RESUMO
PURPOSE: To compare the effects of empirical and modified hemostatic resuscitation for liver blast injury combined with seawater immersion. METHODS: Thirty rabbits were subjected to liver blast injury combined with seawater immersion, and were then divided into 3 groups randomly (n = 10 each): group A (no treatment after immersion), group B (empirical resuscitation with 20 mL hydroxyethyl starch, 50 mg tranexamic acid, 25 IU prothrombin complex concentrate and 50 mg/kg body weight fibrinogen concentrate), and group C (modified resuscitation with additional 10 IU prothrombin complex concentrate and 20 mg/kg body weight fibrinogen concentrate based on group B). Blood samples were gathered at specified moments for assessment of thromboelastography, routine coagulation test, and biochemistry. Mean arterial pressure, heart rate, and survival rate were also documented at each time point. The Kolmogorov-Smirnov test was used to examine the normality of data distribution. Multigroup comparisons were conducted with one-way ANOVA. RESULTS: Liver blast injury combined with seawater immersion resulted in severe coagulo-fibrinolytic derangement as indicated by prolonged prothrombin time (s) (11.53 ± 0.98 vs. 7.61 ± 0.28, pï¼0.001), activated partial thromboplastin time (APTT) (s) (33.48 ± 6.66 vs. 18.23 ± 0.89, pï¼0.001), reaction time (R) (min) (5.85 ± 0.96 vs. 2.47 ± 0.53, pï¼0.001), decreased maximum amplitude (MA) (mm) (53.20 ± 5.99 vs. 74.92 ± 5.76, pï¼0.001) and fibrinogen concentration (g/L) (1.188 ± 0.29 vs. 1.890 ± 0.32, p = 0.003), and increased D-dimer concentration (mg/L) (0.379 ± 0.32 vs. 0.051 ± 0.03, p = 0.005). Both empirical and modified hemostatic resuscitation could improve the coagulo-fibrinolytic states and organ function, as indicated by shortened APTT and R values, decreased D-dimer concentration, increased fibrinogen concentration and MA values, lower concentration of blood urea nitrogen and creatine kinase-MB in group B and group C rabbits in comparison to that observed in group A. Further analysis found that the R values (min) (4.67 ± 0.84 vs. 3.66 ± 0.98, p = 0.038), APTT (s) (23.16 ± 2.75 vs. 18.94 ± 1.05, p = 0.001), MA (mm) (60.10 ± 4.74 vs. 70.21 ± 3.01, p < 0.001), and fibrinogen concentration (g/L) (1.675 ± 0.21 vs. 1.937 ± 0.16, p = 0.013) were remarkably improved in group C than in group B at 2 h and 4 h after injury. In addition, the concentration of blood urea nitrogen (mmol/L) (24.11 ± 1.96 vs. 21.00 ± 3.78, p = 0.047) and creatine kinase-MB (U/L) (85.50 ± 13.60 vs. 69.74 ± 8.56, p = 0.013) were lower in group C than in group B at 6 h after injury. The survival rates in group B and group C were significantly higher than those in group A at 4 h and 6 h after injury (p < 0.001), however, there were no statistical differences in survival rates between group B and group C at each time point. CONCLUSIONS: Modified hemostatic resuscitation could improve the coagulation parameters and organ function better than empirical hemostatic resuscitation.
RESUMO
With advancements in naval warfare, the number and severity of seawater injuries have skyrocketed, necessitating effective seawater immersion (SWI) wound management. The unique marine pathogens, salinity, low temperature and alkalinity of seawater are the main environmental factors that can influence SWI wound healing. The current treatment strategy for SWI wounds follows a standard protocol based on terrestrial wound conditions, neglecting seawater conditions. The key requirements for ideal SWI treatment include good adhesion to the wound surface to minimize further exposure to seawater, enhanced wound healing properties to minimize wound healing time and antibacterial properties to prevent infections from marine pathogens. Current SWI wound-specific treatments range from elaborate techniques like vacuum-sealed drainage and vacuum-assisted closure for severe blast injuries to simple application of hydrogels or collagen dressings for minor injuries. This review discusses the current status and development of various treatment modalities for SWI wounds. The development of these treatment strategies and an understanding of their mechanisms of action make us better prepared to manage and treat SWI injuries.
Assuntos
Água do Mar , Cicatrização , Humanos , Imersão , Ferimentos e Lesões/terapia , Tratamento de Ferimentos com Pressão Negativa/métodos , BandagensRESUMO
INTRODUCTION: To establish an animal model of delayed intravenous resuscitation following seawater immersion after hemorrhagic shock (HS). METHODS: Adult male SD rats were randomly divided into three groups: group NI (HS with no immersion), group SI (HS with skin immersion), and group VI (HS with visceral immersion). Controlled HS in rats was induced by withdrawing 45% of the calculated total blood volume within 30 min. In SI group, immediately after blood loss, 0.5 cm below the xiphoid process was immersed in artificial seawater, at (23 ± 1) °C, for 30 min. In VI group, the rats were performed by laparotomy and the abdominal organs were immersed in (23 ± 1) °C seawater for 30 min. Two hours after seawater immersion, the extractive blood and lactated Ringer's solution were delivered intravenously. The mean arterial pressure (MAP), lactate, and other biological parameters were investigated in different time points. The survival rate of 24 h after HS was recorded. RESULTS: After seawater immersion following HS, MAP and abdominal viscera blood flow decreased significantly, and the plasma levels of lactate and the organ function parameters were increased than the baseline. The above changes in VI group were more serious than those in SI and NI group, especially in myocardial and small intestine damage. The hypothermia, hypercoagulation, and metabolic acidosis were also observed after seawater immersion; the injury was more severely in VI group than that of SI group. However, the plasma levels of sodium, potassium, chlorine, and calcium in VI group were significantly higher than those before injury and in the other two groups. In the VI group, the level of plasma osmolality in instant, 2 h, and 5 h after immersion was 111%, 109%, and 108% of the SI group, respectively, all P < 0.01. The 24-h survival rate of VI group was 25%, which was significantly lower than that of SI group (50%) and NI group (70%), P < 0.05. CONCLUSIONS: The model fully simulated the key damage factors and field treatment conditions, reflected the effects of low temperature and hypertonic damage caused by seawater immersion on the severity and prognosis of naval combat wounds, and provided a practical and reliable animal model for the study of field treatment technology of marine combat shock.
Assuntos
Choque Hemorrágico , Ratos , Masculino , Animais , Choque Hemorrágico/complicações , Choque Hemorrágico/terapia , Ratos Sprague-Dawley , Modelos Animais de Doenças , Hemorragia , Ressuscitação , Ácido LácticoRESUMO
Traumatic brain injury (TBI) is a major cause of death and disability in naval warfare. Due to the unique physiochemical properties of seawater, immersion in it exacerbates TBI and induces severe neural damage and complications. However, the characteristics and underlying mechanisms of seawater-immersed TBI remain unclear. Mitochondrial dysfunction is a major cause of TBI-associated brain damage because it leads to oxidative stress, decrease in energy production, and apoptosis. Thus, the present study aimed to further elucidate the current understanding of the pathology of seawater-immersed TBI, particularly the role of mitochondrial dysfunction, using a well-defined rat model of fluid percussion injury and a stretch injury model comprising cultured neurons. The biochemical and pathological markers of brain-related and neuronal injuries were evaluated. Histological analysis suggested that seawater immersion enhanced brain tissue injury and induced a significant increase in apoptosis in rats with TBI. Additionally, lactate dehydrogenase release occurred earlier and at higher levels in stretched neurons at 24 h after seawater immersion, which was consistent with more severe morphological changes and enhanced apoptosis. Furthermore, seawater immersion induced more rapid decreases in mitochondrial membrane potential, adenosine triphosphate (ATP) content, and H+-ATPase activity in the cortices of TBI rats. In addition, the immunochemical results revealed that seawater immersion further attenuated mitochondrial function in neurons exposed to stretch injury. The increases in neuronal damage and apoptosis triggered by seawater immersion were positively correlated with mitochondrial dysfunction in both in vivo and in vitro models. Thus, the present findings strengthen the current understanding of seawater-immersed TBI. Moreover, because seawater immersion aggravates mitochondrial dysfunction and contributes to post-traumatic neuronal cell death, it is important to consider mitochondria as a therapeutic target for seawater-immersed TBI.
Assuntos
Apoptose/fisiologia , Lesões Encefálicas Traumáticas , Imersão/efeitos adversos , Mitocôndrias/patologia , Neurônios/fisiologia , Água do Mar , Animais , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Lesões Encefálicas Traumáticas/psicologia , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Feminino , Imersão/fisiopatologia , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Neurônios/patologia , Gravidez , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Água do Mar/efeitos adversosRESUMO
The treatment of hypothermia suffered by naval fighters owing to seawater immersion has been a focus of research in recent years. Currently, the treatment of hypothermia in China is limited to external rewarming, which is of low efficiency and is not effective for patients suffering moderate to severe hypothermia. We thus proposed a vascular interventional heating method which directly heats the blood flow via a minimally invasive heating needle for rewarming. And a numerical simulation using a compartment model based on finite difference method was conducted. A set of whole body heating treatment simulation was also developed. Appropriate treatment parameters and procedures can be set and adjusted based on patient physical parameters. Here temperature response curves of different heating modes were obtained and analyzed. It was demonstrated that the desired thermal response can be achieved by adjusting the heating power and heating time, ensuring controllable accuracy in the treatment of patients with severe hypothermia. The proposed treatment for hypothermia is a new and effective alternative, and further progress is expected in clinical trials.
Assuntos
Fenômenos Fisiológicos Cardiovasculares , Hipotermia/terapia , Modelos Biológicos , Reaquecimento/instrumentação , Reaquecimento/métodos , Temperatura Corporal , HumanosRESUMO
OBJECTIVE: To explore the effect and mechanism of hyperbaric oxygen (HBO2) therapy of open tibial fractures in rabbits after transient seawater immersion. METHODS: Forty-eight (48) New Zealand rabbits were randomly and averagely divided into an HBO2 therapy group (Group A) and a control group (Group B). All rabbits were subjected to unilateral open tibial fractures, while immersed in artificial seawater (20-22 °C) for three hours prior to debridement and external fixation. Group A was treated with HBO2 at 2 atmospheres absolute (ATA) for 50 minutes once daily for two weeks; Group B received postoperative routine treatments only. The fracture zone in each group was compared by radiological, histological and immunohistochemical examinations. RESULTS: In Group A, bony callus and mature osteocytes without infiltration of inflammatory cells were observed in the fracture zone. Vascular endothelial growth factor (VEGF) was expressed mainly in the cytoplasm of osteoblasts, chondrocytes and osteocytes, and exhibited significant changes at different time points. The gray value of bony callus in Group A was 190.58 ± 7.52; that of Group B was 144 ± 8.11. Difference between the groups was statistically significant (P ⟨ 0.01). The content of malondialdehyde (MDA) in Group A was significantly lower than Group B (P ⟨ 0.01), and the activity of superoxide dismutase (SOD) in Group A was higher than Group B (P ⟨ 0.01) at four weeks. There were no significant differences in MDA content and SOD activity between groups at eight and 12 weeks. CONCLUSIONS: HBO2 treatment of open tibial fractures in seawater can reduce the inflammatory reaction and reperfusion injury, and promote osteocytic proliferation and fracture healing.
Assuntos
Consolidação da Fratura/fisiologia , Fraturas Expostas/terapia , Oxigenoterapia Hiperbárica , Fraturas da Tíbia/terapia , Animais , Pressão Atmosférica , Desbridamento , Feminino , Fixação de Fratura/métodos , Fraturas Expostas/diagnóstico por imagem , Fraturas Expostas/metabolismo , Imersão , Masculino , Malondialdeído/metabolismo , Coelhos , Distribuição Aleatória , Traumatismo por Reperfusão/prevenção & controle , Água do Mar , Superóxido Dismutase/metabolismo , Fraturas da Tíbia/diagnóstico por imagem , Fraturas da Tíbia/metabolismo , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
The aims of this study were to observe the effects of vacuum sealing drainage (VSD) with three different negative pressures on the wound healing rate, macrophage count and the expression of hyaluronic acid (HA) as well as its receptor CD44 in seawater-immersed blast-injury wounds (SIBIW) and to determine the optimal negative pressure value. In a minipig SIBIW model, different suction pressures and routine dressing were applied. Histological and immunohistochemical comparisons as well as molecular biology methods were performed to compare the wound healing conditions, macrophage count and the levels of HA and CD44. The wound healing rate of the VSD group was significantly higher than that of the control group, with the -120 mmHg group exhibiting the best effects. The macrophage count of the VSD group was higher than that of the control group. The HA level fluctuation was higher in the VSD group, with the -120 mmHg and the -180 mmHg groups showing the most significant fluctuation (P < 0·05). CD44 was expressed in the full-thickness wound-limbic tissues and was higher in the treatment group than that in the control group, with the -120 mmHg group having the most obvious expression. VSD significantly improved the healing ability and increased the macrophage count and the HA content. It also promoted CD44 expression. -120 mmHg is the optimal negative pressure value.
Assuntos
Traumatismos por Explosões , Drenagem , Humanos , Tratamento de Ferimentos com Pressão Negativa , Água do Mar , Vácuo , CicatrizaçãoRESUMO
Aims: Seawater immersion significantly aggravated organ dysfunction following hemorrhagic shock, leading to higher mortality rate. However, the effective treatment is still unavailable in clinic. Mitochondria were involved in the onset and development of multiple organ function disorders; whether mitochondria participate in the cardiac dysfunction following seawater immersion combined with hemorrhagic shock remains poorly understood. Hence, we investigated the role and possible mechanism of mitochondria in seawater immersion combined with hemorrhage shock-induced cardiac dysfunction. Results: Mitochondrial fission protein dynamin-related protein 1 (Drp1) was activated and translocated from the cytoplasm to mitochondria in the heart following seawater immersion combined with hemorrhagic shock, leading to excessive mitochondrial fission. Excessive mitochondrial fission disrupted mitochondrial function and structure and activated mitophagy and apoptosis. At the same time, excessive mitochondrial fission resulted in disturbance of myocardial structure and hemodynamic disorders and ultimately provoked multiple organ dysfunction and high mortality. Further studies showed that the mitochondrial division inhibitor mitochondrial division inhibitor-1 can significantly reverse Drp1 mitochondrial translocation and inhibit mitochondrial fragmentation, reactive oxygen species (ROS) accumulation, mitophagy, and apoptosis and then protect circulation and vital organ functions, prolonging animal survival. Innovation: Our findings indicate that Drp1-mediated mitochondrial fission could be a novel therapeutic targets for the treatment of seawater immersion combined with hemorrhagic shock. Conclusion: Drp1 mitochondrial translocation played an important role in the cardiac dysfunction after seawater immersion combined with hemorrhage shock. Drp1-mediated excessive mitochondrial fission leads to cardiac dysfunction due to the mitochondrial structure and bioenergetics impairment.
Assuntos
Dinaminas , Dinâmica Mitocondrial , Água do Mar , Choque Hemorrágico , Animais , Masculino , Ratos , Apoptose , Modelos Animais de Doenças , Dinaminas/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitofagia , Quinazolinonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Choque Hemorrágico/metabolismo , Choque Hemorrágico/complicações , Ratos Sprague-DawleyRESUMO
Purpose: Cold seawater immersion aggravates hemorrhagic shock-induced homeostasis imbalance and organ dysfunction, leading to increased mortality. Previous studies have shown that treatments targeting oxidative stress and mitochondrial dysfunction have limited efficacy for cold seawater immersion combined with hemorrhagic shock (SIHS). Thus, the mechanisms responsible for SIHS need further investigation. Methods and Results: Data from the hemorrhagic shock transcriptome and cold seawater immersion targets used for bioinformatics analysis revealed the involvement of endoplasmic reticulum stress (ERS) in SIHS occurrence and progression. Based on these findings, the effects and possible mechanism of inhibiting ERS in SIHS rats were investigated. SIHS causes a lethal triad and impairment of vital organ function, leading to death. Compared to lactated Ringer's solution, the ERS inhibitor 4-phenylbutyric acid (PBA)significantly ameliorated acidosis and coagulopathy and protected vital organ function while prolonging survival and the golden treatment time. Through target screening and validation, 7 targets were identified for the ERS inhibitor PBA for the treatment of SIHS, among which S1PR1, MMP8 and CFTR may play more important roles. Conclusion: ERS plays a crucial role in the progression of SIHS. Inhibition of ERS caused by SIHS alleviates the lethal triad, protects organ function, and prolongs survival and the golden treatment time. The ERS inhibitor PBA may be an effective therapeutic measure for treating SIHS.
RESUMO
In this study, immersion experiments were conducted on the geopolymer mortar (GPM) by using artificial seawater, and the effects of alkali equivalent (AE) and waterglass modulus (WGM) on the resistance of geopolymer mortar (GPM) to seawater immersion were analyzed. The test subjected 300 specimens to 270 days of artificial seawater immersion and periodic performance tests. Alkali equivalent (AE) (3-15%) and waterglass modulus (WGM) (1.0-1.8) were employed as influencing factors, and the mass loss and uniaxial compressive strength (UCS) were used as the performance evaluation indexes, combined with X-ray diffraction (XRD) and scanning electron microscopy (SEM) to analyze the time-varying pattern of geopolymer mortar (GPM) performance with seawater immersion. The findings demonstrated a general trend of initially growing and then declining in the uniaxial compression strength (UCS) of geopolymer mortar (GPM) under seawater immersion. The resistance of geopolymer mortar (GPM) to seawater immersion decreased with both higher or lower alkali equivalent (AE), and the ideal range of alkali equivalent (AE) was 9-12%. The diffusion layer of the bilayer structure of the waterglass particle became thinner with an increase in waterglass modulus (WGM), which ultimately led to the reduction in the resistance of the geopolymer structure to seawater immersion. Additionally, a support vector regression (SVR) model was developed based on the experimental data to predict the uniaxial compression strength (UCS) of GPM under seawater immersion. The model performed better and was able to achieve accurate prediction within 1-2 months, and provided an accurate approach to predicting the strength of geopolymer materials in a practical offshore construction project.
RESUMO
Seawater immersion wound is inevitably accompanied by bacterial infection. Effective irrigation is critical for bacterial infection prevention and wound healing. In this study, the antimicrobial efficacy of a designed composite irrigation solution against several dominant pathogens in seawater immersion wounds was evaluated, and in vivo wound healing assessment was conducted in a rat model. According to the time-kill result, the composite irrigation solution exhibits excellent and rapid bactericidal effect against Vibrio alginolyticus and Vibrio parahaemolyticus within 30 s of treatment while eliminating Candida albicans, Pseudomonas aeruginosa, Escherichia coli, and the mixed microbes after 1 h, 2 h, 6 h, and 12 h of treatment, respectively. Significant bacterial count reduction of Staphylococcus aureus was observed after 5 h treatment. In addition to its skin non-irritating attribute, the in vivo wound healing results further demonstrated that the irrigation solution showed high repair efficiency in the skin defect model inoculated with the mixed microbes. The wound healing rate was significantly higher than that of the control and normal saline groups. It could also effectively reduce the number of viable bacteria on the wound surface. The histological staining indicated that the irrigation solution could reduce inflammatory cells and promote collagen fibers and angiogenesis, thereby promoting wound healing. We believed that the designed composite irrigation solution has great potential for application in the treatment of seawater immersion wounds.
RESUMO
Background: Seawater immersion complicates injuries suffered during maritime conflicts and eye injury is one of most common injuries on the battlefield. This study aimed to delineate the pathophysiological changes in the cornea after corneal injury combined with seawater immersion. Methods: The left eye of New Zealand White rabbits was injured with firecracker and a 3-mm long whole-layer incision in the center of the cornea parallel to the corneal limbus, followed by seawater immersion. The right eye was used as a control. The histology of the cornea and the inflammatory cytokine/chemokine levels in the aqueous humor were examined on days 1 and 7 after injury. The protein levels of aquaporin 1, 3, and 5 were assessed by immunohistochemical staining 7 days after injury. The expression and activation of nuclear factor κB (NF-κB) were examined by Western blot analysis. Results: Seawater immersion exacerbated penetrating explosive injury caused progressive tissue damage of the cornea and ocular inflammation, with drastic increases in the expression of cytokines/chemokines in the aqueous humor, which was mediated by the upregulation and activation of NF-κB. Furthermore, corneal protein levels of aquaporin 1, 3, and 5 were significantly increased after incisive injury and seawater immersion. Conclusions: These data demonstrated that the combination of incisive injury and seawater immersion is a dangerous situation and effective care strategies should be developed for the management of such maritime injuries.
RESUMO
Previous studies found that seawater immersion combined with hemorrhagic shock (SIHS) induced serious organ function disorder, and lethal triad was a critical sign. There were no effective treatments of SIHS. Fluid resuscitation was the initial measurement for early aid following hemorrhagic shock, while the proper fluid for SIHS is not clear. Effects of different osmotic pressures [lactated Ringer's (LR) solution, 0.3% saline, 0.6% saline, and 0.9% normal saline] on the lethal triad, mitochondrial function, vital organ functions, and survival were observed following SIHS in rats. The results showed that SIHS led to an obvious lethal triad, which presented the decrease of the body temperature, acidosis, and coagulation functions disorder in rats. Fluid resuscitation with different osmotic pressures recovered the body temperature and corrected acidosis with different levels; effects of 0.6% normal saline were the best; especially for the coagulation function, 0.6% normal saline alleviated the lethal triad significantly. Further studies showed that SIHS resulted in the damage of the mitochondrial function of vital organs, the increase of the vascular permeability, and, at the same time, the organ function including cardiac, liver, and kidney was disordered. Conventional fluid such as LR or 0.9% normal saline could not improve the mitochondrial function and vascular leakage and alleviate the damage of the organ function. While moderate hypotonic fluid, the 0.6% normal saline, could lighten organ function damage via protecting mitochondrial function. The 0.6% normal saline increased the left ventricular fractional shortening and the left ventricular ejection fraction, and decreased the levels of aspartate transaminase, alanine transferase, blood urea nitrogen, and creatinine in the blood. The effects of fluids with different osmotic pressures on the mean arterial pressure (MAP) had a similar trend as above parameters. The survival results showed that the 0.6% normal saline group improved the survival rate and prolonged the survival time, the 72 h survival rate was 7/16, as compared with the LR group (3/16). The results indicate that appropriate hypotonic fluid is suitable after SIHS, which alleviates the lethal triad, protects the mitochondrial function and organ functions, and prolongs the survival time.
RESUMO
Background: The mortality of trauma combined with seawater immersion is higher than that of land injury, however, research on how to treat this critical case and which treatments to adopt is lacking. Methods: The effect of the thiol compound, N-acetyl-L-Cysteine (NAC), on survival, acidosis, coagulopathy, vital signs, oxidative stress, and mitochondrial and multi-organ function was assessed in a rat model of hemorrhagic shock combined with seawater immersion (Sea-Shock). Results: Hemorrhagic shock combined with seawater immersion caused a severe lethal triad: multi-organ impairment, oxidative stress, and mitochondrial dysfunction. NAC (30 mg/kg) with lactated Ringer's (LR) solution (2 × blood volume lost) significantly improved outcomes compared to LR or hetastarch (HES 130/0.4) alone. NAC significantly prolonged survival time to 52.48 ± 30.09 h and increased 72 h survival rate to 11/16 (68%). NAC relieved metabolic acidosis and recovered the pH back to 7.33. NAC also restored coagulation, with APTT, PT, and PT-INR decreased by 109.31, 78.09, and 73.74%, respectively, while fibrinogen level increased 246.23% compared with untreated Sea-Shock. Administration of NAC markedly improved cardiac and liver function, with some improvement of kidney function. Conclusion: The addition of NAC to crystalloid resuscitation fluid alleviated oxidative stress, restored redox homeostasis, and provided multi-organ protection in the rats after Sea-Shock. NAC may be an effective therapeutic measure for hemorrhagic shock combined with seawater immersion.
RESUMO
Polyurethane has a microphase separation structure, while polyethylene glycol (PEG) can form a hydrated layer to resist protein adsorption. In this paper, PEG was introduced to polyurethane to improve the antifouling properties of the polyurethane, providing a new method and idea for the preparation of new antifouling polyurethane materials. The mechanical properties, hydrophilicity, swelling degree, microphase separation and antifouling performance of the coatings were evaluated. The response characteristics of the polyurethane coatings in a seawater environment were studied, and the performance changes of coatings in seawater were tested. The results showed that the crystallized PEG soft segments increased, promoting microphase separation. The stress at 100% and the elasticity modulus of the polyurethane material also markedly increased, in addition to increases in the swelling degree in seawater, the water contact angle decreased. A total of 25% of PEG incorporated into a soft segment can markedly improve the antibacterial properties of the coatings, but adding more PEG has little significant effect. After immersion in seawater, the coatings became softer and more elastic. This is because water molecules formed hydrogen bonding with the amino NH, which resulted in a weakening effect being exerted on the carbonyl C=O hydrogen bonding and ether oxygen group crystallization.
RESUMO
Skin damaged during sea battles is vulnerable to seawater immersion and bacterial infection. Scaffolds with effective biological function are highly desired for treatment of naval combat wound injuries. Herein, we prepared composite scaffolds of CS/GEL/GMs-CIP. The chitosan (CS) and gelatin (GEL) were cross-linked by genipin as matrix, and then gelatin microspheres loading ciprofloxacin hydrochloride (GMs-CIP) were add. From in vitro characterization results, CS/GEL/GMs-CIP had high water absorption ability, proper porosity, satisfactory fracture resistance, and flexibility. Furthermore, CS/GEL/GMs-CIP composite scaffold had excellent biocompatibility. Antibacterial experiments confirmed that CS/GEL/GMs-CIP had a significant inhibitory effect on E. coli, S. aureus and P. aeruginosa. The in vivo wound healing was evaluated using animal wound infection model of seawater immersion, and it was observed that the prepared composite scaffolds accelerated wound healing, reepithelialization, collagen deposition. Further analysis of wound tissue indicated that the expression of anti-inflammatory factor (TGF-ß1) was up-regulated, but the serum endotoxin levels and expression of pro-inflammatory factor (TNF-a, IL-6, and IL-1ß) were down-regulated. In summary, we believe that CS/GEL/GMs-CIP composite scaffold may serve as a promising multifunctional dressing for healing with open trauma wound infections and wound with seawater immersion.
Assuntos
Antibacterianos/administração & dosagem , Quitosana/análogos & derivados , Ciprofloxacina/administração & dosagem , Gelatina/química , Microesferas , Água do Mar/química , Cicatrização , Animais , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Linhagem Celular Tumoral , Ciprofloxacina/uso terapêutico , Colágeno/metabolismo , Reagentes de Ligações Cruzadas/química , Citocinas/genética , Citocinas/metabolismo , Iridoides/química , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Água do Mar/efeitos adversos , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismoRESUMO
Coastal areas are vulnerable and fluctuating habitats that include highly valuable spaces for habitat and species conservation and, at the same time, they are among the most invaded ecosystems worldwide. Occupying large areas within Mediterranean-climate coastlines, the "ecosystem engineer" Carpobrotus edulis appears as a menace for coastal biodiversity and ecosystem services. By combining the observation, current distribution, glasshouse experiment, and dispersion modeling, we aim to achieve a better understanding of the successful invasion process and potential dispersion patterns of C. edulis. We analyzed the response of plant propagules (seeds and plant fragments) to seawater immersion during increasing periods of time (up to 144 h). After 2 months of growth, plant fragments showed a total survival rate (100%) indicating high tolerance to salinity. During this time, fragment length was increased (up to 60%) and root length was higher than control in all cases. Also, immersed fragments consistently accumulated more biomass than control fragments. After two months of growth, photosynthetic parameters (Fv'/Fm', ΦNO, and ΦII) remained stable compared to control fragments. Physiologically, osmolyte and pigment content did not evidence significant changes regardless of immersion time. Based on the capacity of propagules to survive seawater immersion, we modeled the potential transport of C. edulis by combining an oceanic model (ROMS-AGRIF) with a particle-tracking model. Results indicated that propagules may travel variable distances maintaining physiological viability. Our model suggested that short-scale circulation would be the dominant process, however, long-scale circulation of propagules may be successfully accomplished in <6 days. Furthermore, under optimal conditions (southerly winds dominance), propagules may even travel large distances (250 km alongshore). Modeling transport processes, in combination with the dynamics of introduction and expansion, will contribute to a better understanding of the invasive mechanisms of C. edulis and, consequently, to design preventive strategies to reduce the impact of plant invasion.
Assuntos
Aizoaceae , Ecossistema , Água do Mar , SementesRESUMO
Wound immersion in seawater with high salt, high sodium, and a high abundance of pathogenic bacteria, especially gram-negative bacteria, can cause serious infections and difficulties in wound repair. The present study aimed to prepare a composite hydrogel composed of hyaluronic acid (HA) and quaternized chitosan (QCS) that may promote wound healing of seawater-immersed wounds and prevent bacterial infection. Based on dynamic Schiff base linkage, hydrogel was prepared by mixing oxidized hyaluronic acid (OHA) and hyaluronic acid-hydrazide (HA-ADH) under physiological conditions. With the addition of quaternized chitosan, oxidized hyaluronic acid/hyaluronic acid-hydrazide/quaternized chitosan (OHA/HA-ADH/O-HACC and OHA/HA-ADH/N-HACC) composite hydrogels with good swelling properties and mechanical properties, appropriate water vapor transmission rates (WVTR), and excellent stability were prepared. The biocompatibility of the hydrogels was demonstrated by in vitro fibroblast L929 cell culture study. The results of in vitro and in vivo studies revealed that the prepared antibacterial hydrogels could largely inhibit bacterial growth. The in vivo study further demonstrated that the antibacterial hydrogels exhibited high repair efficiencies in a seawater-immersed wound defect model. In addition, the antibacterial hydrogels decreased pro-inflammatory factors (TNF-α, IL-1ß, and IL-6) but enhanced anti-inflammatory factors (TGF-ß1) in wound. This work indicates that the prepared antibacterial composite hydrogels have great potential in chronic wound healing applications, such as severe wound cure and treatment of open trauma infections.
RESUMO
The present study aimed to prepare a composite dressing composed of collagen, chitosan, and alginate, which may promote wound healing and prevent from seawater immersion. Chitosan-collagen-alginate (CCA) cushion was prepared by paintcoat and freeze-drying, and it was attached to a polyurethane to compose CCA composite dressing. The swelling, porosity, degradation, and mechanical properties of CCA cushion were evaluated. The effects on wound healing and seawater prevention of CCA composite dressing were tested by rat wound model. Preliminary biosecurity was tested by cytotoxicity and hemocompatibility. The results revealed that CCA cushion had good water absorption and mechanical properties. A higher wound healing ratio was observed in CCA composite dressing treated rats than in gauze or chitosan treated ones. On the fifth day, the healing rates of CCA composite dressing, gauze, and chitosan were 48.49%±1.07%, 28.02%±6.4%, and 38.97%±8.53%, respectively. More fibroblast and intact re-epithelialization were observed in histological images of CCA composite dressing treated rats, and the expressions of EGF, bFGF, TGF-ß, and CD31 increased significantly. CCA composite dressing showed no significant cytotoxicity, and favorable hemocompatibility. These results suggested that CCA composite dressing could prevent against seawater immersion and promote wound healing while having a good biosecurity.
Assuntos
Alginatos/química , Bandagens , Quitosana/química , Colágeno/química , Cicatrização/efeitos dos fármacos , Alginatos/uso terapêutico , Animais , Quitosana/uso terapêutico , Colágeno/uso terapêutico , Fibroblastos/efeitos dos fármacos , Liofilização , Ácido Glucurônico/química , Ácido Glucurônico/uso terapêutico , Ácidos Hexurônicos/química , Ácidos Hexurônicos/uso terapêutico , Humanos , Poliuretanos/química , Ratos , Pele/efeitos dos fármacos , Pele/lesõesRESUMO
BACKGROUND: Wounded personnel who work at sea often encounter a plethora of difficulties. The most important of these difficulties is seawater immersion. Common medical dressings have little effect when the affected area is immersed in seawater, and only rarely dressings have been reported for the treatment of seawater-immersed wounds. The objective of this study is to develop a new dressing which should be suitable to prevent the wound from seawater immersion and to promote the wound healing. METHODS: Shark skin collagen (SSC) was purified via ethanol de-sugaring and de-pigmentation and adjusted for pH. A shark skin collagen sponge (SSCS) was prepared by freeze-drying. SSCS was attached to an anti-seawater immersion polyurethane (PU) film (SSCS + PU) to compose a new dressing. The biochemical properties of SSC and physicochemical properties of SSCS were assessed by standard methods. The effects of SSCS and SSCS + PU on the healing of seawater-immersed wounds were studied using a seawater immersion rat model. For the detection of SSCS effects on seawater-immersed wounds, 12 SD rats, with four wounds created in each rat, were divided into four groups: the 3rd day group, 5th day group, 7th day group and 12th day group. In each group, six wounds were treated with SSCS, three wounds treated with chitosan served as the positive control, and three wounds treated with gauze served as the negative control. For the detection of the SSCS + PU effects on seawater-immersed wounds, 36 SD rats were divided into three groups: the gauze (GZ) + PU group, chitosan (CS) + PU group and SSCS + PU group, with 12 rats in each group, and two wounds in each rat. The wound sizes were measured to calculate the healing rate, and histomorphology and the immunohistochemistry of the CD31 and TGF-ß expression levels in the wounded tissues were measured by standard methods. RESULTS: The results of Ultraviolet-visible (UV-vis) spectrum, Fourier-transform infrared (FTIR) spectrum, circular dichroism (CD) spectra, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and amino acid composition analyses of SSC demonstrated that SSC is type I collagen. SSCS had a homogeneous porous structure of approximately 200 µm, porosity rate of 83.57% ± 2.64%, water vapor transmission ratio (WVTR) of 4500 g/m2, tensile strength of 1.79 ± 0.41 N/mm, and elongation at break of 4.52% ± 0.01%. SSCS had significant beneficial effects on seawater-immersed wound healing. On the 3rd day, the healing rates in the GZ negative control, CS positive control and SSCS rats were 13.94% ± 5.50%, 29.40% ± 1.10% and 47.24% ± 8.40%, respectively. SSCS also enhanced TGF-ß and CD31 expression in the initial stage of the healing period. The SSCS + PU dressing effectively protected wounds from seawater immersion for at least 4 h, and accelerated re-epithelialization, vascularization and granulation formation of seawater-immersed wounds in the earlier stages of wound healing, and as well as significantly promoted wound healing. The SSCS + PU dressing also enhanced expression of TGF-ß and CD31. The effects of SSCS and SSCS + PU were superior to those of both the chitosan and gauze dressings. CONCLUSIONS: SSCS has significant positive effects on the promotion of seawater-immersed wound healing, and a SSCS + PU dressing effectively prevents seawater immersion, and significantly promotes seawater-immersed wound healing.