Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
BMC Plant Biol ; 24(1): 288, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627611

RESUMO

One of the major problems endangering plant growth and productivity worldwide is salt stress. This study aimed to assess the effects of potassium silicate (K2O3Si) on the physical, biochemical, and morphological characteristics of chicory (Cichorium intybus L.) under various levels of salinity stress. The plants were treated with K2O3Si at concentrations of 0, 1, 2, and 3 mM and cultivated under different salt stress conditions (0, 80, 160, and 240 mM NaCl). The findings revealed that salt stress led to decreased root and shoot dry weights, Fv/Fm ratio, chlorophyll a, b, and total chlorophyll, as well as inulin contents. However, foliar exposure to K2O3Si at all salinity levels resulted in improvements in the measured traits. As salinity levels increased, there was a corresponding increase in the accumulation of sodium ions (Na+) and a sharp reduction in potassium ions (K +) in the shoot. Nonetheless, treatment with K2O3Si caused a decrease in Na + accumulation and an improvement in K+ content under all salinity levels. Carotenoid content increased under 80 mM salinity stress, but decreased with higher salinity levels. Application of K2O3Si at all levels resulted in increased carotenoid content under salinity stress conditions. The content of MDA increased significantly with increasing salinity stress, particularly at 240 mM. However, foliar spraying with K2O3Si significantly decreased MDA content at all salinity levels. Salinity stress up to 160 mM increased the total phenol, flavonoid, and anthocyanin contents, while 240 mM NaCl decreased the biosynthesis of phytochemicals. Additionally, the use of K2O3Si increased the content of total phenol, flavonoid, and anthocyanin at all salt levels. Foliar application of K2O3Si increased the tolerance of chicory plants to salinity stress by reducing MDA and increasing phenolic compounds and potassium content. These results suggest that exogenous K2O3Si can be a practical strategy to improve the growth and yield of chicory plants exposed to saline environments.


Assuntos
Cichorium intybus , Clorofila A , Potássio , Antocianinas , Cloreto de Sódio , Estresse Salino , Antioxidantes , Íons , Silicatos , Compostos Fitoquímicos , Carotenoides , Fenóis , Salinidade , Estresse Fisiológico
2.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139249

RESUMO

The browning of white adipose tissue (WAT) is a promising area of research for treating metabolic disorders and obesity in the future. However, studies on plant secondary compounds promoting WAT browning are limited. Herein, we explored the effects of swainsonine (SW) on gut microbiota and WAT browning in captive pikas. SW inhibited body mass gain, increased brown adipose tissue (BAT) mass, and induced WAT browning in pikas. The 16S rDNA sequencing revealed a significant reduction in the alpha diversity and altered community structure of the gut microbiota in captive pikas. However, the addition of SW to the diet significantly increased the alpha diversity of gut microbiota and the relative abundance of Akkermansia, Prevotella, and unclassified_f__Lachnospiraceae, along with the complexity of the microbial co-occurrence network structure, which decreased in the guts of captive pikas. Functional profiles showed that SW significantly decreased the relative abundances of energy metabolism, lipid metabolism, and glycan biosynthesis and metabolism, which were enriched in captive pikas. Furthermore, SW decreased deterministic processes of gut microbiota assembly in July and increased them in November. Finally, the genera Prevotella and unclassified_f__Prevotellaceae were positively correlated with BAT mass. Our results highlighted that plant secondary compounds promote WAT browning by modulating the gut microbiota in small mammals.


Assuntos
Microbioma Gastrointestinal , Lagomorpha , Animais , Obesidade/metabolismo , Dieta , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Marrom/metabolismo
3.
New Phytol ; 235(5): 1701-1718, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35704030

RESUMO

Ericoid mycorrhizal (ErM) shrubs commonly occur in forest understories and could therefore alter arbuscular (AM) and/or ectomycorrhizal (EcM) tree effects on soil carbon and nitrogen dynamics. Specifically, ErM fungi have extensive organic matter decay capabilities, and ErM plant and fungal tissues have high concentrations of secondary compounds that can form persistent complexes in the soil. Together, these traits could contribute to organic matter accumulation and inorganic nutrient limitation. These effects could also differ in AM- vs EcM-dominated stands at multiple scales within and among forest biomes by, for instance, altering fungal guild interactions. Most work on ErM effects in forests has been conducted in boreal forests dominated by EcM trees. However, ErM plants occur in c. 96, 69 and 29% of boreal, temperate and tropical forests, respectively. Within tropical montane forests, the effects of ErM plants could be particularly pronounced because their traits are more distinct from AM than EcM trees. Because ErM fungi can function as free-living saprotrophs, they could also be more resilient to forest disturbances than obligate symbionts. Further consideration of ErM effects within and among forest biomes could improve our understanding of how cooccurring mycorrhizal types interact to collectively affect soil carbon and nitrogen dynamics under changing conditions.


Assuntos
Micorrizas , Carbono , Florestas , Fungos , Nitrogênio , Plantas/microbiologia , Solo , Microbiologia do Solo , Árvores/microbiologia
4.
Microb Ecol ; 84(3): 834-843, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34674014

RESUMO

Successful host plant colonization by tree-killing bark beetle-symbiotic fungal complexes depends on host suitability, which is largely determined by host defense metabolites such as monoterpenes. Studies have shown the ability of specific blends of host monoterpenes to influence bark beetles or their fungal symbionts, but how biologically relevant blends of host monoterpenes influence bark beetle-symbiotic fungal interaction is unknown. We tested how interactions between two host species (lodgepole pine or jack pine) and two fungal symbionts of mountain pine beetle (Grosmannia clavigera or Ophiostoma montium) affect the performance of adult female beetles in vitro. Beetles treated with the propagules of G. clavigera or O. montium or not treated (natural fungal load) were introduced into media amended with a blend of the entire monoterpene profile of either host species and beetle performance was compared. Overall, host blends altered beetle performance depending on the fungal species used in the beetle amendment. When beetles were amended with G. clavigera, their performance was superior over beetles amended with O. montium in either host blend. Furthermore, G. clavigera-amended beetles performed better in media amended with host blends than without a host blend; in contrast, O. montium-amended beetles performed better in media without a host blend than with a host blend. Overall, this study showed that host defense metabolites affect host suitability to bark beetles through influencing their fungal symbionts and that different species of fungal symbionts respond differentlly to host defense metabolites.


Assuntos
Besouros , Pinus , Gorgulhos , Animais , Besouros/microbiologia , Casca de Planta , Pinus/microbiologia , Simbiose , Gorgulhos/microbiologia , Monoterpenos/metabolismo
5.
Appl Microbiol Biotechnol ; 105(16-17): 6419-6433, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34402940

RESUMO

Plants produce various plant secondary compounds (PSCs) to deter the foraging of herbivorous mammals. However, little is known about whether PSCs can reshape gut microbiota and promote gut homeostasis of hosts. Using 16S rDNA sequencing to investigate the effects of PSCs on the gut microbiota of small herbivorous mammals, we studied plateau pikas (Ochotona curzoniae) fed diets containing swainsonine (SW) extracted from Oxytropis ochrocephala. Our results showed that both long- and short-term treatment of a single artificial diet in the laboratory significantly reduced alpha diversity and significantly affected beta diversity, core bacteria abundance, and bacterial functions in pikas. After SW was added to the artificial diet, the alpha diversity significantly increased in the long-term treatment, and core bacteria (e.g., Akkermansiaceae) with altered relative abundances in the two treatments showed no significant difference compared with pikas in the wild. The complexity of the co-occurrence network structure was reduced in the artificial diet, but it increased after SW was added in both treatments. Further, the abundances of bacteria related to altered alanine, aspartate, and glutamate metabolism in the artificial diet were restored in response to SW. SW further decreased the concentration of short-chain fatty acids (SCFAs) in both treatments. Our results suggest that PSCs play a key role in regulating gut microbiota community and intestinal homeostasis, thereby maintaining host health. KEY POINTS: • Swainsonine improves the intestinal bacterial diversity of plateau pikas. • Swainsonine promotes the recovery of core bacterial abundances in the gut of plateau pikas. • Swainsonine promotes the restoration of intestinal bacterial functions of plateau pikas.


Assuntos
Microbioma Gastrointestinal , Lagomorpha , Animais , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Swainsonina
6.
New Phytol ; 225(2): 609-620, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31494947

RESUMO

Plant interactions with herbivores and pathogens are among the most widespread ecological relationships, and show many congruent properties. Despite these similarities, general models describing how plant defenses function in ecosystems, and the prioritization of responses to emerging challenges such as climate change, invasive species and habitat alteration, often differ markedly between entomologists and plant pathologists. We posit that some fundamental distinctions between how insects and pathogens interact with plants underlie these differences. We propose a conceptual framework to help incorporate these distinctions into robust models and research priorities. The most salient distinctions include features of host-searching behavior, evasion of plant defenses, plant tolerance to utilization, and sources of insect and microbial population regulation. Collectively, these features lead to relatively more diffuse and environmentally mediated plant-insect interactions, and more intimate and genetically driven plant-pathogen interactions. Specific features of insect vs pathogen life histories can also yield different patterns of spatiotemporal dynamics. These differences can become increasingly pronounced when scaling from controlled laboratory to open ecological systems. Integrating these differences alongside similarities can foster improved models and research approaches to plant defense, trophic interactions, coevolutionary dynamics, food security and resource management, and provide guidance as traditional departments increase collaborations, or merge into larger units.


Assuntos
Ecossistema , Entomologia , Plantas , Animais , Herbivoria/fisiologia , Insetos/crescimento & desenvolvimento , Insetos/fisiologia , Estágios do Ciclo de Vida
7.
J Sci Food Agric ; 100(4): 1816-1821, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31825527

RESUMO

BACKGROUND: Low-cost organic fertilizers, such as coconut powder and vermicompost, and arbuscular mycorrhizal fungi (AMF) may benefit the Passiflora edulis f. flavicarpa plant. However, it has not been established whether the joint application of these inputs may increase the production of vitexin and other molecules associated with the phytotherapeutic properties of this plant. Here, we tested the hypothesis that the application of AMF and organic fertilizers maximizes the production of bioactive compounds in leaves of P. edulis. RESULTS: The inoculation of Acaulospora longula into P. edulis grown in fertilization-free soil promoted an increase of 86% in the concentration of leaf vitexin, 10.29% in the concentration of total phenols, and 13.78% in the concentration of total tannins in relation to the AMF-free control, rendering soil fertilization superfluous. CONCLUSION: The application of A. longula increases the production of foliar biomolecules, such as vitexin, in yellow passion fruit plants. Thus, the addition of coconut powder and vermicompost to the substrate composition is not necessary, leading to the commercialized production of phytomass in the herbal medicines industry. © 2019 Society of Chemical Industry.


Assuntos
Apigenina/metabolismo , Glomeromycota/fisiologia , Micorrizas/fisiologia , Passiflora/microbiologia , Folhas de Planta/química , Apigenina/análise , Fertilizantes/análise , Passiflora/química , Passiflora/crescimento & desenvolvimento , Passiflora/metabolismo , Fenóis/análise , Fenóis/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Taninos/análise , Taninos/metabolismo
8.
Trop Anim Health Prod ; 52(4): 1609-1615, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31836953

RESUMO

Bamboo grass (Tiliacora triandra Diels) pellet (BP) was assessed as a rumen modifier on feed intake, rumen fermentation, nutrient digestibilities, microbial population, and methane production in swamp buffaloes. Four male swamp buffaloes with 350 ± 10 kg of body weight (BW) were allotted according to a 2 × 2 factorial arrangement in a 4 × 4 Latin square design. The treatments were as follows: roughage to concentrate ratio (R:C) at 70:30 (T1), R:C at 70:30 with BP supplementation at 150 g/day (T2), R:C at 30:70 (T3), and R:C at 30:70 with BP supplementation at 150 g/day (T4). All animals were restricted to 2.5% of BW. The findings revealed that ruminal pH was reduced by the R:C at 30:70 fed groups (T3, T4); however, the rumen pH was enhanced (P < 0.05) in BP supplemented (T4) and there was an interaction between R:C and BP groups (P < 0.05). The propionate (C3) concentration was increased by the R:C ratio at 30:70 and BP fed groups (P < 0.01), and it was the highest at R:C ratio of 30:70 with BP supplemented group. Total VFA and buterate (C4) concentation were not changed (P > 0.05), while acetate (C2) concentration was reduced (P < 0.05) in the BP fed groups and there was an interaction (P < 0.05). Estimation of CH4 production in the rumen was remarkably reduced by the R:C ratio with BP supplementation (P < 0.01). Furthermore, apparent digestibilities of DM, OM, CP, NDF, and ADF were significantly increased in the R:C ratio 30:70 (P < 0.01). Nitrogen absorption and nitrogen retention were also significantly altered by R:C at 30:70 (P < 0.01) and nitrogen absorption was an interaction (P < 0.01). Based on this study, it could be concluded that supplementation of BP resulted in improvement of ruminal pH, enhanced C3, and reduced CH4 production. Thus, BP could be a dietary rumen enhancer.


Assuntos
Ração Animal/análise , Búfalos/metabolismo , Dieta/veterinária , Metano/biossíntese , Rúmen/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Fibras na Dieta/metabolismo , Suplementos Nutricionais , Digestão , Fermentação , Masculino , Metano/metabolismo , Nitrogênio/metabolismo , Rúmen/metabolismo , Sasa/metabolismo
9.
Asian-Australas J Anim Sci ; 33(5): 763-769, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31480168

RESUMO

OBJECTIVE: The experiment was conducted to study the effect of rambutan (Nephelium lappaceum) fruit peel powder (RP) on feed consumption, digestibility of nutrients, ruminal fermentation dynamics and microbial population in Thai breed cattle. METHODS: Four, 2-year old (250±15 kg) beef bull crossbreds (75% Brahman×25% local breed) were allotted to experimental treatments using a 4×4 Latin square design. Four dietary supplementation treatments were imposed; non-supplementation (control, T1); supplementation of RP fed at 2% of dry matter intake (DMI) (low, T2); supplementation of RP fed at 4% of DMI (medium, T3) and supplementation of RP fed at 6% of DMI (high, T4). All cattle were given a concentrate supplement at 1% of body weight while Napier grass was provided as a free choice. RESULTS: The findings revealed that RP supplementation did not negatively affect (p>0.05) DMI of Napier grass, while RP intake and total DMI were the greatest in the RP supplementation at 4% and 6% DMI. Nevertheless, the nutrients (dry matter, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber) digestibilities were not changed in the RP supplementation groups. Rumen fermentation parameters especially those of total volatile fatty acids, acetate and butyrate were not significantly changed. However, the propionate concentration was remarkably increased (p<0.05) in the RP supplementation. Notably, the ratio of acetate to propionate, the number of protozoa, as well as the methane estimation were significantly reduced in the RP supplemented groups (4% and 6% of DMI), while the counts of bacteria was not altered. CONCLUSION: Supplementation of RP (4% of DMI) improved rumen propionate production, reduced protozoal population and methane estimation (p<0.05) without a negative effect on feed consumption and nutrients total tract digestibilities in beef cattle. Using dietary rambutan fruit peel powder has potential promise as a rumen regulator.

10.
Planta ; 249(3): 709-718, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30374913

RESUMO

MAIN CONCLUSION: Chlorophyll fluorescence, infrared gas exchange and photoinhibition data consistently show that vulpinic acid in L. vulpina functions as a strong blue light screening compound. The cortical lichen compounds, parietin, atranorin, usnic acid and melanins are known to screen photosynthetically active radiation (PAR), thereby protecting the underlying photobionts. The role of the toxic UV-/blue light-absorbing vulpinic acid in lichen cortices is poorly documented. By comparing controls with acetone-rinsed Letharia vulpina thalli (75% reduced vulpinic acid concentration), we aimed to test PAR screening by vulpinic acid. We exposed such thalli to blue, green and red irradiance, respectively, and recorded light quality-specific light saturation curves of CO2 uptake, quantum yields of CO2 uptake (QYCO2) and effective quantum yields of PSII (ΦPSII). We also quantified light quality-dependent photoinhibition after 4-h exposure to 400 µmol photons m-2 s-1. In controls, the greatest high light-induced reductions in CO2 uptake and ΦPSII, as well as the strongest photoinhibition [lowered maximal quantum yield of PSII (Fv/Fm)], occurred in red light, followed by green, and was low in blue light. Removal of vulpinic acid significantly exacerbated photoinhibition, reduced ΦPSII, and increased QYCO2 in blue light. By contrast, acetone rinsing had no or weak effects in green and red lights. Comparing control with acetone-rinsed thalli, blue light screening was estimated at 69% using ΦPSII data and 49% using QYCO2. To compensate for the 25% residual vulpinic acid left after rinsing, we repeated the screening estimation by comparing responses in blue and red lights. This resulted in 88% screening using ΦPSII data and 77% using QYCO2. The consistent responses in all photosynthetic parameters support the hypothesis that vulpinic acid functions as a blue light screen in L. vulpina.


Assuntos
Furanos/metabolismo , Parmeliaceae/metabolismo , Fenilacetatos/metabolismo , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Clorofila/efeitos da radiação , Cor , Furanos/isolamento & purificação , Furanos/efeitos da radiação , Luz , Parmeliaceae/efeitos da radiação , Fenilacetatos/isolamento & purificação , Fenilacetatos/efeitos da radiação
11.
Proc Biol Sci ; 285(1875)2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29563265

RESUMO

The pollen of many plants contains toxic secondary compounds, sometimes in concentrations higher than those found in the flowers or leaves. The ecological significance of these compounds remains unclear, and their impact on bees is largely unexplored. Here, we studied the impact of pyrrolizidine alkaloids (PAs) found in the pollen of Echium vulgare on honeybee adults and larvae. Echimidine, a PA present in E. vulgare pollen, was isolated and added to the honeybee diets in order to perform toxicity bioassays. While adult bees showed relatively high tolerance to PAs, larvae were much more sensitive. In contrast to other bees, the honeybee larval diet typically contains only traces of pollen and consists predominantly of hypopharyngeal and mandibular secretions produced by nurse bees, which feed on large quantities of pollen-containing bee bread. We quantified the transfer of PAs to nursing secretions produced by bees that had previously consumed bee bread supplemented with PAs. The PA concentration in these secretions was reduced by three orders of magnitude as compared to the PA content in the nurse diet and was well below the toxicity threshold for larvae. Our results suggest that larval nursing protects honeybee larvae from the toxic effect of secondary metabolites of pollen.


Assuntos
Abelhas/efeitos dos fármacos , Larva/efeitos dos fármacos , Pólen/química , Pólen/metabolismo , Alcaloides de Pirrolizidina/toxicidade , Metabolismo Secundário , Animais , Abelhas/fisiologia , Echium/química , Inflorescência/química , Larva/fisiologia , Dose Letal Mediana , Folhas de Planta/química , Alcaloides de Pirrolizidina/isolamento & purificação , Alcaloides de Pirrolizidina/metabolismo , Análise de Sobrevida
12.
Trop Anim Health Prod ; 50(1): 29-36, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28905183

RESUMO

The aim of this work was to evaluate the effect of quebracho tannins extract (QTE) on feed intake, dry matter (DM) digestibility, and methane (CH4) emissions in cattle fed low-quality Pennisetum purpureum grass. Five heifers (Bos taurus × Bos indicus) with an average live weight (LW) of 295 ± 19 kg were allotted to five treatments (0, 1, 2, 3, and 4% QTE/kg DM) in a 5 × 5 Latin square design. Intake, digestibility, and total methane emissions (L/day) were recorded for periods of 23 h when cattle were housed in open-circuit respiration chambers. Dry matter intake (DMI), organic matter intake (OMI), dry matter digestibility (DMD), and organic matter digestibility (OMD) were different between treatments with 0 and 4% of QTE/kg DM (P < 0.05). Total volatile fatty acid and the molar proportion of acetate in the rumen was not affected (P < 0.05); however, the molar proportion of propionate increased linearly (P < 0.01) for treatments with 3 and 4% QTE. Total CH4 production decreased linearly (P < 0.01) as QTE increased in the diet, particularly with 3 and 4% concentration. When expressed as DMI and OMI by CH4, production (L/kg) was different between treatments with 0 vs 3 and 4% QTE (P < 0.05). It is concluded that the addition of QTE at 2 or 3% of dry matter ration can decrease methane production up to 29 and 41%, respectively, without significantly compromising feed intake and nutrients digestibility.


Assuntos
Anacardiaceae/química , Dieta/veterinária , Digestão/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Metano/metabolismo , Taninos/administração & dosagem , Poluentes Atmosféricos/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bovinos , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Feminino , Pennisetum/fisiologia , Extratos Vegetais/administração & dosagem , Árvores/química
13.
Mol Ecol ; 26(16): 4322-4338, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28653444

RESUMO

Herbivores regularly ingest natural toxins produced by plants as a defence against herbivory. Recent work suggests that compound toxicity is exacerbated at higher ambient temperatures. This phenomenon, known as temperature-dependent toxicity (TDT), is the likely result of decreased liver function at warmer temperatures; however, the underlying cause of TDT remains speculative. In the present study, we compared the effects of temperature and dietary plant toxins on differential gene expression in the liver of an herbivorous rodent (Neotoma lepida), using species-specific microarrays. Expression profiles revealed a greater number of differentially expressed genes at an ambient temperature below the thermal neutral zone for N. lepida (22°C) compared to one within (27°C). Genes and pathways upregulated at 22°C were related to growth and biosynthesis, whereas those upregulated at 27°C were associated with gluconeogenesis, apoptosis and protein misfolding, suggestive of a stressed state for the liver. Additionally, few genes associated with xenobiotic metabolism were induced when woodrats ingested plant toxins compared to nontoxic diets, regardless of temperature. Taken together, the results highlight the important role of ambient temperature on gene expression profiles in the desert woodrat. Temperatures just below the thermal neutral zone might be a favourable state for liver metabolism. Furthermore, the reduction in the number of genes expressed at a temperature within the thermal neutral zone indicates that liver function may be reduced at temperatures that are not typically considered as thermally stressful. Understanding how herbivorous mammals will respond to ambient temperature is imperative to accurately predict the impacts of climate change.


Assuntos
Herbivoria , Fígado/metabolismo , Sigmodontinae/genética , Temperatura , Animais , Mudança Climática , Expressão Gênica
14.
New Phytol ; 211(4): 1352-7, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27094697

RESUMO

Lichens are hosts for a variety of lichenicolous fungi. By investigating two lichens with specialized parasites, we will test the hypothesis that these parasites reduce lichen fitness by increasing the palatability of their respective hosts. The palatability of Lobarina scrobiculata and Lobaria pulmonaria with or without galls of the lichenicolous fungi, Plectocarpon scrobiculatae and P. lichenum, respectively, were quantified in a feeding-preference experiment with grazing snails (Cepaea hortensis). We repeated the experiment for pairs with or without gall in which the carbon-based secondary compounds (CBSCs) had been reduced nondestructively by acetone rinsing. Lichens with galls had lower concentration of CBSCs than those without, but this contrast disappeared after acetone rinsing. In the lichen high in nitrogen (N) (the cyanolichen L. scrobiculata), the grazing was low, and the snails did not discriminate between specimens with and without Plectocarpon-galls. In L. pulmonaria low in N (green algae as main photobiont), the parasite reduced the lichen C : N ratio and the snails strongly preferred specimens with Plectocarpon-galls, regardless of whether CBSC concentration had been reduced or not. In conclusion, some lichen parasites can indirectly reduce lichen fitness by increasing its palatability and thus the grazing pressure from snails, whereas other parasites do not affect grazing preferences.


Assuntos
Ascomicetos/fisiologia , Cadeia Alimentar , Líquens/microbiologia , Parasitos/fisiologia , Caramujos/microbiologia , Animais , Carbono/metabolismo , Comportamento Alimentar , Nitrogênio/metabolismo
15.
Ecology ; 97(11): 3176-3183, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27870051

RESUMO

Community ecologists have strived to find mechanisms that mediate the assembly of natural communities. Recent evidence suggests that natural enemies could play an important role in the assembly of hyper-diverse tropical plant systems. Classic ecological theory predicts that in order for coexistence to occur, species differences must be maximized across biologically important niche dimensions. For plant-herbivore interactions, it has been recently suggested that, within a particular community, plant species that maximize the difference in chemical defense profiles compared to neighboring taxa will have a relative competitive advantage. Here we tested the hypothesis that plant chemical diversity can affect local community composition in the hyper-diverse genus Piper at a lowland wet forest location in Costa Rica. We first characterized the chemical composition of 27 of the most locally abundant species of Piper. We then tested whether species with different chemical compositions were more likely to coexist. Finally, we assessed the degree to which Piper phylogenetic relationships are related to differences in secondary chemical composition and community assembly. We found that, on average, co-occurring species were more likely to differ in chemical composition than expected by chance. Contrary to expectations, there was no phylogenetic signal for overall secondary chemical composition. In addition we found that species in local communities were, on average, more phylogenetically closely related than expected by chance, suggesting that functional traits other than those measured here also influence local assembly. We propose that selection by herbivores for divergent chemistries between closely related species facilitates the coexistence of a high diversity of congeneric taxa via apparent competition.


Assuntos
Ecossistema , Piper/química , Piper/fisiologia , Filogenia , Especificidade da Espécie
16.
New Phytol ; 208(3): 904-14, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26033270

RESUMO

Dendroctonus ponderosae has killed millions of Pinus contorta in western North America with subsequent effects on stand conditions, including changes in light intensity, needle deposition, and the composition of fungal community mutualists, namely ectomycorrhizal fungi. It is unknown whether these changes in stand conditions will have cascading consequences for the next generation of pine seedlings. To test for transgenerational cascades on pine seedlings, we tested the effects of fungal inoculum origin (beetle-killed or undisturbed stands), light intensity and litter (origin and presence) on seedling secondary chemistry and growth in a glasshouse. We also tracked survival of seedlings over two growing seasons in the same stands from which fungi and litter were collected. Fungal communities differed by inoculum origin. Seedlings grown with fungi collected from beetle-killed stands had lower monoterpene concentrations and fewer monoterpene compounds present compared with seedlings grown with fungi collected from undisturbed stands. Litter affected neither monoterpenes nor seedling growth. Seedling survival in the field was lower in beetle-killed than in undisturbed stands. We demonstrate that stand mortality caused by prior beetle attacks of mature pines have cascading effects on seedling secondary chemistry, growth and survival, probably mediated through effects on below-ground mutualisms.


Assuntos
Besouros , Micorrizas/fisiologia , Pinus/microbiologia , Metabolismo Secundário , Plântula/microbiologia , Animais , Pinus/crescimento & desenvolvimento , Pinus/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Simbiose
17.
J Exp Biol ; 218(Pt 17): 2666-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26113142

RESUMO

Glycosides are a major group of plant secondary compounds characterized by one or more sugars conjugated to a lipophilic, possibly toxic aglycone, which is released upon hydrolysis. We compared small intestinal homogenate hydrolysis activity of three rodent and two avian species against four substrates: amygdalin and sinigrin, two plant-derived glucosides, the sugar lactose, whose hydrolysis models some activity against flavonoid and isoflavonoid glucosides, and the disaccharide sugar maltose (from starch), used as a comparator. Three new findings extend our understanding of physiological processing of plant glucosides: (1) the capacity of passerine birds to hydrolyze plant glucosides seems relatively low, compared with rodents; (2) in this first test of vertebrates' enzymic capacity to hydrolyze glucosinolates, sinigrin hydrolytic capacity seems low; (3) in laboratory mice, hydrolytic activity against lactose resides on the enterocytes' apical membrane facing the intestinal lumen, but activity against amygdalin seems to reside inside enterocytes.


Assuntos
Glucosídeos/metabolismo , Glicosídeo Hidrolases/metabolismo , Intestino Delgado/metabolismo , Murinae/metabolismo , Passeriformes/metabolismo , Amigdalina/metabolismo , Animais , Enterócitos/metabolismo , Glucosinolatos/metabolismo , Hidrólise , Lactase-Florizina Hidrolase/metabolismo , Lactose/metabolismo , Maltose/metabolismo , Especificidade da Espécie , beta-Glucosidase/metabolismo
18.
J Sci Food Agric ; 95(5): 869-77, 2015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-24930957

RESUMO

Phytochemicals in vegetables are important for human health, and their biosynthesis, metabolism and accumulation are affected by environmental factors. Light condition (light quality, light intensity and photoperiod) is one of the most important environmental variables in regulating vegetable growth, development and phytochemical accumulation, particularly for vegetables produced in controlled environments. With the development of light-emitting diode (LED) technology, the regulation of light environments has become increasingly feasible for the provision of ideal light quality, intensity and photoperiod for protected facilities. In this review, the effects of light quality regulation on phytochemical accumulation in vegetables produced in controlled environments are identified, highlighting the research progress and advantages of LED technology as a light environment regulation tool for modifying phytochemical accumulation in vegetables.


Assuntos
Ambiente Controlado , Qualidade dos Alimentos , Luz , Iluminação , Compostos Fitoquímicos/biossíntese , Verduras/efeitos da radiação , Luz/efeitos adversos , Iluminação/tendências , Fotoperíodo , Fotossíntese/efeitos da radiação , Verduras/química , Verduras/crescimento & desenvolvimento , Verduras/metabolismo
19.
Ecol Lett ; 17(10): 1238-46, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25040855

RESUMO

The foraging ecology of mammalian herbivores is strongly shaped by plant secondary compounds (PSCs) that defend plants against herbivory. Conventional wisdom holds that gut microbes facilitate the ingestion of toxic plants; however, this notion lacks empirical evidence. We investigated the gut microbiota of desert woodrats (Neotoma lepida), some populations of which specialise on highly toxic creosote bush (Larrea tridentata). Here, we demonstrate that gut microbes are crucial in allowing herbivores to consume toxic plants. Creosote toxins altered the population structure of the gut microbiome to facilitate an increase in abundance of genes that metabolise toxic compounds. In addition, woodrats were unable to consume creosote toxins after the microbiota was disrupted with antibiotics. Last, ingestion of toxins by naïve hosts was increased through microbial transplants from experienced donors. These results demonstrate that microbes can enhance the ability of hosts to consume PSCs and therefore expand the dietary niche breadth of mammalian herbivores.


Assuntos
Trato Gastrointestinal/microbiologia , Herbivoria , Larrea/química , Sigmodontinae/microbiologia , Toxinas Biológicas/metabolismo , Animais , Dieta/veterinária , Microbiota , Sigmodontinae/fisiologia
20.
Sci Rep ; 14(1): 18080, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103462

RESUMO

Introducing legumes into C4-dominated tropical pastures, may enhance their sustainability but has some pasture management constraints. One potential alternative is using arboreal legumes, but several of these species have relatively high condensed tannin (CT) concentrations, which negatively impact forage quality. There is limited knowledge, however, on how arboreal legume leaf CT content varies over the year and how this might impact forage quality. The objective of this 2 year study was to assess the seasonal variation of CT and nutritive value for ruminants of the tropical tree legumes gliricidia [Gliricidia sepium (Jacq.) Kunth ex. Walp.] and mimosa (Mimosa caesalpiniifolia Benth). The research was carried out in the sub-humid tropical region of Brazil on well-established pastures in which either legume was present with signalgrass (Urochloa decumbens Stapf.). We determined CT and nitrogen concentrations, in vitro digestible organic matter (IVDOM), and leaf δ13C and δ15N from January to October of 2017 and 2018. All parameters were affected (P < 0.05) by the interaction between legume species and sampling time, with generally higher leaf CT content for mimosa than gliricidia, and both were reduced at the start of the dry season, although much more drastically for mimosa. The IVDOM was strongly affected by CT content and increased at the start of the dry season, coincidentally when C4 grass forage quality typically decreased. There is a marked species effect, with CT from gliricidia impacting IVDOM more than the same CT content from mimosa. While N concentration from mimosa also increased at the start of the dry season, that for gliricidia did not vary over the year. We conclude that although these arboreal legumes have relatively high CT contents, these reduce during the dry season when CT concentrations coinciding with a reduced forage quality as the protein content for C4 grasses is usually inadequate in this season.


Assuntos
Fabaceae , Valor Nutritivo , Proantocianidinas , Árvores , Proantocianidinas/análise , Fabaceae/química , Fabaceae/metabolismo , Folhas de Planta/química , Estações do Ano , Mimosa/química , Animais , Brasil , Ração Animal/análise , Nitrogênio/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa