Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38366566

RESUMO

Advances in genomic studies have revealed that hybridization in nature is pervasive and raised questions about the dynamics of different genetic and evolutionary factors following the initial hybridization event. While recent research has proposed that the genomic outcomes of hybridization might be predictable to some extent, many uncertainties remain. With comprehensive whole-genome sequence data, we investigated the genetic introgression between 2 divergent lineages of 9-spined sticklebacks (Pungitius pungitius) in the Baltic Sea. We found that the intensity and direction of selection on the introgressed variation has varied across different genomic elements: while functionally important regions displayed reduced rates of introgression, promoter regions showed enrichment. Despite the general trend of negative selection, we identified specific genomic regions that were enriched for introgressed variants, and within these regions, we detected footprints of selection, indicating adaptive introgression. Geographically, we found the selection against the functional changes to be strongest in the vicinity of the secondary contact zone and weaken as a function of distance from the initial contact. Altogether, the results suggest that the stabilization of introgressed variation in the genomes is a complex, multistage process involving both negative and positive selection. In spite of the predominance of negative selection against introgressed variants, we also found evidence for adaptive introgression variants likely associated with adaptation to Baltic Sea environmental conditions.


Assuntos
Introgressão Genética , Smegmamorpha , Animais , Smegmamorpha/genética , Genoma , Genômica , Hibridização Genética
2.
Mol Ecol ; 33(13): e17411, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38785347

RESUMO

Studying hybrid zones that form between morphologically cryptic taxa offers valuable insights into the mechanisms of cryptic speciation and the evolution of reproductive barriers. Although hybrid zones have long been the focus of evolutionary studies, the awareness of cryptic hybrid zones increased recently due to rapidly growing evidence of biological diversity lacking obvious phenotypic differentiation. The characterization of cryptic hybrid zones with genome-wide analysis is in its early stages and offers new perspectives for studying population admixture and thus the impact of gene flow. In this study, we investigate the population genomics of the Myotis nattereri complex in one of its secondary contact zones, where a putative hybrid zone is formed between two of its cryptic lineages. By utilizing a whole-genome shotgun sequencing approach, we aim to characterize this cryptic hybrid zone in detail. Demographic analysis suggests that the cryptic lineages diverged during the Pliocene, c. 3.6 million years ago. Despite this ancient separation, the populations in the contact zone exhibit mitochondrial introgression and a considerable amount of mixing in nuclear genomes. The genomic structure of the populations corresponds to geographic locations and the genomic admixture changes along a geographic gradient. These findings suggest that there is no effective hybridization barrier between both lineages, nevertheless, their population structure is shaped by dispersal barriers. Our findings highlight how such deeply diverged cryptic lineages can still readily hybridize in secondary contact.


Assuntos
Quirópteros , Fluxo Gênico , Especiação Genética , Genética Populacional , Hibridização Genética , Animais , Quirópteros/genética , Quirópteros/classificação , DNA Mitocondrial/genética , Introgressão Genética
3.
Mol Ecol ; 33(15): e17459, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38994921

RESUMO

Hybridization between divergent lineages can result in losses of distinct evolutionary taxa. Alternatively, hybridization can lead to increased genetic variability that may fuel local adaptation and the generation of novel traits and/or taxa. Here, we examined single-nucleotide polymorphisms generated using genotyping-by-sequencing in a population of Dolly Varden char (Pisces: Salmonidae) that is highly admixed within a contact zone between two subspecies (Salvelinus malma malma, Northern Dolly Varden [NDV] and S. m. lordi, Southern Dolly Varden [SDV]) in southwestern Alaska to assess the spatial distribution of hybrids and to test hypotheses on the origin of the admixed population. Ancestry analysis revealed that this admixed population is composed of advanced generation hybrids between NDV and SDV or advanced backcrosses to SDV; no F1 hybrids were detected. Coalescent-based demographic modelling supported the origin of this population about 55,000 years ago by secondary contact between NDV and SDV with low levels of contemporary gene flow. Ancestry in NDV and SDV varies within the watershed and ancestry in NDV was positively associated with distance upstream from the sea, contingent on habitat-type sampled, and negatively associated with the number of migrations that individual fish made to the sea. Our results suggest that divergence between subspecies over hundreds of thousands of years may not be associated with significant reproductive isolation, but that elevated diversity owing to hybridization may have contributed to adaptive divergence in habitat use and life history.


Assuntos
Fluxo Gênico , Genética Populacional , Hibridização Genética , Polimorfismo de Nucleotídeo Único , Animais , Alaska , Polimorfismo de Nucleotídeo Único/genética , Truta/genética , Truta/classificação , Genótipo
4.
Mol Ecol ; 33(11): e17359, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38699787

RESUMO

Hybrid zones have been viewed as an opportunity to see speciation in action. When hybrid zones are replicated, it is assumed that if the same genetic incompatibilities are maintaining reproductive isolation across all instances of secondary contact, those incompatibilities should be identifiable by consistent patterns in the genome. In contrast, changes in allele frequencies due to genetic drift should be idiosyncratic for each hybrid zone. To test this assumption, we simulated 20 replicates of each of 12 hybrid zone scenarios with varied genetic incompatibilities, rates of migration, selection and different starting population size ratios of parental species. We found remarkable variability in the outcomes of hybridisation in replicate hybrid zones, particularly with Bateson-Dobzhansky-Muller incompatibilities and strong selection. We found substantial differences among replicates in the overall genomic composition of individuals, including admixture proportions, inter-specific ancestry complement and number of ancestry junctions. Additionally, we found substantial variation in genomic clines among replicates at focal loci, regardless of locus-specific selection. We conclude that processes other than selection are responsible for some consistent outcomes of hybridisation, whereas selection on incompatibilities can lead to genomically widespread and highly variable outcomes. We highlight the challenge of mapping between pattern and process in hybrid zones and call attention to how selection against incompatibilities will commonly lead to variable outcomes. We hope that this study informs future research on replicate hybrid zones and encourages further development of statistical techniques, theoretical models and exploration of additional axes of variation to understand reproductive isolation.


Assuntos
Frequência do Gene , Genética Populacional , Hibridização Genética , Modelos Genéticos , Isolamento Reprodutivo , Seleção Genética , Especiação Genética , Deriva Genética , Simulação por Computador , Densidade Demográfica
5.
Mol Ecol ; 33(9): e17341, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38576177

RESUMO

Catastrophic flank collapses are recognized as important drivers of insular biodiversity dynamics, through the disruption of species ranges and subsequent allopatric divergence. However, little empirical data supports this conjecture, with their evolutionary consequences remaining poorly understood. Using genome-wide data within a population genomics and phylogenomics framework, we evaluate how mega-landslides have impacted evolutionary and demographic history within a species complex of weevils (Curculionidae) within the Canary Island of Tenerife. We reveal a complex genomic landscape, within which individuals of single ancestry were sampled in areas characterized by long-term geological stability, relative to the timing of flank collapses. In contrast, individuals of admixed ancestry were almost exclusively sampled within the boundaries of flank collapses. Estimated divergence times among ancestral populations aligned with the timings of mega-landslide events. Our results provide first evidence for a cyclical dynamic of range fragmentation and secondary contact across flank collapse landscapes, with support for a model where this dynamic is mediated by Quaternary climate oscillations. The context within which we reveal climate and topography to interact cyclically through time to shape the geographic structure of genetic variation, together with related recent work, highlights the importance of topoclimatic phenomena as an agent of diversification within insular invertebrates.


Assuntos
Genética Populacional , Ilhas , Filogenia , Animais , Gorgulhos/genética , Gorgulhos/classificação , Biodiversidade
6.
BMC Biol ; 21(1): 129, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248474

RESUMO

BACKGROUND: Common seadragons (Phyllopteryx taeniolatus, Syngnathidae) are an emblem of the diverse endemic fauna of Australia's southern rocky reefs, the newly recognized "Great Southern Reef." A lack of assessments spanning this global biodiversity hotspot in its entirety is currently hampering an understanding of the factors that have contributed to its diversity. The common seadragon has a wide range across Australia's entire temperate south and includes a geogenetic break over a former land bridge, which has called its status as a single species into question. As a popular aquarium display that sells for high prices, common seadragons are also vulnerable to illegal capture. RESULTS: Here, we provide range-wide nuclear sequences (986 variable Ultraconserved Elements) for 198 individuals and mitochondrial genomes for 140 individuals to assess species status, identify genetic units and their diversity, and trace the source of two poached individuals. Using published data of the other two seadragon species, we found that lineages of common seadragons have diverged relatively recently (< 0.63 Ma). Within common seadragons, we found pronounced genetic structure, falling into three major groups in the western, central, and eastern parts of the range. While populations across the Bassian Isthmus were divergent, there is also evidence for secondary contact since the passage opened. We found a strong cline of genetic diversity from the range center tapering symmetrically towards the range peripheries. Based on their genetic similarities, the poached individuals were inferred to have originated from around Albany in southwestern Australia. CONCLUSIONS: We conclude that common seadragons constitute a single species with strong geographic structure but coherence through gene flow. The low genetic diversity on the east and west coasts is concerning given that these areas are projected to face fast climate change. Our results suggest that in addition to their life history, geological events and demographic expansions have all played a role in shaping populations in the temperate south. These insights are an important step towards understanding the historical determinants of the diversity of species endemic to the Great Southern Reef.


Assuntos
Metagenômica , Smegmamorpha , Humanos , Animais , Filogenia , Biodiversidade , Austrália , Variação Genética
7.
BMC Biol ; 21(1): 58, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941631

RESUMO

BACKGROUND: Theory suggests that the genetic architecture of traits under divergent natural selection influences how easily reproductive barriers evolve and are maintained between species. Divergently selected traits with a simple genetic architecture (few loci with major phenotypic effects) should facilitate the establishment and maintenance of reproductive isolation between species that are still connected by some gene flow. While empirical support for this idea appears to be mixed, most studies test the influence of trait architectures on reproductive isolation only indirectly. Petunia plant species are, in part, reproductively isolated by their different pollinators. To investigate the genetic causes and consequences of this ecological isolation, we deciphered the genetic architecture of three floral pollination syndrome traits in naturally occurring hybrids between the widespread Petunia axillaris and the highly endemic and endangered P. exserta. RESULTS: Using population genetics, Bayesian linear mixed modelling and genome-wide association studies, we found that the three pollination syndrome traits vary in genetic architecture. Few genome regions explain a majority of the variation in flavonol content (defining UV floral colour) and strongly predict the trait value in hybrids irrespective of interspecific admixture in the rest of their genomes. In contrast, variation in pistil exsertion and anthocyanin content (defining visible floral colour) is controlled by many genome-wide loci. Opposite to flavonol content, the genome-wide proportion of admixture between the two species predicts trait values in their hybrids. Finally, the genome regions strongly associated with the traits do not show extreme divergence between individuals representing the two species, suggesting that divergent selection on these genome regions is relatively weak within their contact zones. CONCLUSIONS: Among the traits analysed, those with a more complex genetic architecture are best maintained in association with the species upon their secondary contact. We propose that this maintained genotype-phenotype association is a coincidental consequence of the complex genetic architectures of these traits: some of their many underlying small-effect loci are likely to be coincidentally linked with the actual barrier loci keeping these species partially isolated upon secondary contact. Hence, the genetic architecture of a trait seems to matter for the outcome of hybridization not only then when the trait itself is under selection.


Assuntos
Petunia , Petunia/genética , Estudo de Associação Genômica Ampla , Teorema de Bayes , Hibridização Genética , Reprodução , Polinização/genética , Flores/genética
8.
Mol Biol Evol ; 39(4)2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35302613

RESUMO

Cryptosporidiosis is a major global health problem and a primary cause of diarrhea, particularly in young children in low- and middle-income countries (LMICs). The zoonotic Cryptosporidium parvum and anthroponotic Cryptosporidium hominis cause most human infections. Here, we present a comprehensive whole-genome study of C. hominis, comprising 114 isolates from 16 countries within five continents. We detect two lineages with distinct biology and demography, which diverged circa 500 years ago. We consider these lineages two subspecies and propose the names C. hominis hominis and C. hominis aquapotentis (gp60 subtype IbA10G2). In our study, C. h. hominis is almost exclusively represented by isolates from LMICs in Africa and Asia and appears to have undergone recent population contraction. In contrast, C. h. aquapotentis was found in high-income countries, mainly in Europe, North America, and Oceania, and appears to be expanding. Notably, C. h. aquapotentis is associated with high rates of direct human-to-human transmission, which may explain its success in countries with well-developed environmental sanitation infrastructure. Intriguingly, we detected genomic regions of introgression following secondary contact between the subspecies. This resulted in high diversity and divergence in genomic islands of putative virulence genes, including muc5 (CHUDEA2_430) and a hypothetical protein (CHUDEA6_5270). This diversity is maintained by balancing selection, suggesting a co-evolutionary arms race with the host. Finally, we find that recent gene flow from C. h. aquapotentis to C. h. hominis, likely associated with increased human migration, maybe driving the evolution of more virulent C. hominis variants.


Assuntos
Criptosporidiose , Cryptosporidium , Criança , Pré-Escolar , Criptosporidiose/epidemiologia , Criptosporidiose/genética , Cryptosporidium/genética , DNA de Protozoário/genética , Genoma , Genótipo , Humanos , Metagenômica
9.
Am Nat ; 201(1): 154-162, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36524928

RESUMO

AbstractHybrid seed inviability is a common reproductive barrier in angiosperms. Recent work suggests that the rapid evolution of hybrid seed inviability may, in part, be due to conflict between maternal and paternal optima for resource allocation to developing offspring (i.e., parental conflict). However, parental conflict requires that paternally derived resource-acquiring alleles impose a maternal cost. I test this requirement using three closely related species in the Mimulus guttatus species complex that exhibit significant hybrid seed inviability and differ in their inferred histories of parental conflict. I show that the presence of hybrid seeds significantly affects conspecific seed size for almost all crosses, such that conspecific seeds are smaller after developing with hybrids sired by fathers with a stronger history of conflict and are larger after developing with hybrids sired by fathers with a weaker history of conflict. This work demonstrates a potential maternal cost of paternally derived alleles and also has implications for species fitness in secondary contact.


Assuntos
Magnoliopsida , Sementes , Reprodução , Hibridização Genética
10.
Proc Biol Sci ; 290(1994): 20222108, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36883275

RESUMO

Upon the secondary contact of populations, speciation with gene flow is greatly facilitated when the same pleiotropic loci are both subject to divergent ecological selection and induce non-random mating, leading to loci with this fortuitous combination of functions being referred to as 'magic trait' loci. We use a population genetics model to examine whether 'pseudomagic trait' complexes, composed of physically linked loci fulfilling these two functions, are as efficient in promoting premating isolation as magic traits. We specifically measure the evolution of choosiness, which controls the strength of assortative mating. We show that, surprisingly, pseudomagic trait complexes, and to a lesser extent also physically unlinked loci, can lead to the evolution of considerably stronger assortative mating preferences than do magic traits, provided polymorphism at the involved loci is maintained. This is because assortative mating preferences are generally favoured when there is a risk of producing maladapted recombinants, as occurs with non-magic trait complexes but not with magic traits (since pleiotropy precludes recombination). Contrary to current belief, magic traits may not be the most effective genetic architecture for promoting strong premating isolation. Therefore, distinguishing between magic traits and pseudomagic trait complexes is important when inferring their role in premating isolation. This calls for further fine-scale genomic research on speciation genes.


Assuntos
Comunicação Celular , Fluxo Gênico , Genômica , Fenótipo , Polimorfismo Genético
11.
Mol Ecol ; 32(5): 1117-1132, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36516402

RESUMO

Under the ecological speciation model, divergent selection acts on ecological differences between populations, gradually creating barriers to gene flow and ultimately leading to reproductive isolation. Hybridisation is part of this continuum and can both promote and inhibit the speciation process. Here, we used white-tailed (Odocoileus virginianus) and mule deer (O. hemionus) to investigate patterns of speciation in hybridizing sister species. We quantified genome-wide historical introgression and performed genome scans to look for signatures of four different selection scenarios. Despite ample modern evidence of hybridisation, we found negligible patterns of ancestral introgression and no signatures of divergence with gene flow, rather localized patterns of allopatric and balancing selection were detected across the genome. Genes under balancing selection were related to immunity, MHC and sensory perception of smell, the latter of which is consistent with deer biology. The deficiency of historical gene-flow suggests that white-tailed and mule deer were spatially separated during the glaciation cycles of the Pleistocene and genome wide differentiation accrued via genetic drift. Dobzhansky-Muller incompatibilities and selection against hybrids are hypothesised to be acting, and diversity correlations to recombination rates suggests these sister species are far along the speciation continuum.


Assuntos
Cervos , Fluxo Gênico , Animais , Cervos/genética , Isolamento Reprodutivo , Hibridização Genética , Especiação Genética
12.
Mol Ecol ; 32(13): 3586-3604, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36994802

RESUMO

After establishing secondary contact, recently diverged populations may remain reproductively isolated or may hybridize to a varying extent depending on factors such as hybrid fitness and the strength of assortative mating. Here, we used genomic and phenotypic data from three independent contact zones between subspecies of the variable seedeater (Sporophila corvina) to examine how coloration and genetic divergence shape patterns of hybridization. We found that differences in plumage coloration are probably maintained by divergent selection across contact zones; however, the degree of plumage differentiation does not match overall patterns of hybridization. Across two parallel contact zones between populations with divergent phenotypes (entirely black vs. pied plumage), populations hybridized extensively across one contact zone but not the other, suggesting that plumage divergence is not sufficient to maintain reproductive isolation. Where subspecies hybridized, hybrid zones were wide and formed by later-generation hybrids, suggesting frequent reproduction and high survivorship for hybrid individuals. Moreover, contemporary gene flow has played an important role in shaping patterns of genetic structure between populations. Replicated contact zones between hybridizing taxa offer a unique opportunity to explore how different factors interact to shape patterns of hybridization. Overall, our results demonstrate that divergence in plumage coloration is important in reducing gene flow but insufficient in maintaining reproductive isolation in this clade, and that other factors such as divergence in song and time since secondary contact may also play an important role in driving patterns of reduced hybridization and gene flow.


Al establecer contacto secundario, las poblaciones que divergieron recientemente pueden permanecer reproductivamente aisladas o pueden hibridarse en distintos grados, dependiendo de factores como la aptitud (fitness) y la fuerza del apareamiento selectivo. Aquí, utilizamos datos genómicos y fenotípicos de tres zonas de contacto independientes entre subespecies del Semillero Variable (Sporophila corvina), para examinar cómo la coloración y la divergencia genética regulan los patrones de hibridación. A través de las zonas de contacto, encontramos que las diferencias en la coloración del plumaje posiblemente se mantienen por selección divergente, pero el grado de diferenciación no coincide con los patrones generales de hibridación. En dos zonas de contacto análogas entre poblaciones con fenotipos divergentes (totalmente negro vs plumaje de varios colores), las poblaciones hibridaron ampliamente en una zona de contacto, pero no en la otra, lo que sugiere que la divergencia del plumaje no es suficiente para mantener el aislamiento reproductivo. Donde las subespecies hibridaron, las zonas híbridas eran amplias y estaban formadas por híbridos de generaciones posteriores, lo que sugiere reproducción frecuente y alta sobrevivencia de los híbridos. Además, el flujo génico ha desempeñado un papel importante en la configuración de patrones de estructura genética entre poblaciones. Las réplicas de zonas de contacto entre taxones que hibridan ofrecen una oportunidad para explorar cómo interactúan diversos factores para dar forma a los patrones de hibridación. En general, nuestros resultados demuestran que la divergencia en la coloración del plumaje es importante para reducir el flujo génico, pero insuficiente para mantener el aislamiento reproductivo en este clado, y que otros factores, como la divergencia en el canto y el tiempo transcurrido desde el contacto secundario, también pueden desempeñar un papel importante en la reducción del flujo génico e hibridación.


Assuntos
Passeriformes , Isolamento Reprodutivo , Animais , Passeriformes/genética , Deriva Genética , Hibridização Genética , Fluxo Gênico
13.
Mol Ecol ; 32(19): 5323-5337, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37632719

RESUMO

Secondary contact zones between deeply divergent, yet interfertile, lineages provide windows into the speciation process. North American grey foxes (Urocyon cinereoargenteus) are divided into western and eastern lineages that diverged approximately 1 million years ago. These ancient lineages currently hybridize in a relatively narrow zone of contact in the southern Great Plains, a pattern more commonly observed in smaller-bodied taxa, which suggests relatively recent contact after a long period of allopatry. Based on local ancestry inference with whole-genome sequencing (n = 43), we identified two distinct Holocene pulses of admixture. The older pulse (500-3500 YBP) reflected unidirectional gene flow from east to west, whereas the more recent pulse (70-200 YBP) of admixture was bi-directional. Augmented with genotyping-by-sequencing data from 216 additional foxes, demographic analyses indicated that the eastern lineage declined precipitously after divergence, remaining small throughout most of the late Pleistocene, and expanding only during the Holocene. Genetic diversity in the eastern lineage was highest in the southeast and lowest near the contact zone, consistent with a westward expansion. Concordantly, distribution modelling indicated that during their isolation, the most suitable habitat occurred far east of today's contact zone or west of the Great Plains. Thus, long-term isolation was likely caused by the small, distant location of the eastern refugium, with recent contact reflecting a large increase in suitable habitat and corresponding demographic expansion from the eastern refugium. Ultimately, long-term isolation in grey foxes may reflect their specialized bio-climatic niche. This system presents an opportunity for future investigation of potential pre- and post-zygotic isolating mechanisms.


Assuntos
Raposas , Variação Genética , Animais , Raposas/genética , Fluxo Gênico , Filogenia , DNA Mitocondrial/genética , Demografia
14.
Mol Phylogenet Evol ; 178: 107645, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36252933

RESUMO

The history of riverine fish diversification is largely a product of geographic isolation. Physical barriers that reduce or eliminate gene flow between populations facilitate divergence via genetic drift and natural selection, eventually leading to speciation. For freshwater organisms, diversification is often the product of drainage basin rearrangements. In young clades where the history of isolation is the most recent, evolutionary relationships can resemble a tangled web. One especially recalcitrant group of freshwater fishes is the Johnny Darter (Etheostoma nigrum) species complex, where traditional taxonomy and molecular phylogenetics indicate a history of gene flow and conflicting inferences of species diversity. Here we assemble a genomic dataset using double digest restriction site associated DNA (ddRAD) sequencing and use phylogenomic and population genetic approaches to investigate the evolutionary history of the complex of species that includes E. nigrum, E. olmstedi, E. perlongum, and E. susanae. We reveal and validate several evolutionary lineages that we delimit as species, highlighting the need for additional work to formally describe the diversity of the Etheostoma nigrum complex. Our analyses also identify gene flow among recently diverged lineages, including one instance involving E. susanae, a localized and endangered species. Phylogeographic structure within the Etheostoma nigrum species complex coincides with major geologic events, such as parallel divergence in river basins during Pliocene inundation of the Atlantic coastal plain and multiple northward post-glacial colonization routes tracking river basin rearrangements. Our study serves as a nuanced example of how low dispersal rates coupled with geographic isolation among disconnected river systems in eastern North America has produced one of the world's freshwater biodiversity hotspots.


Assuntos
Percas , Animais , Filogeografia , Percas/genética , Filogenia , DNA Mitocondrial/genética , Genética Populacional , Variação Genética
15.
J Evol Biol ; 36(10): 1484-1493, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37737547

RESUMO

Because speciation might have been promoted by ancient introgression from an extinct lineage, it is important to detect the existence of 'ghost introgression' in focal taxa and examine its contribution to their diversification. In this study, we examined possible ghost introgression and its contributions to the diversification of ricefishes of the genus Adrianichthys in Lake Poso, an ancient lake on Sulawesi Island, in which some extinctions are known to have occurred. Population-genomic analysis revealed that two extant Adrianichthys species, A. oophorus and A. poptae are reproductively isolated from each other. Comparisons of demographic models demonstrated that introgression from a ghost population, which diverged from the common ancestor of A. oophorus and A. poptae, is essential for reconstructing the demographic history of Adrianichthys. The best model estimated that the divergence of the ghost population greatly predated the divergence between A. oophorus and A. poptae, and that the ghost population secondarily contacted the two extant species within Lake Poso more recently. Genome scans and simulations detected a greatly divergent locus, which cannot be explained without ghost introgression. This locus was also completely segregated between A. oophorus and A. poptae. These findings suggest that variants that came from a ghost population have contributed to the divergence between A. oophorus and A. poptae, but the large time-lag between their divergence and ghost introgression indicates that the contribution of introgression may be restricted.


Assuntos
Lagos , Filogenia
16.
Am J Bot ; 110(1): e16100, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36371731

RESUMO

PREMISE: Strong postzygotic reproductive isolating barriers are usually expected to limit the extent of natural hybridization between species with contrasting ploidy. However, genomic sequencing has revealed previously overlooked examples of natural cross-ploidy hybridization in some flowering plant genera, suggesting that the phenomenon may be more common than once thought. We investigated potential cross-ploidy hybridization in British eyebrights (Euphrasia, Orobanchaceae), a group from which 13 putative cross-ploidy hybrid combinations have been reported based on morphology. METHODS: We analyzed a contact zone between diploid Euphrasia rostkoviana and tetraploid E. arctica in Wales. We sequenced part of the internal transcribed spacer (ITS) of nuclear ribosomal DNA and used genotyping by sequencing (GBS) to look for evidence of cross-ploidy hybridization and introgression. RESULTS: Common variant sites in the ITS region were fixed between diploids and tetraploids, indicating a strong barrier to hybridization. Clustering analyses of 356 single-nucleotide polymorphisms (SNPs) generated using GBS clearly separated samples by ploidy and revealed strong genetic structure (FST = 0.44). However, the FST distribution across all SNPs was bimodal, indicating potential differential selection on loci between diploids and tetraploids. Demographic inference suggested potential gene flow, limited to around one or fewer migrants per generation. CONCLUSIONS: Our results suggest that recent cross-ploidy hybridization is rare or absent in a site of secondary contact in Euphrasia. While a strong ploidy barrier prevents hybridization over ecological timescales, such hybrids may form in stable populations over evolutionary timescales, potentially allowing cross-ploidy introgression to take place.


Assuntos
Diploide , Euphrasia , Tetraploidia , Ploidias , Hibridização Genética
17.
J Hered ; 114(2): 110-119, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36326769

RESUMO

The gray fox (Urocyon cinereoargenteus) lineage diverged from all other extant canids at their most basal node and is restricted to the Americas. Previous mitochondrial analysis from coastal populations identified deeply divergent (up to 1 Mya) eastern and western lineages that predate most intraspecific splits in carnivores. We conducted genotyping by sequencing and mitochondrial analysis on gray foxes sampled across North America to determine geographic concordance between nuclear and mitochondrial contact zones and divergence times. We also estimated the admixture within the contact zone between eastern and western gray foxes based on nuclear DNA. Both datasets confirmed that eastern and western lineages met in the southern Great Plains (i.e. Texas and Oklahoma), where they maintained high differentiation. Admixture was generally low, with the majority of admixed individuals carrying <10% ancestry from the other lineage. Divergence times confirmed a mid-Pleistocene split, similar to the mitochondrial estimates. Taken together, findings suggest gray fox lineages represent an ancient divergence event, far older than most intraspecific divergences in North American carnivores. Low admixture may reflect a relatively recent time since secondary contact (e.g. post-Pleistocene) or, alternatively, ecological or reproductive barriers between lineages. Though further research is needed to disentangle these factors, our genomic investigation suggests species-level divergence exists between eastern and western gray fox lineages.


Assuntos
DNA Mitocondrial , Raposas , Humanos , Animais , Raposas/genética , Filogenia , DNA Mitocondrial/genética , Mitocôndrias/genética , Genômica
18.
Ecol Lett ; 25(4): 926-938, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35064634

RESUMO

Influential models of speciation by sexual selection posit either a single shared preference for a universal display, expressed only when males are locally adapted and hence in high condition, or that shared loci evolve population-specific alleles for displays and preferences. However, many closely related species instead show substantial differences across categorically different traits. We present a model of secondary contact whereby females maintain preferences for distinct displays that indicate both male condition and their match to distinct environments, fostering reproductive isolation among diverging species. This occurs even with search costs and with independent preference loci targeting independent displays. Such preferences can also evolve from standing variation. Divergence occurs because condition-dependent display and female preference depend on local ecology, and females obtain different benefits of choice. Given the ubiquity of ecological differences among environments, our model could help explain the evolution of striking radiations of displays seen in nature.


Assuntos
Adaptação Fisiológica , Preferência de Acasalamento Animal , Animais , Feminino , Especiação Genética , Masculino , Fenótipo
19.
Mol Biol Evol ; 38(7): 2967-2985, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33624816

RESUMO

Testing among competing demographic models of divergence has become an important component of evolutionary research in model and non-model organisms. However, the effect of unaccounted demographic events on model choice and parameter estimation remains largely unexplored. Using extensive simulations, we demonstrate that under realistic divergence scenarios, failure to account for population size (Ne) changes in daughter and ancestral populations leads to strong biases in divergence time estimates as well as model choice. We illustrate these issues reconstructing the recent demographic history of North Sea and Baltic Sea turbots (Scophthalmus maximus) by testing 16 isolation with migration (IM) and 16 secondary contact (SC) scenarios, modeling changes in Ne as well as the effects of linked selection and barrier loci. Failure to account for changes in Ne resulted in selecting SC models with long periods of strict isolation and divergence times preceding the formation of the Baltic Sea. In contrast, models accounting for Ne changes suggest recent (<6 kya) divergence with constant gene flow. We further show how interpreting genomic landscapes of differentiation can help discerning among competing models. For example, in the turbot data, islands of differentiation show signatures of recent selective sweeps, rather than old divergence resisting secondary introgression. The results have broad implications for the study of population divergence by highlighting the potential effects of unmodeled changes in Ne on demographic inference. Tested models should aim at representing realistic divergence scenarios for the target taxa, and extreme caution should always be exercised when interpreting results of demographic modeling.


Assuntos
Distribuição Animal , Demografia/métodos , Linguados/genética , Fluxo Gênico , Modelos Teóricos , Animais , Oceano Atlântico
20.
Mol Ecol ; 31(16): 4402-4416, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35780485

RESUMO

Pleistocene glacial cycles drastically changed the distributions of taxa endemic to temperate rainforests in the Pacific Northwest, with many experiencing reduced habitat suitability during glacial periods. In this study, we investigate whether glacial cycles promoted intraspecific divergence and whether subsequent range changes led to secondary contact and gene flow. For seven invertebrate species endemic to the PNW, we estimated species distribution models (SDMs) and projected them onto current and historical climate conditions to assess how habitat suitability changed during glacial cycles. Using single nucleotide polymorphism (SNP) data from these species, we assessed population genetic structure and used a machine-learning approach to compare models with and without gene flow between populations upon secondary contact after the last glacial maximum (LGM). Finally, we estimated divergence times and rates of gene flow between populations. SDMs suggest that there was less suitable habitat in the North Cascades and Northern Rocky Mountains during glacial compared to interglacial periods, resulting in reduced habitat suitability and increased habitat fragmentation during the LGM. Our genomic data identify population structure in all taxa, and support gene flow upon secondary contact in five of the seven taxa. Parameter estimates suggest that population divergences date to the later Pleistocene for most populations. Our results support a role of refugial dynamics in driving intraspecific divergence in the Cascades Range. In these invertebrates, population structure often does not correspond to current biogeographic or environmental barriers. Rather, population structure may reflect refugial lineages that have since expanded their ranges, often leading to secondary contact between once isolated lineages.


Assuntos
Variação Genética , Refúgio de Vida Selvagem , Ecossistema , Variação Genética/genética , Filogenia , Filogeografia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa