Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 34(28)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37011601

RESUMO

Van der Waals materials and their interfaces play critical roles in defining electrical contacts for nanoelectronics and developing vehicles for mechanoelectrical energy conversion. In this work, we propose a vertical strain engineering approach by enforcing pressure across the heterostructures. First-principles calculations show that the in-plane band structures of 2D materials such as graphene, h-BN, and MoS2as well as the electronic coupling at their contacts can be significantly modified. For the graphene/h-BN contact, a band gap in graphene is opened, while at the graphene/MoS2interface, the band gap of MoS2and the Schottky barrier height at contact diminish. Changes and transitions in the nature of contacts are attributed to localized orbital coupling and analyzed through the redistribution of charge densities, the crystal orbital Hamilton population, and electron localization, which yield consistent measures. These findings offer key insights into the understanding of interfacial interaction between 2D materials as well as the efficiency of electronic transport and energy conversion processes.

2.
Nanotechnology ; 34(35)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37100049

RESUMO

This paper explores how the Schottky barrier (SB) transistor is used in a variety of applications and material systems. A discussion of SB formation, current transport processes, and an overview of modeling are first considered. Three discussions follow, which detail the role of SB transistors in high performance, ubiquitous and cryogenic electronics. For high performance computing, the SB typically needs to be minimized to achieve optimal performance and we explore the methods adopted in carbon nanotube technology and two-dimensional electronics. On the contrary for ubiquitous electronics, the SB can be used advantageously in source-gated transistors and reconfigurable field-effect transistors (FETs) for sensors, neuromorphic hardware and security applications. Similarly, judicious use of an SB can be an asset for applications involving Josephson junction FETs.

3.
Small ; 18(3): e2103881, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34816558

RESUMO

Morre's law is coming to an end only if the memory industry can keep stuffing the devices with new functionality. Halide perovskite acts as a promising candidate for application in next-generation nonvolatile memory. As is well known, the switching ratio is the key device requirement of resistive memory to improve recognition accuracy. Here, the authors introduce an all-inorganic halide perovskite CsPbBr3 single crystal film (SCF) into resistive memory as an active layer. The Ag/CsPbBr3 /Ag memory cells exhibit reproducible resistive switching with an ultrahigh switching ratio (over 109 ) and a fast switching speed (1.8 µs). It is studied that the Schottky barrier of metal/CsPbBr3 SCF contact follows the tendency of Schottky-Mott theory, and the Fermi level pinning effect is effectively reduced. The interface S parameter of metal/CsPbBr3 SCF contact is 0.50, suggesting a great interface contact is formed. The great interface contact contributes to the steady high resistance state (HRS), and then the steady HRS leads to an ultrahigh resistive switching ratio. This work demonstrates high performance from halide perovskite SCF-based memory. The introduction of halide perovskite SCF in resistive random access memory provides great potential as an alternative in future computing systems.

4.
Nano Lett ; 18(7): 4386-4395, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29898367

RESUMO

The interest in spin transport in nanoscopic semiconductor channels is driven by both the inevitable miniaturization of spintronics devices toward nanoscale and the rich spin-dependent physics the quantum confinement engenders. For such studies, the all-important issue of the ferromagnet/semiconductor (FM/SC) interface becomes even more critical at nanoscale. Here we elucidate the effects of the FM/SC interface on electrical spin injection and detection at nanoscale dimensions, utilizing a unique type of Si nanowires (NWs) with an inherent axial doping gradient. Two-terminal and nonlocal four-terminal lateral spin-valve measurements were performed using different combinations from a series of FM contacts positioned along the same NW. The data are analyzed with a general model of spin accumulation in a normal channel under electrical spin injection from a FM, which reveals a distinct correlation of decreasing spin-valve signal with increasing injector junction resistance. The observation is attributed to the diminishing contribution of the d-electrons in the FM to the injected current spin polarization with increasing Schottky barrier width. The results demonstrate that there is a window of interface parameters for optimal spin injection efficiency and current spin polarization, which provides important design guidelines for nanospintronic devices with quasi-one-dimensional semiconductor channels.

5.
Microsc Microanal ; 21(5): 1145-52, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25973600

RESUMO

Using lock-in infrared microscopy as a tool for current detection on the micrometer scale in AC-driven specimens in combination with iterative grinding procedure allows preparation of current dominating microstructure regions on well-polished surfaces. This technique is applied successfully on varistor components based on specially doped ZnO-based varistor ceramics. This peculiar electroceramic material exhibits exceptional high nonlinear current-voltage (I-V) characteristics, described by a power law according I~V(α), caused by double Schottky barriers at the grain boundaries. As a novelty the thermographic response is used to evaluate local electrical properties, namely the nonlinearity coefficient α, on basis of higher order harmonics with respect to the basic electrical driving AC-frequency. To correlate the observed electrical properties to the microstructure, the polar crystal orientation of the relevant ZnO grains is determined by combining electron backscatter diffraction and orientation-dependent patterns as a result of a chemical etching procedure. These findings support a modified new model for describing the grain boundary controlled current flow in a varistor microstructure including orientation-dependent barrier properties. Hence, the experimentally observed current direction-dependent behavior can be described consistently.

6.
Small ; 10(4): 653-9, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24106040

RESUMO

Efficient room temperature NIR detection with sufficient current gain is made with a solution-processed networked SWNT FET. The high performance NIR-FET with significantly enhanced photocurrent by more than two orders of magnitude compared to dark current in the depleted state is attributed to multiple Schottky barriers in the network, each of which absorb NIR and effectively separate photocarriers to corresponding electrodes.

7.
Small ; 9(17): 2872-9, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-23495044

RESUMO

A new Schottky junction ultraviolet photodetector (UVPD) is fabricated by coating a free-standing ZnO nanorod (ZnONR) array with a layer of transparent monolayer graphene (MLG) film. The single-crystalline [0001]-oriented ZnONR array has a length of about 8-11 µm, and a diameter of 100∼600 nm. Finite element method (FEM) simulation results show that this novel nanostructure array/MLG heterojunction can trap UV photons effectively within the ZnONRs. By studying the I-V characteristics in the temperature range of 80-300 K, the barrier heights of the MLG film/ZnONR array Schottky barrier are estimated at different temperatures. Interestingly, the heterojunction diode with typical rectifying characteristics exhibits a high sensitivity to UV light illumination and a quick response of millisecond rise time/fall times with excellent reproducibility, whereas it is weakly sensitive to visible light irradiation. It is also observed that this UV photodetector (PD) is capable of monitoring a fast switching light with a frequency as high as 2250 Hz. The generality of the above results suggest that this MLG film/ZnONR array Schottky junction UVPD will have potential application in future optoelectronic devices.


Assuntos
Grafite/química , Nanoestruturas/química , Nanotecnologia/métodos , Nanotubos/economia , Raios Ultravioleta , Óxido de Zinco/química
8.
Materials (Basel) ; 16(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36837365

RESUMO

A high-performance GaAs nanowire photodetector was fabricated based on the modification of Au nanoparticles (NPs). Au nanoparticles prepared by thermal evaporation were used to modify the defects on the surface of GaAs nanowires. Plasmons and Schottky barriers were also introduced on the surface of the GaAs nanowires, to enhance their light absorption and promote the separation of carriers inside the GaAs nanowires. The research results show that under the appropriate modification time, the dark current of GaAs nanowire photodetectors was reduced. In addition, photocurrent photodetectors increased from 2.39 × 10-10 A to 1.26 × 10-9 A. The responsivity of GaAs nanowire photodetectors correspondingly increased from 0.569 A∙W-1 to 3.047 A∙W-1. The reasons for the improvement of the photodetectors' performance after modification were analyzed through the energy band theory model. This work proposes a new method to improve the performance of GaAs nanowire photodetectors.

9.
Adv Sci (Weinh) ; 10(34): e2303734, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37814361

RESUMO

Two-dimensional material-based field-effect transistors (2DM-FETs) are playing a revolutionary role in electronic devices. However, before electronic design automation (EDA) for 2DM-FETs can be achieved, it remains necessary to determine how to incorporate contact transports into model. Reported methods compromise between physical intelligibility and model compactness due to the heterojunction nature. To address this, quasi-Fermi-level phase space theory (QFLPS) is generalized to incorporate contact transports using the Landauer formula. It turns out that the Landauer-QFLPS model effectively overcomes the issue of concern. The proposed new formula can describe 2DM-FETs with Schottky or Ohmic contacts with superior accuracy and efficiency over previous methods, especially when describing non-monotonic drain conductance characteristics. A three-bit threshold inverter quantizer (TIQ) circuit is fabricated using ambipolar black phosphorus and it is demonstrated that the model accurately predicts circuit performance. The model could be very effective and valuable in the development of 2DM-FET-based integrated circuits.

10.
Adv Mater ; 34(5): e2105845, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34763374

RESUMO

Piezoelectricity is a key functionality induced by conversion between mechanical and electrical energy. Enhancement of piezoelectricity in ferroelectrics often has been realized by complicated synthetical approaches to host unique structural boundaries, so-called morphotropic phase boundaries. While structural approaches are well-known, enhancing piezoelectricity by external stimuli has yet to be clearly explored, despite their advantages of offering not only simple and in situ control without any prior processing requirement, but compatibility with other functionalities. Here, it is shown that light is a powerful control parameter to enhance the piezoelectric property of BiFeO3 single crystals. A series of measurements based on piezoresponse force microscopy and conductive atomic force microscopy, under illumination, reveal a locally enhanced effective piezoelectric coefficient, dzz , eventually showing almost a sevenfold increase. This phenomenon is explained with theoretical models by introducing the two main underlying mechanisms attributed to the bulk photovoltaic effect and Schottky barrier effect, involving the role of open-circuit voltage and photocharge carrier density. These results provide key insights to light-induced piezoelectricity enhancement, offering its potential for multifunctional optoelectronic devices.

11.
ACS Appl Mater Interfaces ; 14(47): 53027-53037, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36396122

RESUMO

Memristive devices relying on redox-based resistive switching mechanisms represent promising candidates for the development of novel computing paradigms beyond von Neumann architecture. Recent advancements in understanding physicochemical phenomena underlying resistive switching have shed new light on the importance of an appropriate selection of material properties required to optimize the performance of devices. However, despite great attention has been devoted to unveiling the role of doping concentration, impurity type, adsorbed moisture, and catalytic activity at the interfaces, specific studies concerning the effect of the counter electrode in regulating the electronic flow in memristive cells are scarce. In this work, the influence of the metal-insulator Schottky interfaces in electrochemical metallization memory (ECM) memristive cell model systems based on single-crystalline ZnO nanowires (NWs) is investigated following a combined experimental and modeling approach. By comparing and simulating the electrical characteristics of single NW devices with different contact configurations and by considering Ag and Pt electrodes as representative of electrochemically active and inert electrodes, respectively, we highlight the importance of an appropriate choice of electrode materials by taking into account the Schottky barrier height and interface chemistry at the metal-insulator interfaces. In particular, we show that a clever choice of metal-insulator interfaces allows to reshape the hysteretic conduction characteristics of the device and to increase the device performance by tuning its resistance window. These results obtained from single NW-based devices provide new insights into the selection criteria for materials and interfaces in connection with the design of advanced ECM cells.

12.
ACS Appl Mater Interfaces ; 14(9): 11903-11909, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35220717

RESUMO

Weaker Fermi level pinning (FLP) at the Schottky barriers of 2D semiconductors is electrically desirable as this would allow a minimizing of contact resistances, which presently limit device performances. Existing contacts on MoS2 have a strong FLP with a small pinning factor of only ∼0.1. Here, we show that Moire interfaces can stabilize physisorptive sites at the Schottky barriers with a much weaker interaction without significantly lengthening the bonds. This increases the pinning factor up to ∼0.37 and greatly reduces the n-type Schottky barrier height to ∼0.2 eV for certain metals such as In and Ag, which can have physisorptive sites. This then accounts for the low contact resistance of these metals as seen experimentally. Such physisorptive interfaces can be extended to similar systems to better control SBHs in highly scaled 2D devices.

13.
Nanomaterials (Basel) ; 12(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36296740

RESUMO

For ultra-scaled technology nodes at channel lengths below 12 nm, two-dimensional (2D) materials are a potential replacement for silicon since even atomically thin 2D semiconductors can maintain sizable mobilities and provide enhanced gate control in a stacked channel nanosheet transistor geometry. While theoretical projections and available experimental prototypes indicate great potential for 2D field effect transistors (FETs), several major challenges must be solved to realize CMOS logic circuits based on 2D materials at the wafer scale. This review discusses the most critical issues and benchmarks against the targets outlined for the 0.7 nm node in the International Roadmap for Devices and Systems scheduled for 2034. These issues are grouped into four areas; device scaling, the formation of low-resistive contacts to 2D semiconductors, gate stack design, and wafer-scale process integration. Here, we summarize recent developments in these areas and identify the most important future research questions which will have to be solved to allow for industrial adaptation of the 2D technology.

14.
ACS Appl Mater Interfaces ; 13(30): 35924-35929, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34296860

RESUMO

The nonlinear response of a material to an external stimulus is vital in fundamental science and technical applications. The power-law current-voltage relationship of a varistor is one such example. An excellent example of such behavior is the power-law current-voltage relationship exhibited by Bi2O3-doped ZnO varistor ceramics, which are the cornerstone of commercial varistor materials for overvoltage protection. Here, we report on a sustainable, ZnO-based varistor ceramic, without the volatile Bi2O3, that is based on Cr2O3 as the varistor former and oxides of Ca, Co, and Sb as the performance enhancers. The material has an ultrahigh α of up to 219, a low IL of less than 0.2 µA/cm2, and a high Eb of up to 925 V/mm, making it superior to state-of-the-art varistor ceramics. The results provide insights into the design of materials with specific characteristics by tailoring states at the grain boundaries. The discovery of this ZnO-Cr2O3-type varistor ceramic represents a major breakthrough in the field of varistors for overvoltage protection and could drastically affect the world market for overvoltage protection.

15.
ACS Appl Mater Interfaces ; 13(23): 27705-27712, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34082527

RESUMO

The energy band alignments and associated material properties at the contacts between metal and two-dimensional (2D) semiconducting transition metal dichalcogenide (SCTMD) films determine the important traits in 2D SCTMD-based electronic and optical device applications. In this work, we realize 2D vertical diodes with asymmetric metal-SCTMD contact areas where currents are dominated by the contact-limited charge flows in the transport regimes of Fowler-Nordheim tunneling and Schottky emission. With straightforward current-voltage characteristics, we can accurately evaluate the interface parameters such as Schottky barrier heights and the vertical effective masses of tunneling charges. In particular, the differing contact areas and resultant current rectifications allow us to address specific Schottky barrier locations with respect to the conduction and valence band edges of 2D semiconducting WSe2, WS2, MoSe2, and MoS2, thereby determining whether p-type holes or n-type electrons become the majority charge carriers in the SCTMD devices. We demonstrate that our experimental and analytical approaches can be utilized as a simple but powerful material metrology to qualitatively and quantitatively evaluate various metal-SCTMD contacts.

16.
ACS Appl Mater Interfaces ; 11(34): 31543-31550, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31364836

RESUMO

Layered materials based on transition-metal dichalcogenides (TMDs) are promising for a wide range of electronic and optoelectronic devices. Realizing such practical applications often requires metal-TMD connections or contacts. Hence, a complete understanding of electronic band alignments and potential barrier heights governing the transport through metal-TMD junctions is critical. However, it is presently unclear how the energy bands of a TMD align while in contact with a metal as a function of the number of layers. In pursuit of removing this knowledge gap, we have performed conductive atomic force microscopy (CAFM) of few-layered (1 to 5 layers) MoS2 immobilized on ultraflat conducting Au surfaces [root-mean-square (rms) surface roughness < 0.2 nm] and indium-tin oxide (ITO) substrates (rms surface roughness < 0.7 nm) forming a vertical metal (CAFM tip)-semiconductor-metal device. We have observed that the current increases with the number of layers up to five layers. By applying Fowler-Nordheim tunneling theory, we have determined the barrier heights for different layers and observed how this barrier decreases as the number of layers increases. Using density functional theory calculations, we successfully demonstrated that the barrier height decreases as the layer number increases. By illuminating TMDs on a transparent ultraflat conducting ITO substrate, we observed a reduction in current when compared to the current measured in the dark, hence demonstrating negative photoconductivity. Our study provides a fundamental understanding of the local electronic and optoelectronic behaviors of the TMD-metal junction, which depends on the numbers of TMD layers and may pave an avenue toward developing nanoscale electronic devices with tailored layer-dependent transport properties.

17.
ACS Appl Mater Interfaces ; 9(9): 8161-8168, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28240856

RESUMO

A Schottky UV photodetector based on graphene/ZnO:Al nanorod-array-film (AZNF) structure has been fabricated. Different from the previously reported graphene/ZnO photodetectors, this photodetector has a stable Schottky barrier which does not disappear under UV light. Thus, the UV photodetector can work as a high-performance self-powered device. The key to improve the stability of the Schottky barrier is a two-step surface treatment process. As a result, the self-powered photodetector exhibits a UV-to-visible rejection ratio of about 1 × 102, a responsivity of 0.039 A W1-, a short rise time of 37 µs, and a decay time of 330 µs. Furthermore, the photodetector is able to keep the responsivity under low light conditions. In comparison with the previously reported graphene/ZnO UV photodetectors, the photodetector exhibits a higher responsivity at zero bias and a faster response speed. This study provides a potential way to fabricate high-performance self-powered UV photodetectors.

18.
ACS Appl Mater Interfaces ; 8(12): 8289-94, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26967016

RESUMO

The formation of the Ti-MoS2 interface, which is heavily utilized in nanoelectronic device research, is studied by X-ray photoelectron spectroscopy. It is found that, if deposition under high vacuum (∼1 × 10(-6) mbar) as opposed to ultrahigh vacuum (∼1 × 10(-9) mbar) conditions are used, TiO2 forms at the interface rather than Ti. The high vacuum deposition results in an interface free of any detectable reaction between the semiconductor and the deposited contact. In contrast, when metallic titanium is successfully deposited by carrying out depositions in ultrahigh vacuum, the titanium reacts with MoS2 forming Ti(x)S(y) and metallic Mo at the interface. These results have far reaching implications as many prior studies assuming Ti contacts may have actually used TiO2 due to the nature of the deposition tools used.

19.
Adv Mater ; 28(43): 9545-9549, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27620845

RESUMO

An organic Schottky barrier diode is created in a single planar PEDOT:Tos film by treating a half of the PEDOT:Tos film with TDAE vapor. Current is rectified in one direction by the Schottky barrier at the junction. The unique planar structure made of a single film greatly reduces defects, resulting in a remarkably high current density with a high rectification ratio, as well as making it suitable for ink-jet-type or roll-to-roll printing techniques.

20.
Adv Mater ; 27(12): 2031-5, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25655302

RESUMO

Double Schottky barriers in ZnO are modified piezotronically by the application of mechanical stresses. New effects such as the enhancement of the potential barrier height and the increase or decrease of the natural barrier asymmetry are presented. Also, an extended model for the piezotronic modification of double Schottky barriers is given.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa