RESUMO
Despite decades of massive neuroimaging research, the comprehensive characterization of short-range functional connectivity in autism spectrum disorder (ASD) remains a major challenge for scientific advances and clinical translation. From the theoretical point of view, it has been suggested a generalized local over-connectivity that would characterize ASD. This stance is known as the general local over-connectivity theory. However, there is little empirical evidence supporting such hypothesis, especially with regard to pediatric individuals with ASD (age [Formula: see text] 18 years old). To explore this issue, we performed a coordinate-based meta-analysis of regional homogeneity studies to identify significant changes of local connectivity. Our analyses revealed local functional under-connectivity patterns in the bilateral posterior cingulate cortex and superior frontal gyrus (key components of the default mode network) and in the bilateral paracentral lobule (a part of the sensorimotor network). We also performed a functional association analysis of the identified areas, whose dysfunction is clinically consistent with the well-known deficits affecting individuals with ASD. Importantly, we did not find relevant clusters of local hyper-connectivity, which is contrary to the hypothesis that ASD may be characterized by generalized local over-connectivity. If confirmed, our result will provide a valuable insight into the understanding of the complex ASD pathophysiology.
Assuntos
Transtorno do Espectro Autista , Humanos , Criança , Adolescente , Transtorno do Espectro Autista/diagnóstico por imagem , Mapeamento Encefálico/métodos , Vias Neurais/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagemRESUMO
BACKGROUD: Neurological disorders are common in preterm (PT) born individuals. Diffusion tensor imaging (DTI) studies using tract-based spatial statistics (TBSS) effectively detect microstructural white matter (WM) abnormalities in the brain. We conducted this systematic review to integrate the findings of TBSS studies to determine the most consistent WM alterations in PT born individuals. METHODS: PubMed, Embase, Web of Science and Science Direct were searched. DTI studies using TBSS in PT born individuals were screened up to October 2022. The systematic review included studies reporting alterations in FA values for the entire brain in a stereotactic space, with three coordinates (x, y, z), according to the seed-based d mapping method. RESULTS: The search strategy identified seventeen studies that fulfilled our inclusion criteria, with a total of 911 PT-born individuals and 563 matched controls were analysed. Of the seventeen studies, eight were dedicated to 650 adults, five to 411 children and four to 413 infants. Ten studies recruited 812 individuals born very prematurely (GA <29 weeks), six studies recruited 386 moderately premature individuals (GA = 29-32 weeks) and one study recruited 276 individuals born late prematurely (GA >32 weeks). This meta-analysis of six studies including 388 individuals highlighted four brain regions in which fractional anisotropy (FA) was lower in PT group than in people born at term. The quantitative meta-analysis found that the most robust WM alterations were located in the corpus callosum (CC), the bilateral thalamus and the left superior longitudinal fasciculus (SLF) II. Significant changes in FA reflect WM abnormalities in PT born individuals from infant to young adulthood. CONCLUSIONS: Significant changes in FA reflect WM abnormalities in individuals born PT from infancy to young adulthood. The abnormal development of the CC, bilateral thalamus and left SLF may play a vital role in the neurodevelopment of PT individuals.
Neurological disorders are prevalent in preterm (PT) born individuals. The use of tract-based spatial statistics (TBSS) in diffusion tensor imaging (DTI) studies has proven effective in detecting microstructural abnormalities of the white matter (WM) of the brain. In order to determine the most consistent alterations in WM among those born prematurely, we have screened DTI studies using TBSS in this PT born population up until October 2022. The meta-analysis identified four brain regions where fractional anisotropy (FA) was lower in the PT group than in those born at term. The quantitative meta-analysis identified the corpus callosum, the bilateral thalamus and the left superior longitudinal fasciculus II. As the most robust WM alterations. Various studies have demonstrated the links between PT birth, intelligence quotient, gestational age and subject age.
Assuntos
Imagem de Tensor de Difusão , Recém-Nascido Prematuro , Substância Branca , Humanos , Imagem de Tensor de Difusão/métodos , Anisotropia , Recém-Nascido , Feminino , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Nascimento Prematuro , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Adulto , Masculino , Criança , LactenteRESUMO
Childhood maltreatment has been suggested to have an adverse impact on neurodevelopment, including microstructural brain abnormalities. Existing neuroimaging findings remain inconsistent and heterogeneous. We aim to explore the most prominent and robust cortical thickness (CTh) and gray matter volume (GMV) alterations associated with childhood maltreatment. A systematic search on relevant studies was conducted through September 2022. The whole-brain coordinate-based meta-analysis (CBMA) on CTh and GMV studies were conducted using the seed-based d mapping (SDM) software. Meta-regression analysis was subsequently applied to investigate potential associations between clinical variables and structural changes. A total of 45 studies were eligible for inclusion, including 11 datasets on CTh and 39 datasets on GMV, consisting of 2550 participants exposed to childhood maltreatment and 3739 unexposed comparison subjects. Individuals with childhood maltreatment exhibited overlapped deficits in the median cingulate/paracingulate gyri simultaneously revealed by both CTh and GM studies. Regional cortical thinning in the right anterior cingulate/paracingulate gyri and the left middle frontal gyrus, as well as GMV reductions in the left supplementary motor area (SMA) was also identified. No greater regions were found for either CTh or GMV. In addition, several neural morphology changes were associated with the average age of the maltreated individuals. The median cingulate/paracingulate gyri morphology might serve as the most robust neuroimaging feature of childhood maltreatment. The effects of early-life trauma on the human brain predominantly involved in cognitive functions, socio-affective functioning and stress regulation. This current meta-analysis enhanced the understanding of neuropathological changes induced by childhood maltreatment.
Assuntos
Maus-Tratos Infantis , Substância Cinzenta , Humanos , Criança , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Imageamento por Ressonância Magnética/métodos , Encéfalo/patologia , Neuroimagem/métodosRESUMO
Visual working memory refers to the temporary maintenance and manipulation of task-related visual information. Recent debate on the underlying neural substrates of visual working memory has focused on the delay period of relevant tasks. Persistent neural activity throughout the delay period has been recognized as a correlate of working memory, yet regions demonstrating sustained hemodynamic responses show inconsistency across individual studies. To develop a more precise understanding of delay-period activations during visual working memory, we conducted a coordinate-based meta-analysis on 30 fMRI experiments involving 515 healthy adults with a mean age of 25.65 years. The main analysis revealed a widespread frontoparietal network associated with delay-period activity, as well as activation in the right inferior temporal cortex. These findings were replicated using different meta-analytical algorithms and were shown to be robust against between-study heterogeneity and publication bias. Further meta-analyses on different subgroups of experiments with specific task demands and stimulus types revealed similar delay-period networks, with activations distributed across the frontal and parietal cortices. The roles of prefrontal regions, posterior parietal regions, and inferior temporal areas are reviewed and discussed in the context of content-specific storage. We conclude that cognitive operations that occur during the unfilled delay period in visual working memory tasks can be flexibly expressed across a frontoparietal-temporal network depending on experimental parameters.
Assuntos
Imageamento por Ressonância Magnética , Memória de Curto Prazo , Adulto , Mapeamento Encefálico , Humanos , Memória de Curto Prazo/fisiologia , Lobo Parietal/fisiologia , Lobo Temporal/fisiologiaRESUMO
The pathological mechanism of autism spectrum disorder (ASD) remains unclear. Nowadays, surface-based morphometry (SBM) based on structural magnetic resonance imaging (sMRI) techniques have reported cortical thickness (CT) variations in ASD. However, the findings were inconsistent and heterogeneous. This current meta-analysis conducted a whole-brain vertex-wise coordinate-based meta-analysis (CBMA) on CT studies to explore the most noticeable and robust CT changes in ASD individuals by applying the seed-based d mapping (SDM) program. A total of 26 investigations comprised 27 datasets were included, containing 1,635 subjects with ASD and 1470 HC, along with 94 coordinates. Individuals with ASD exhibited significantly altered CT in several regions compared to HC, including four clusters with thicker CT in the right superior temporal gyrus (STG.R), the left middle temporal gyrus (MTG.L), the left anterior cingulate/paracingulate gyri, the right superior frontal gyrus (SFG.R, medial orbital parts), as well as three clusters with cortical thinning including the left parahippocampal gyrus (PHG.L), the right precentral gyrus (PCG.R) and the left middle frontal gyrus (MFG.L). Adults with ASD only demonstrated CT thinning in the right parahippocampal gyrus (PHG.R), revealed by subgroup meta-analyses. Meta-regression analyses found that CT in STG.R was positively correlated with age. Meanwhile, CT in MFG.L and PHG.L had negative correlations with the age of ASD individuals. These results suggested a complicated and atypical cortical development trajectory in ASD, and would provide a deeper understanding of the neural mechanism underlying the cortical morphology in ASD.
RESUMO
Neuroticism is major higher-order personality trait and has been robustly associated with mental and physical health outcomes. Although a growing body of studies have identified neurostructural markers of neuroticism, the results remained highly inconsistent. To characterize robust associations between neuroticism and variations in gray matter (GM) structures, the present meta-analysis investigated the concurrence across voxel-based morphometry (VBM) studies using the anisotropic effect size signed differential mapping (AES-SDM). A total of 13 studies comprising 2,278 healthy subjects (1,275 females, 29.20 ± 14.17 years old) were included. Our analysis revealed that neuroticism was consistently associated with the GM structure of a cluster spanning the bilateral dorsal anterior cingulate cortex and extending to the adjacent medial prefrontal cortex (dACC/mPFC). Meta-regression analyses indicated that the neuroticism-GM associations were not confounded by age and gender. Overall, our study is the first whole-brain meta-analysis exploring the brain structural correlates of neuroticism, and the findings may have implications for the intervention of high-neuroticism individuals, who are at risk of mental disorders, by targeting the dACC/mPFC.
Assuntos
Substância Cinzenta , Giro do Cíngulo , Neuroticismo , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/fisiologia , Giro do Cíngulo/anatomia & histologia , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/fisiologia , Humanos , Córtex Pré-FrontalRESUMO
Differential diagnosis of parkinsonian syndromes is considered one of the most challenging in neurology. Quantitative MR planimetric measurements were reported to discriminate between progressive supranuclear palsy (PSP) and non-PSP-parkinsonism. Several studies have used midbrain to pons ratio (M/P) and the Magnetic Resonance Parkinsonism Index (MRPI) in distinguishing PSP patients from those with Parkinson's disease. The current meta-analysis aimed to compare the performance of these measures in discriminating PSP from multiple system atrophy (MSA). A systematic MEDLINE review identified 59 out of 2984 studies allowing a calculation of sensitivity and specificity using the MRPI or M/P. Meta-analyses of results were carried out using random effects modelling. To assess study quality and risk of bias, the QUADAS-2 tool was used. Eight studies were suitable for analysis. The meta-analysis showed a pooled sensitivity and specificity for the MRPI of PSP versus MSA of 79.2% (95% CI 72.7-84.4%) and 91.2% (95% CI 79.5-96.5%), and 84.1% (95% CI 77.2-89.2%) and 89.2% (95% CI 81.8-93.8%), respectively, for the M/P. The QUADAS-2 toolbox revealed a high risk of bias regarding the methodological quality of patient selection and index test, as all patients were seen in a specialized outpatient department without avoiding case control design and no predefined threshold was given regarding MRPI or M/P cut-offs. Planimetric brainstem measurements, in special the MRPI and M/P, yield high diagnostic accuracy for the discrimination of PSP from MSA. However, there is an urgent need for well-designed, prospective validation studies to ameliorate the concerns regarding the risk of bias.
Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Transtornos Parkinsonianos , Paralisia Supranuclear Progressiva , Humanos , Imageamento por Ressonância Magnética , Atrofia de Múltiplos Sistemas/diagnóstico , Doença de Parkinson/diagnóstico , Paralisia Supranuclear Progressiva/diagnósticoRESUMO
Brain structural abnormalities in idiopathic restless legs syndrome have long been debated. Voxel-based morphometry is an objective structural magnetic resonance imaging technique to investigate regional grey matter volume or density differences between groups. In the last decade, voxel-based morphometry studies have exhibited inconsistent and conflicting findings regarding the presence and localization of brain grey matter alterations in restless legs syndrome. We therefore conducted a coordinate-based meta-analysis to quantitatively examine whether there were consistent grey matter findings in restless legs syndrome using the latest algorithms, seed-based d mapping with permutation of subject images. We included 12 voxel-based morphometry studies (13 datasets, 375 patients and 385 healthy controls). Our coordinate-based meta-analysis did not identify evidence of consistent grey matter alterations in restless legs syndrome. Grey matter alterations via voxel-based morphometry analysis are not therefore recommended to be used as a reliable surrogate neuroimaging marker for restless legs syndrome. This lack of consistency may be attributed to differences in sample size, genetics, gender distribution and age at onset, clinical heterogeneity (clinical course, anatomical distribution of symptoms, disease severity, disease duration, abnormal sensory profiles and comorbidity), and variations in imaging acquisition, data processing and statistical strategies. Longitudinal studies with multimodal neuroimaging techniques are needed to determine whether structural changes are dynamic and secondary to functional abnormalities.
Assuntos
Substância Cinzenta , Síndrome das Pernas Inquietas , Encéfalo , Córtex Cerebral , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Síndrome das Pernas Inquietas/diagnóstico por imagemRESUMO
Socioeconomic status (SES) is a multidimensional construct that includes not only measures of material wealth, but also education, social prestige, and neighborhood quality. Socioeconomic correlates between wealth and cognitive functions have been well established in behavioral studies. However, functional and structural brain correlates of SES remain unclear. Here, we sought to uncover the most likely neural regions to be affected by low SES, specifically associated with age. Using effect size-seed-based d Mapping, we compiled studies that examined individuals with low SES and performed functional magnetic resonance imaging and voxel-based morphometry meta-analyses. The results revealed that as from early to late age, individuals exposed to low SES are less likely to have sustained executive network activity yet a greater likelihood to enhanced activity within reward-related regions. A similar activity was shown for gray matter volume across early to older age. These findings provide the first quantitative integration of neuroimaging results pertaining to the neural basis of SES. Hypoactivation of the executive network and hyperactivation of the reward network in low SES individuals may support the scarcity hypothesis and animal models of the effects of early adversity.
Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Classe Social , Adolescente , Adulto , Mapeamento Encefálico/métodos , Criança , Pré-Escolar , Cognição/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Adulto JovemRESUMO
Tract-based spatial statistics (TBSS) of diffusion tensor imaging (DTI) studies have consistently shown diminished white matter (WM) integrity for individuals with cocaine use disorder (CUD). The present study used seed-based d mapping (SDM) to determine the extent to which a systematic difference in the WM integrity of cocaine users may exist (as compared with that of healthy controls). Articles from 2006 (when TBSS was first developed) to present were reviewed, with eight selected for inclusion. Meta-analysis found lower fractional anisotropy (FA) in the genu of the corpus callosum for cocaine users, with a small-to-moderate peak effect size (Hedge's g = -0.331). Sensitivity analyses mostly supported the robustness of the obtained difference. Differences detected at exploratory thresholds for significance suggested insult to WM integrity extending beyond the corpus callosum. The present results compliment a previous region-of-interest (ROI)-based meta-analysis of DTI studies in individuals with CUD. These findings have significant implications for the potential role of neuroprotective agents in the treatment of CUD and merit additional iteration as more studies accrue in the literature.
Assuntos
Transtornos Relacionados ao Uso de Cocaína/patologia , Substância Branca/patologia , Anisotropia , Transtornos Relacionados ao Uso de Cocaína/diagnóstico por imagem , Corpo Caloso/patologia , Imagem de Tensor de Difusão , Humanos , Substância Branca/diagnóstico por imagemRESUMO
BACKGROUND: Exploring white matter (WM) microstructural alterations is a momentous step for gaining insights about underlying mechanisms of obsessive-compulsive disorder (OCD) and improving the efficacy of therapies for this condition. Many tract-based spatial statistics (TBSS) studies have revealed abnormalities of fractional anisotropy (FA; an index of WM integrity) in OCD. However, research works have not drawn robust conclusions. Therefore, we integrated the findings of TBSS studies to identify the most consistent FA changes in OCD using meta-analytical approach. METHODS: Online databases were systematically searched for all TBSS studies comparing FA between patients with OCD and controls. A coordinate-based meta-analysis was performed using anisotropic effect size version of the seed-based d mapping software. Meanwhile, meta-regression was used to explore the potential association of clinical characteristics with regional FA abnormalities. RESULTS: Our meta-analysis included 488 OCD patients and 519 controls across 17 datasets. FA reductions were identified in the genu of the corpus callosum and the left orbitofrontal WM in OCD patients relative to controls. Metaregression analyses showed that the FA in the left orbitofrontal WM was negatively and independently correlated with symptom severity and illness duration in patients with OCD. CONCLUSIONS: The current study provides a quantitative overview of TBSS findings in OCD and demonstrates the most prominent and replicable WM abnormalities in OCD are in the anterior part of the brain including interhemispheric connection and orbitofrontal region. Additionally, our findings suggest that FA reduction in the orbitofrontal WM might be a potential biomarker in predicting disease severity and progression in patients with OCD.
Assuntos
Transtorno Obsessivo-Compulsivo , Substância Branca , Anisotropia , Encéfalo/diagnóstico por imagem , Corpo Caloso , Imagem de Tensor de Difusão , Humanos , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Substância Branca/diagnóstico por imagemRESUMO
BACKGROUND: Recently, several functional neuroimaging studies have been conducted in patients with persistent insomnia disorder, but these studies have yielded diverse findings. We aimed to identify convergence in function across the heterogeneity of patients, modalities, and methods for insomnia disorder by performing a quantitative coordinate-based meta-analysis. MATERIALS AND METHODS: We performed a quantitative, voxel-wise meta-analysis of resting-state fMRI studies using seed-based d mapping to find convergence of functional alterations in persistent insomnia disorder. RESULTS: We included 28 studies comprising 287 peak foci involving 951 patients with insomnia disorder and 884 healthy controls. Patients with persistent insomnia disorder showed that increased activity was more frequently reported in right parahippocampal gyrus (p < 0.001) and left median cingulate/paracingulate gyri (p < 0.001); while decreased activity was more frequently reported in right cerebellum (p < 0.001) and left superior frontal gyrus/medial orbital (p < 0.001). CONCLUSION: The altered functional networks in patients with persistent insomnia disorder converge in median cingulate/paracingulate gyri and right parahippocampal gyrus with increased activity, and cerebellum and superior frontal gyrus/medial orbital with reduced activity. As a potential target in future, the identification of these altered or unbalanced networks is very important because they may be noninvasively rebalanced to sleep homeostasis by noninvasive brain stimulation methods.
Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Potenciais da Membrana/fisiologia , Apneia Obstrutiva do Sono/diagnóstico por imagem , Distúrbios do Início e da Manutenção do Sono/diagnóstico por imagem , Encéfalo/fisiopatologia , Estudos de Casos e Controles , Cerebelo/diagnóstico por imagem , Cerebelo/fisiopatologia , Lobo Frontal/fisiopatologia , Giro do Cíngulo/fisiopatologia , Humanos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Rede Nervosa/fisiopatologia , Giro Para-Hipocampal/diagnóstico por imagem , Giro Para-Hipocampal/fisiopatologia , Apneia Obstrutiva do Sono/fisiopatologia , Distúrbios do Início e da Manutenção do Sono/fisiopatologiaRESUMO
Coordinate-based meta-analyses (CBMA) are very useful for summarizing the large number of voxel-based neuroimaging studies of normal brain functions and brain abnormalities in neuropsychiatric disorders. However, current CBMA methods do not conduct common voxelwise tests, but rather a test of convergence, which relies on some spatial assumptions that data may seldom meet, and has lower statistical power when there are multiple effects. Here we present a new algorithm that can use standard voxelwise tests and, importantly, conducts a standard permutation of subject images (PSI). Its main steps are: a) multiple imputation of study images; b) imputation of subject images; and c) subject-based permutation test to control the familywise error rate (FWER). The PSI algorithm is general and we believe that developers might implement it for several CBMA methods. We present here an implementation of PSI for seed-based d mapping (SDM) method, which additionally benefits from the use of effect sizes, random-effects models, Freedman-Lane-based permutations and threshold-free cluster enhancement (TFCE) statistics, among others. Finally, we also provide an empirical validation of the control of the FWER in SDM-PSI, which showed that it might be too conservative. We hope that the neuroimaging meta-analytic community will welcome this new algorithm and method.
Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Metanálise como Assunto , Modelos Estatísticos , Neuroimagem/métodos , HumanosRESUMO
Coordinate-based meta-analyses (CBMA) methods, such as Activation Likelihood Estimation (ALE) and Seed-based d Mapping (SDM), have become an invaluable tool for summarizing the findings of voxel-based neuroimaging studies. However, the progressive sophistication of these methods may have concealed two particularities of their statistical tests. Common univariate voxelwise tests (such as the t/z-tests used in SPM and FSL) detect voxels that activate, or voxels that show differences between groups. Conversely, the tests conducted in CBMA test for "spatial convergence" of findings, i.e., they detect regions where studies report "more peaks than in most regions", regions that activate "more than most regions do", or regions that show "larger differences between groups than most regions do". The first particularity is that these tests rely on two spatial assumptions (voxels are independent and have the same probability to have a "false" peak), whose violation may make their results either conservative or liberal, though fortunately current versions of ALE, SDM and some other methods consider these assumptions. The second particularity is that the use of these tests involves an important paradox: the statistical power to detect a given effect is higher if there are no other effects in the brain, whereas lower in presence of multiple effects.
Assuntos
Encéfalo/diagnóstico por imagem , Interpretação Estatística de Dados , Metanálise como Assunto , Neuroimagem/métodos , HumanosRESUMO
Independent component analysis (ICA) is one of the most popular and valid methods to investigate the default mode network (DMN), an intrinsic network which attracts particular attention in amnestic mild cognitive impairment (aMCI). However, previous studies present inconsistent results regarding the topographical organization of the DMN in aMCI. Therefore, we conducted a quantitative, voxel-wise meta-analysis of resting-state ICA studies using Seed-based d Mapping to establish the most consistent pattern of DMN functional connectivity alterations in aMCI. Twenty studies, comprising 23 independent datasets involving 535 patients and 586 healthy controls, met the inclusion criteria. Patients with aMCI exhibited reliably lower DMN functional connectivity than the healthy controls in the bilateral precuneus/posterior cingulate cortices and medial temporal lobes, which are implicated in episodic memory deficits. Moreover, an exploratory meta-regression analysis revealed that greater severity of global cognitive impairment in the patient groups was associated with stronger functional connectivity in the bilateral medial frontal cortices (including the anterior cingulate cortices), left angular gyrus, and right temporal pole extending to the middle temporal gyrus, likely reflecting a compensatory mechanism for maintaining cognitive efficiency. This meta-analysis identifies a consistent pattern of aberrant DMN functional connectivity in aMCI, which facilitates understanding of the neurobiological substrates of this disease.
Assuntos
Amnésia/fisiopatologia , Encéfalo/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Amnésia/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Disfunção Cognitiva/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , DescansoRESUMO
BACKGROUND: Prior research utilizing whole-brain neuroimaging techniques has identified structural differences in gray matter in opioid-dependent individuals. However, the results have been inconsistent. OBJECTIVES: The current study meta-analytically examines the neuroimaging findings of studies published before 2016 comparing opioid-dependent individuals to drug-naïve controls. METHOD: Exhaustive search of five databases yielded 12 studies that met inclusion criteria. Anisotropic Effect-Size Seed-Based d Mapping (AES-SDM) was used to analyze the data extracted by three independent researchers. Voxel-based AES-SDM distinguishes increases and decreases in brain matter significant at the whole-brain level. RESULTS: AES-SDM identified the fronto-temporal region, bilaterally, as being the primary site of gray matter deficits associated with opioid use. Moderator analysis revealed that length of opioid use was negatively associated with gray matter in the left cerebellar vermis and the right Rolandic operculum, including the insula. Meta-regression revealed no remaining significant areas of gray matter reductions, except in the precuneus, following longer abstinence from opioids. CONCLUSIONS: Opioid-dependent individuals had significantly less gray matter in several regions that play a key role in cognitive and affective processing. The findings provide evidence that opioid dependence may result in the breakdown of two distinct yet highly overlapping structural and functional systems. These are the fronto-cerebellar system that might be more responsible for impulsivity, compulsive behaviors, and affective disturbances and the fronto-insular system that might account more for the cognitive and decision-making impairments.
Assuntos
Encéfalo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Transtornos Relacionados ao Uso de Opioides/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , NeuroimagemRESUMO
Traditional Chinese Exercise (TCE) has been shown to improve quality of life, and functional magnetic resonance imaging (fMRI) is a highly used method for investigating its mechanism. However, there is currently a lack of systematic reviews and meta-analyses focusing on TCE-related brain changes. This study aims to fill this gap by conducting a meta-analysis on brain changes of TCE with fMRI technology. We searched relevant studies published until February 2024. Independent researchers conducted literature screening, quality assessment, and clinical and neuroimaging data extraction. Focis were filtered from eligible studies, and meta-analysis was performed using seed-based d mapping. Twenty-three studies involving 1182 participants were included in this study. The result found that longitudinal TCE increased brain activity in the left anterior cingulate gyri, right fusiform gyrus, right middle temporal gyrus, left middle occipital gyrus and left frontal superior compared with other exercises or healthcare. Subgroup analysis showed that the brain activity in the right superior frontal gyrus dorsolateral; right cortico-spinal projections; corpus callosum; right inferior network; right gyrus rectus; left middle occipital gyrus were decreased after TCE compared to other exercise among healthy participants. The right median cingulate gyri was increased after Baduanjin (one of the TCE) compared to other exercise; the left precentral gyrus activity was increased after Tai chi chuan (TCC) practice compared to other exercise. The brain activity in the right insula, right supplementary motor area, and left anterior thalamic were significantly increased after long-time TCC exercise. TCE effectively improved the cognitive level of the subjects. Among them, the MoCA score increased, but Memory Quotient was not improved. Research results indicate that TCE have specific neuromodulatory effects, and different TCE have different neuromodulatory patterns.
RESUMO
Depression is a highly prevalent and debilitating mental disorder that often begins in adolescence. However, it remains unclear whether adults and adolescents with depression exhibit common or distinct brain dysfunctions during reward processing. We aimed to identify common and separable neurofunctional alterations during receipt of rewards and brain structure in adolescents and adults with depression. A coordinate-based meta-analysis was employed using Seed-based d mapping with permutation of subject images (SDM-PSI). Compared with healthy controls, both age groups exhibited common activity decreases in the right striatum (putamen, caudate) and subgenual ACC. Adults with depression showed decreased reactivity in the right putamen and subgenual ACC, while adolescents with depression showed decreased activity in the left mid cingulate, right caudate but increased reactivity in the right postcentral gyrus. This meta-analysis revealed shared (caudate) and separable (putamen and mid cingulate cortex) reward-related alterations in adults and adolescents with depression. The findings suggest age-specific neurofunctional alterations and stress the importance of adolescent-specific interventions that target social functions.
Assuntos
Encéfalo , Humanos , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Neuroimagem , Recompensa , Depressão/fisiopatologia , Depressão/diagnóstico por imagem , Transtorno Depressivo/fisiopatologia , Transtorno Depressivo/diagnóstico por imagem , Mapeamento EncefálicoRESUMO
Post-traumatic stress disorder (PTSD) is a debilitating condition which has been related to problems in emotional regulation, memory and cognitive control. Psychotherapy has a non-response rate of around 50% and understanding the neurobiological working mechanisms might help improve treatment. To integrate findings from multiple smaller studies, we performed the first meta-analysis of changes in brain activation with a specific focus on emotional processing after psychotherapy in PTSD patients. We performed a meta-analysis of brain activation changes after treatment during emotional processing for PTSD with seed-based d mapping using a pre-registered protocol (PROSPERO CRD42020211039). We analyzed twelve studies with 191 PTSD patients after screening 3700 studies. We performed systematic quality assessment both for the therapeutic interventions and neuroimaging methods. Analyses were done in the full sample and in a subset of studies that reported whole-brain results. We found decreased activation after psychotherapy in the left amygdala, (para)hippocampus, medial temporal lobe, inferior frontal gyrus, ventrolateral prefrontal cortex, right pallidum, anterior cingulate cortex, bilateral putamen, and insula. Decreased activation in the left amygdala and left ventrolateral PFC was also found in eight studies that reported whole-brain findings. Results did not survive correction for multiple comparisons. There is tentative support for decreased activation in the fear and cognitive control networks during emotional processing after psychotherapy for PTSD. Future studies would benefit from adopting a larger sample size, using designs that control for confounding variables, and investigating heterogeneity in symptom profiles and treatment response.
RESUMO
The neuropathological mechanism of mild cognitive impairment (MCI) remains unclarified. Diffusion tensor imaging (DTI) studies revealed white matter (WM) microarchitecture alterations in MCI, but consistent findings and conclusions have not yet been drawn. The present coordinate-based meta-analysis (CBMA) of tract-based spatial statistics (TBSS) studies aimed to identify the most prominent and robust WM abnormalities in patients with MCI. A systematic search of relevant studies was conducted through January 2022 to identify TBSS studies comparing fractional anisotropy (FA) between MCI patients and healthy controls (HC). We used the seed-based d mapping (SDM) software to achieve the CBMA and analyze regional FA alterations in MCI. Meta-regression analysis was subsequently applied to explore the potential associations between clinical variables and FA changes. MCI patients demonstrated significantly decreased FA in widely distributed areas in the corpus callosum (CC), including the genu, body, and splenium of the CC, as well as one cluster in the left striatum. FA in the body of the CC and in three clusters in the splenium of the CC was negatively associated with the mean age. Additionally, FA in the genu of the CC and in three clusters in the splenium of the CC had negative correlations with the MMSE scores. Disrupted integrities of the CC and left striatum might play vital roles in the process of cognitive decline. These findings enhanced our understanding of the neural mechanism underlying WM neurodegeneration in MCI and provided perspectives for the early detection and intervention of dementia.Registration number: CRD42022235716.