecções por Cestoides/veterinária , Doenças dos Peixes/parasitologia , Smegmamorpha/parasitologia , Animais , Cestoides , Peixes , Interações Hospedeiro-Parasita , Parasitos , Doenças Parasitárias
8.
Proc Natl Acad Sci U S A ; 114(25): 6575-6580, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28588142

RESUMO

Parasites can be a major cause of natural selection on hosts, which consequently evolve a variety of strategies to avoid, eliminate, or tolerate infection. When ecologically similar host populations present disparate infection loads, this natural variation can reveal immunological strategies underlying adaptation to infection and population divergence. For instance, the tapeworm Schistocephalus solidus persistently infects 0-80% of threespine stickleback (Gasterosteus aculeatus) in lakes on Vancouver Island. To test whether these heterogeneous infection rates result from evolved differences in immunity, we experimentally exposed laboratory-reared fish from ecologically similar high-infection and no-infection populations to controlled doses of Schistocephalus We observed heritable between-population differences in several immune traits: Fish from the naturally uninfected population initiated a stronger granulocyte response to Schistocephalus infection, and their granulocytes constitutively generate threefold more reactive oxygen species in cell culture. Despite these immunological differences, Schistocephalus was equally successful at establishing initial infections in both host populations. However, the no-infection fish dramatically suppressed tapeworm growth relative to high-infection fish, and parasite size was intermediate in F1 hybrid hosts. Our results show that stickleback recently evolved heritable variation in their capacity to suppress helminth growth by two orders of magnitude. Data from many natural populations indicate that growth suppression is widespread but not universal and, when present, is associated with reduced infection prevalence. Host suppression of helminth somatic growth may be an important immune strategy that aids in parasite clearance or in mitigating the fitness costs of persistent infection.


Assuntos
Cestoides/crescimento & desenvolvimento , Infecções por Cestoides/parasitologia , Doenças dos Peixes/parasitologia , Smegmamorpha/parasitologia , Vertebrados/parasitologia , Animais , Cestoides/imunologia , Doenças dos Peixes/imunologia , Granulócitos/imunologia , Granulócitos/parasitologia , Interações Hospedeiro-Parasita/imunologia , Explosão Respiratória/imunologia , Smegmamorpha/imunologia , Vertebrados/imunologia , Virulência/imunologia
9.
BMC Evol Biol ; 19(1): 80, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30890121

RESUMO

BACKGROUND: Host genotype - parasite genotype co-evolutionary dynamics are influenced by local biotic and abiotic environmental conditions. This results in spatially heterogeneous selection among host populations. How such heterogeneous selection influences host resistance, parasite infectivity and virulence remains largely unknown. We hypothesized that different co-evolutionary trajectories of a vertebrate host-parasite association result in specific virulence patterns when assessed on a large geographic scale. We used two reference host populations of three-spined sticklebacks and nine strains of their specific cestode parasite Schistocephalus solidus from across the Northern Hemisphere for controlled infection experiments. Host and parasite effects on infection phenotypes including host immune gene expression were determined. RESULTS: S. solidus strains grew generally larger in hosts coming from a population with high parasite diversity and low S. solidus prevalence (DE hosts). Hosts from a population with low parasite diversity and high S. solidus prevalence (NO hosts) were better able to control the parasite's growth, regardless of the origin of the parasite. Host condition and immunological parameters converged upon infection and parasite growth showed the same geographic pattern in both host types. CONCLUSION: Our results suggest that NO sticklebacks evolved resistance against a variety of S. solidus strains, whereas DE sticklebacks are less resistant against S. solidus. Our data provide evidence that differences in parasite prevalence can cause immunological heterogeneity and that parasite size, a proxy for virulence and resistance, is, on a geographic scale, determined by main effects of the host and the parasite and less by an interaction of both genotypes.


Assuntos
Resistência à Doença , Geografia , Interações Hospedeiro-Parasita , Parasitos/patogenicidade , Vertebrados/parasitologia , Animais , Cestoides/patogenicidade , Infecções por Cestoides/imunologia , Infecções por Cestoides/parasitologia , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/parasitologia , Regulação da Expressão Gênica , Interações Hospedeiro-Parasita/imunologia , Análise Multivariada , Fenótipo , Tamanho da Amostra , Smegmamorpha/genética , Smegmamorpha/crescimento & desenvolvimento , Smegmamorpha/imunologia , Smegmamorpha/parasitologia , Virulência
10.
Proc Biol Sci ; 286(1895): 20182413, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30963953

RESUMO

Host manipulation is a parasite-induced alteration of a host's phenotype that increases parasite fitness. However, if genetically encoded in the parasite, it should be under selection in the parasite. Such host manipulation has often been assumed to be energetically costly, which should restrict its evolution. Evidence of such costs, however, remains elusive. The trophically transmitted cestode Schistocephalus solidus manipulates the activity of its first intermediate copepod host to reduce its predation susceptibility before the parasite is ready for transmission. Thereafter, S. solidus increases host activity to facilitate transmission to its subsequent fish host. I selected S. solidus for or against host manipulation over three generations to investigate the evolvability of manipulation and identify potential trade-offs. Host manipulation responded to selection, confirming that this trait is heritable in the parasite and hence can present an extended phenotype. Changes in host manipulation were not restrained by any obvious costs.


Assuntos
Evolução Biológica , Cestoides/fisiologia , Copépodes/parasitologia , Interações Hospedeiro-Parasita , Seleção Genética , Animais , Doenças dos Peixes/parasitologia , Doenças dos Peixes/transmissão , Peixes/parasitologia , Cadeia Alimentar , Fenótipo , Especificidade da Espécie
11.
Mol Ecol ; 28(10): 2668-2680, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30993799

RESUMO

Parasites are one of the strongest selective agents in nature. They select for hosts that evolve counter-adaptive strategies to cope with infection. Helminth parasites are special because they can modulate their hosts' immune responses. This phenomenon is important in epidemiological contexts, where coinfections may be affected. How different types of hosts and helminths interact with each other is insufficiently investigated. We used the three-spined stickleback (Gasterosteus aculeatus) - Schistocephalus solidus model to study mechanisms and temporal components of helminth immune modulation. Sticklebacks from two contrasting populations with either high resistance (HR) or low resistance (LR) against S. solidus, were individually exposed to S. solidus strains with characteristically high growth (HG) or low growth (LG) in G. aculeatus. We determined the susceptibility to another parasite, the eye fluke Diplostomum pseudospathaceum, and the expression of 23 key immune genes at three time points after S. solidus infection. D. pseudospathaceum infection rates and the gene expression responses depended on host and S. solidus type and changed over time. Whereas the effect of S. solidus type was not significant after three weeks, T regulatory responses and complement components were upregulated at later time points if hosts were infected with HG S. solidus. HR hosts showed a well orchestrated immune response, which was absent in LR hosts. Our results emphasize the role of regulatory T cells and the timing of specific immune responses during helminth infections. This study elucidates the importance to consider different coevolutionary trajectories and ecologies when studying host-parasite interactions.


Assuntos
Infecções por Cestoides/parasitologia , Helmintos/patogenicidade , Interações Hospedeiro-Parasita , Smegmamorpha/parasitologia , Animais , Coinfecção/parasitologia , Doenças dos Peixes/parasitologia
12.
J Anim Ecol ; 88(12): 1986-1997, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31365124

RESUMO

Parasites are important selective agents with the potential to limit gene flow between host populations by shaping local host immunocompetence. We report on a contact zone between lake and river three-spined sticklebacks (Gasterosteus aculeatus) that offers the ideal biogeographic setting to explore the role of parasite-mediated selection on reproductive isolation. A waterfall acts as a natural barrier and enforces unidirectional migration from the upstream river stickleback population to the downstream river and lake populations. We assessed population genetic structure and parasite communities over four years. In a set of controlled experimental infections, we compared parasite susceptibility of upstream and downstream fish by exposing laboratory-bred upstream river and lake fish, as well as hybrids, to two common lake parasite species: a generalist trematode parasite, Diplostomum pseudospathaceum, and a host-specific cestode, Schistocephalus solidus. We found consistent genetic differentiation between upstream and downstream populations across four sampling years, even though the downstream river consisted of ~10% first-generation migrants from the upstream population as detected by parentage analysis. Fish in the upstream population had lower genetic diversity and were strikingly devoid of macroparasites. Through experimental infections, we demonstrated that upstream fish and their hybrids had higher susceptibility to parasite infections than downstream fish. Despite this, naturally sampled upstream migrants were less infected than downstream residents. Thus, migrants coming from a parasite-free environment may enjoy an initial fitness advantage, but their descendants seem likely to suffer from higher parasite loads. Our results suggest that adaptation to distinct parasite communities can influence stickleback invasion success and may represent a barrier to gene flow, even between close and connected populations.


Assuntos
Cestoides , Infecções por Cestoides , Doenças dos Peixes , Parasitos , Smegmamorpha , Animais , Fluxo Gênico , Interações Hospedeiro-Parasita , Lagos
13.
Fish Shellfish Immunol ; 87: 286-296, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30664930

RESUMO

The majority of parasites have evolved strategies to evade the immune responses of their hosts. Neuroactive substances produced by cestodes are possible candidate molecules for regulating host immune responses. The neurons of helminths can synthesize a wide range of molecules that are identical to the ones functioning in their host organisms, and host lymphocytes have receptors for these neuroactive substances. We hypothesized that in teleost fish, antihelminthic immune responses are regulated via 5-hydroxytryptamine (5-HT, or serotonin) and γ-aminobutyric acid (GABA). In the present study, we investigated the in vitro influence of serotonin, GABA and Schistocephalus solidus (helminth) antigens on basic characteristics of the three-spined stickleback Schistocephalus solidus cellular immune response. Head kidney leucocytes (HKLs) were analysed by flow cytometry for cell viability and the frequency of leucocyte subsets (the granulocyte-to-lymphocyte ratio) and by a chemiluminescence assay for the production of reactive oxygen species (ROS). In short-term (2-h) HKL cultures, 5-HT did not change the total numbers of live HKLs, but the production of ROS decreased significantly with all 5-HT concentrations. In long-term (96-h) cultures, high 5-HT concentrations induced a decrease in leucocyte viability. This coincided with elevated ROS production in cultures with all 5-HT concentrations. In short-term (2-h) HKL cultures, GABA did not change the total numbers of live HKLs, but the production of ROS decreased significantly with high (100 nmol L-1) GABA concentrations. In long-term (96-h) cultures, high and medium concentrations of GABA (100 nmol L-1 and 10 nmol L-1) elevated the numbers of live HKLs compared to controls. The granulocyte-to-lymphocyte ratios generally increased upon exposure to GABA at all concentrations. All concentrations of GABA alone elevated the ROS production of HKLs compared to controls. In the present work, we showed that the neuroactive substances serotonin and GABA regulate the teleost immune system. Our study supports the hypothesis that these substances might be immunomodulators in tapeworm-fish parasite-host interactions.


Assuntos
Imunidade Celular/imunologia , Leucócitos/imunologia , Serotonina/farmacologia , Smegmamorpha/imunologia , Ácido gama-Aminobutírico/farmacologia , Animais , Cestoides/fisiologia , Infecções por Cestoides/imunologia , Infecções por Cestoides/veterinária , Doenças dos Peixes/imunologia , GABAérgicos/farmacologia , Agonistas do Receptor de Serotonina/farmacologia
14.
Parasitology ; 146(7): 883-896, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30720409

RESUMO

Remarkably few attempts have been made to estimate contemporary effective population size (Ne) for parasitic species, despite the valuable perspectives it can offer on the tempo and pace of parasite evolution as well as coevolutionary dynamics of host-parasite interactions. In this study, we utilized multi-locus microsatellite data to derive single-sample and temporal estimates of contemporary Ne for a cestode parasite (Schistocephalus solidus) as well as three-spined stickleback hosts (Gasterosteus aculeatus) in lakes across Alaska. Consistent with prior studies, both approaches recovered small and highly variable estimates of parasite and host Ne. We also found that estimates of host Ne and parasite Ne were sensitive to assumptions about population genetic structure and connectivity. And, while prior work on the stickleback-cestode system indicates that physiographic factors external to stickleback hosts largely govern genetic variation in S. solidus, our findings indicate that stickleback host attributes and factors internal to the host - namely body length, genetic diversity and infection - shape contemporary Ne of cestode parasites.


Assuntos
Cestoides/genética , Infecções por Cestoides/veterinária , Doenças dos Peixes/parasitologia , Smegmamorpha/genética , Smegmamorpha/parasitologia , Alaska , Animais , Cestoides/patogenicidade , Infecções por Cestoides/parasitologia , Variação Genética , Genética Populacional , Lagos , Repetições de Microssatélites/genética , Densidade Demográfica , Virulência
15.
Proc Biol Sci ; 285(1881)2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29925621

RESUMO

Trophically transmitted parasites frequently increase their hosts' risk-taking behaviour, to facilitate transmission to the next host. Whether such elevated risk-taking can spill over to uninfected group members is, however, unknown. To investigate this, we confronted groups of 6 three-spined sticklebacks, Gasterosteus aculeatus, containing 0, 2, 4 or 6 experimentally infected individuals with a simulated bird attack and studied their risk-taking behaviour. As a parasite, we used the tapeworm Schistocephalus solidus, which increases the risk-taking of infected sticklebacks, to facilitate transmission to its final host, most often piscivorous birds. Before the attack, infected and uninfected individuals did not differ in their risk-taking. However, after the attack, individuals in groups with only infected members showed lower escape responses and higher risk-taking than individuals from groups with only uninfected members. Importantly, uninfected individuals adjusted their risk-taking behaviour to the number of infected group members, taking more risk with an increasing number of infected group members. Infected individuals, however, did not adjust their risk-taking to the number of uninfected group members. Our results show that behavioural manipulation by parasites does not only affect the infected host, but also uninfected group members, shedding new light on the social dynamics involved in host-parasite interactions.


Assuntos
Interações Hospedeiro-Parasita , Assunção de Riscos , Smegmamorpha , Comportamento Social , Animais , Cestoides/fisiologia , Infecções por Cestoides/parasitologia , Infecções por Cestoides/veterinária , Doenças dos Peixes/parasitologia
16.
J Exp Biol ; 221(Pt 6)2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29444843

RESUMO

Many parasites with complex life cycles modify the behaviour of their intermediate host, which has been proposed to increase transmission to their definitive host. This behavioural change could result from the parasite actively manipulating its host, but could also be explained by a mechanical effect, where the physical presence of the parasite affects host behaviour. We created an artificial internal parasite using silicone injections in the body cavity to test this mechanical effect hypothesis. We used the Schistocephalus solidus and threespine stickleback (Gasterosteus aculeatus) system, as this cestode can reach up to 92% of its fish host mass. Our results suggest that the mass burden brought by this macroparasite alone is not sufficient to cause behavioural changes in its host. Furthermore, our results show that wall-hugging (thigmotaxis), a measure of anxiety in vertebrates, is significantly reduced in Schistocephalus-infected sticklebacks, unveiling a new altered component of behaviour that may result from manipulation by this macroparasite.


Assuntos
Cestoides/fisiologia , Infecções por Cestoides/veterinária , Doenças dos Peixes/parasitologia , Locomoção , Smegmamorpha , Animais , Infecções por Cestoides/parasitologia , Interações Hospedeiro-Parasita , Quebeque
17.
Parasitology ; 145(6): 762-769, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29113596

RESUMO

Host manipulation whereby a parasite increases its transmission to a subsequent host by altering the behaviour of its current host is very far spread. It also occurs in host-parasite systems that are widely distributed. This offers the potential for local adaptation. The tapeworm Schistocephalus solidus modifies its first intermediate copepod host's predation susceptibility to suit its own needs by reducing its activity before it becomes infective and increasing it thereafter. To investigate potential differences in host manipulation between different populations and test for potential local adaptation with regard to host manipulation, I experimentally infected hosts from two distinct populations with parasites from either population in a fully crossed design. Host manipulation differed between populations mostly once the parasite had reached infectivity. These differences in infective parasites were mostly due to differences between different parasite populations. In not yet infective parasites, however, host population also had a significant effect on host manipulation. There was no evidence of local adaptation; parasites were able to manipulate foreign and local hosts equally well. Likewise, hosts were equally poor at resisting host manipulation by local and foreign parasites.


Assuntos
Adaptação Fisiológica , Cestoides/patogenicidade , Infecções por Cestoides/parasitologia , Interações Hospedeiro-Parasita , Animais , Copépodes/parasitologia , Copépodes/fisiologia , População , Virulência
18.
J Fish Dis ; 41(11): 1701-1708, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30066968

RESUMO

Parasitic helminths have evolved strategies to evade their host's immune systems. Particularly, the early time of interactions between helminths and their hosts might be decisive for their infection success. We used the cestode Schistocephalus solidus, and its highly specific second intermediate host, the three-spined stickleback (Gasterosteus aculeatus) to investigate parasite infection and host cellular immune responses starting 1 day postexposure (dpe). We recovered live parasites from stickleback body cavities already 24 hr after exposure. Infection rates increased up to 50% and did not change from 4 dpe onwards. Thus, not all parasites had reached the body cavity at the early time points and clearance of the parasite at later time points did not occur. Stickleback head kidney leucocytes (HKLs) did not show distinct signs of activation and lymphocyte proliferation, granulocyte-to-lymphocyte ratios and respiratory burst activity of infected sticklebacks did not deviate from controls significantly. The immune system was activated only late, as indicated by an increase in the total count of HKL relative to stickleback weight (HKL per mg fish), which was significantly elevated in infected fish 32 dpe. S. solidus seems to evade leucocyte activity early during infection facilitating its establishment in the hosts' body cavity.


Assuntos
Cestoides/fisiologia , Infecções por Cestoides/veterinária , Doenças dos Peixes/imunologia , Imunidade Celular , Smegmamorpha , Animais , Infecções por Cestoides/imunologia , Infecções por Cestoides/parasitologia , Doenças dos Peixes/parasitologia , Espanha
19.
Mol Ecol ; 26(4): 1118-1130, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27997044

RESUMO

Parasites with complex life cycles have developed numerous phenotypic strategies, closely associated with developmental events, to enable the exploitation of different ecological niches and facilitate transmission between hosts. How these environmental shifts are regulated from a metabolic and physiological standpoint, however, still remain to be fully elucidated. We examined the transcriptomic response of Schistocephalus solidus, a trophically transmitted parasite with a complex life cycle, over the course of its development in an intermediate host, the threespine stickleback, and the final avian host. Results from our differential gene expression analysis show major reprogramming events among developmental stages. The final host stage is characterized by a strong activation of reproductive pathways and redox homoeostasis. The attainment of infectivity in the fish intermediate host-which precedes sexual maturation in the final host and is associated with host behaviour changes-is marked by transcription of genes involved in neural pathways and sensory perception. Our results suggest that un-annotated and S. solidus-specific genes could play a determinant role in host-parasite molecular interactions required to complete the parasite's life cycle. Our results permit future comparative analyses to help disentangle species-specific patterns of infection from conserved mechanisms, ultimately leading to a better understanding of the molecular control and evolution of complex life cycles.


Assuntos
Cestoides/genética , Infecções por Cestoides/parasitologia , Interações Hospedeiro-Parasita , Smegmamorpha/parasitologia , Transcriptoma , Animais , Doenças dos Peixes/parasitologia
20.
Exp Parasitol ; 180: 119-132, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28322743

RESUMO

The evolutionary arms race of hosts and parasites often results in adaptations, which may differ between populations. Investigation of such local adaptation becomes increasingly important to understand dynamics of host-parasite interactions and co-evolution. To this end we performed an infection experiment involving pairs of three-spined sticklebacks and their tapeworm parasite Schistocephalus solidus from three geographically separated origins (Germany, Spain and Iceland) in a fully-crossed design for sympatric and allopatric host/parasite combinations. We hypothesized that local adaptation of the hosts results in differences in parasite resistance with variation in parasite infection rates and leukocyte activation, whereas parasites from different origins might differ in virulence reflected in host exploitation rates (parasite indices) and S. solidus excretory-secretory products (SsESP) involved in immune manipulation. In our experimental infections, sticklebacks from Iceland were more resistant to S. solidus infection compared to Spanish and German sticklebacks. Higher resistance of Icelandic sticklebacks seemed to depend on adaptive immunity, whereas sticklebacks of German origin, which were more heavily afflicted by S. solidus, showed elevated activity of innate immune traits. German S. solidus were less successful in infecting and exploiting allopatric hosts compared to their Icelandic and Spanish conspecifics. Nevertheless, exclusively SsESP from German S. solidus triggered significant in vitro responses of leukocytes from naïve sticklebacks. Interestingly, parasite indices were almost identical across the sympatric combinations. Differences in host resistance and parasite virulence between the origins were most evident in allopatric combinations and were consistent within origin; i.e. Icelandic sticklebacks were more resistant and their S. solidus were more virulent in all allopatric combinations, whereas German sticklebacks were less resistant and their parasites less virulent. Despite such differences between origins, the degree of host exploitation was almost identical in the sympatric host-parasite combinations, suggesting that the local evolutionary arms race of hosts and parasites resulted in an optimal virulence, maximising parasite fitness while avoiding host overexploitation.


Assuntos
Cestoides/imunologia , Infecções por Cestoides/veterinária , Doenças dos Peixes/imunologia , Imunomodulação , Smegmamorpha/parasitologia , Adaptação Biológica/imunologia , Animais , Cestoides/patogenicidade , Infecções por Cestoides/epidemiologia , Infecções por Cestoides/imunologia , Infecções por Cestoides/parasitologia , Resistência à Doença , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia , Citometria de Fluxo/veterinária , Alemanha/epidemiologia , Interações Hospedeiro-Parasita/imunologia , Islândia/epidemiologia , Leucócitos/citologia , Leucócitos/imunologia , Leucócitos/metabolismo , Explosão Respiratória , Espanha/epidemiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa