Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(11): e2316439121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442165

RESUMO

Adaptive myelination is the emerging concept of tuning axonal conduction velocity to the activity within specific neural circuits over time. Sound processing circuits exhibit structural and functional specifications to process signals with microsecond precision: a time scale that is amenable to adjustment in length and thickness of myelin. Increasing activity of auditory axons by introducing sound-evoked responses during postnatal development enhances myelin thickness, while sensory deprivation prevents such radial growth during development. When deprivation occurs during adulthood, myelin thickness was reduced. However, it is unclear whether sensory stimulation adjusts myelination in a global fashion (whole fiber bundles) or whether such adaptation occurs at the level of individual fibers. Using temporary monaural deprivation in mice provided an internal control for a) differentially tracing structural changes in active and deprived fibers and b) for monitoring neural activity in response to acoustic stimulation of the control and the deprived ear within the same animal. The data show that sound-evoked activity increased the number of myelin layers around individual active axons, even when located in mixed bundles of active and deprived fibers. Thicker myelination correlated with faster axonal conduction velocity and caused shorter auditory brainstem response wave VI-I delays, providing a physiologically relevant readout. The lack of global compensation emphasizes the importance of balanced sensory experience in both ears throughout the lifespan of an individual.


Assuntos
Axônios , Bainha de Mielina , Animais , Camundongos , Privação Sensorial , Estimulação Acústica , Longevidade
2.
Proc Natl Acad Sci U S A ; 119(32): e2116895119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35925891

RESUMO

Diverse interneuron subtypes shape sensory processing in mature cortical circuits. During development, sensory deprivation evokes powerful synaptic plasticity that alters circuitry, but how different inhibitory subtypes modulate circuit dynamics in response to this plasticity remains unclear. We investigate how deprivation-induced synaptic changes affect excitatory and inhibitory firing rates in a microcircuit model of the sensory cortex with multiple interneuron subtypes. We find that with a single interneuron subtype (parvalbumin-expressing [PV]), excitatory and inhibitory firing rates can only be comodulated-increased or decreased together. To explain the experimentally observed independent modulation, whereby one firing rate increases and the other decreases, requires strong feedback from a second interneuron subtype (somatostatin-expressing [SST]). Our model applies to the visual and somatosensory cortex, suggesting a general mechanism across sensory cortices. Therefore, we provide a mechanistic explanation for the differential role of interneuron subtypes in regulating firing rates, contributing to the already diverse roles they serve in the cortex.


Assuntos
Interneurônios , Modelos Neurológicos , Plasticidade Neuronal , Privação Sensorial , Animais , Interneurônios/fisiologia , Parvalbuminas/metabolismo , Córtex Somatossensorial/fisiologia , Córtex Visual/fisiologia
3.
Neuroimage ; 299: 120813, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39182711

RESUMO

In response to sensory deprivation, the brain adapts according to contemporary demands to efficiently navigate a modified perceptual environment. This reorganization may result in improved processing of the remaining senses-a phenomenon referred to as compensatory crossmodal plasticity. One approach to explore this neuroplasticity is to consider the macrostructural changes in neural tissue that mirror this functional optimization. The current study is the first of its kind to measure MRI-derived gray matter (GM) volumes of control felines (n=30), while additionally identifying volumetric differences in response to perinatal deafness (30 ototoxically-deafened cats). To accomplish this purpose, regional and morphometric methods were performed in parallel. The regional analysis evaluated volumetric alterations of global GM, as well as the volumes of 146 regions of interest (ROIs) and 12 functional subgroupings of these ROIs. Results revealed whole-brain GM preservation; however, somatosensory and visual cortices exhibited an overall increase in volume. On a smaller scale, this analysis uncovered two auditory ROIs (second auditory cortex, A2, and ventral auditory field, VAF) that decreased in volume alongside two visual regions (anteromedial lateral suprasylvian area, AMLS and splenial visual area, SVA) that increased-all localized within the right hemisphere. Comparatively, the findings of tensor-based morphometry (TBM) generally aligned with those of the ROI-based method, as this voxel-wise approach demonstrated clusters of expansion coincident with visual- and somatosensory-related loci; although, it failed to detect any GM reductions following deafness. As distinct differences were identified in each analysis, the current study highlights the importance of employing multiple methods when exploring MRI volumetry. Overall, this study proposes that volumetric alterations within sensory loci allude to a redistribution of cortical space arising from modified perceptual demands following auditory deprivation.


Assuntos
Córtex Cerebral , Surdez , Substância Cinzenta , Imageamento por Ressonância Magnética , Plasticidade Neuronal , Animais , Gatos , Plasticidade Neuronal/fisiologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Imageamento por Ressonância Magnética/métodos , Surdez/diagnóstico por imagem , Surdez/fisiopatologia , Surdez/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Feminino , Masculino
4.
Conscious Cogn ; 120: 103683, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38552602

RESUMO

This study addresses the effects of blindness on trust. Using an auditory version of the multi-round Trust Game, we investigated the effect of reputation and reciprocity on trust decisions in early blind and sighted participants. During each round of the game, participants were endowed with a sum of money and had to decide how much they wanted to invest in their partners, who were manipulated as a function of their good or bad reputation and individualistic or cooperative behavior. The data showed that negative first impression about the partner (bad reputation and/or selfish behavior) impacted more blind participants than sighted ones. However, following repeated interactions with the partners, the overall mean investment aligned between the blind and sighted groups. We interpret these findings as suggesting that blindness may guide participants to a more cautionary behavior when dealing with partners with negative initial characteristics.


Assuntos
Cegueira , Confiança , Humanos , Comportamento Cooperativo
5.
Somatosens Mot Res ; 40(4): 133-140, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36565289

RESUMO

PURPOSE/AIM: Rett (RTT) syndrome, a neurodevelopmental disorder, results from loss-of-function mutations in methyl-CpG-binding protein 2. We studied activity-dependent plasticity induced by sensory deprivation via whisker trimming in early symptomatic male mutant mice to assess neural rewiring capability. METHODS: One whisker was trimmed for 0-14 days and intrinsic optical imaging of the transient reduction of brain blood oxygenation resulting from neural activation by 1 second of wiggling of the whisker stump was compared to that of an untrimmed control whisker. RESULTS: Cortical evoked responses to wiggling a non-trimmed whisker were constant for 14 days, reduced for a trimmed whisker by 49.0 ± 4.3% in wild type (n = 14) but by only 22.7 ± 4.6% in mutant (n = 18, p = 0.001). CONCLUSION: As the reduction in neural activation following sensory deprivation in whisker barrel cortex is known to be dependent upon evoked and basal neural activity, impairment of cortical re-wiring following whisker trimming provides a paradigm suitable to explore mechanisms underlying deficiencies in the establishment and maintenance of synapses in RTT, which can be potentially targeted by therapeutics.


Assuntos
Privação Sensorial , Vibrissas , Camundongos , Animais , Masculino , Privação Sensorial/fisiologia , Vibrissas/fisiologia , Córtex Somatossensorial/fisiologia
6.
J Neurosci ; 41(10): 2135-2151, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33483429

RESUMO

Can alterations in experience trigger different plastic modifications in neuronal structure and function, and if so, how do they integrate at the cellular level? To address this question, we interrogated circuitry in the mouse olfactory bulb responsible for the earliest steps in odor processing. We induced experience-dependent plasticity in mice of either sex by blocking one nostril for one day, a minimally invasive manipulation that leaves the sensory organ undamaged and is akin to the natural transient blockage suffered during common mild rhinal infections. We found that such brief sensory deprivation produced structural and functional plasticity in one highly specialized bulbar cell type: axon-bearing dopaminergic neurons in the glomerular layer. After 24 h naris occlusion, the axon initial segment (AIS) in bulbar dopaminergic neurons became significantly shorter, a structural modification that was also associated with a decrease in intrinsic excitability. These effects were specific to the AIS-positive dopaminergic subpopulation because no experience-dependent alterations in intrinsic excitability were observed in AIS-negative dopaminergic cells. Moreover, 24 h naris occlusion produced no structural changes at the AIS of bulbar excitatory neurons, mitral/tufted and external tufted cells, nor did it alter their intrinsic excitability. By targeting excitability in one specialized dopaminergic subpopulation, experience-dependent plasticity in early olfactory networks might act to fine-tune sensory processing in the face of continually fluctuating inputs.SIGNIFICANCE STATEMENT Sensory networks need to be plastic so they can adapt to changes in incoming stimuli. To see how cells in mouse olfactory circuits can change in response to sensory challenges, we blocked a nostril for just one day, a naturally relevant manipulation akin to the deprivation that occurs with a mild cold. We found that this brief deprivation induces forms of axonal and intrinsic functional plasticity in one specific olfactory bulb cell subtype: axon-bearing dopaminergic interneurons. In contrast, intrinsic properties of axon-lacking bulbar dopaminergic neurons and neighboring excitatory neurons remained unchanged. Within the same sensory circuits, specific cell types can therefore make distinct plastic changes in response to an ever-changing external landscape.


Assuntos
Segmento Inicial do Axônio/patologia , Neurônios Dopaminérgicos/patologia , Plasticidade Neuronal/fisiologia , Bulbo Olfatório/fisiopatologia , Privação Sensorial/fisiologia , Animais , Segmento Inicial do Axônio/fisiologia , Neurônios Dopaminérgicos/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Int Tinnitus J ; 26(1): 20-26, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35861455

RESUMO

OBJECTIVE: The objective of this study is to investigate a possible role of the Medial Olivocochlear (MOC) efferent neural pathway and neural connections responsible for tinnitus generation in silence/sensory deprivation. DESIGN: By placing normal hearing participants in a sound booth for 10 minutes, silence/sensory deprivation was created. This offered assessment of MOC neural pathway in normal hearing participants in silence. Hyperactivity of MOC neural pathway was assessed by its more suppressive effect on Transient Otoacoustic Emissions (TEOAEs) in silence. The required auditory measurements were recorded in the sound booth using recommended diagnostic protocols to ensure the effect of 'only silence' on auditory structures. TEOAE were recorded from the right ear and suppression was measured by placing noise in the left ear. Fifty-eight normal hearing male individuals between age 18-35 years were recruited as participants in this study. RESULTS: Approximately, forty-one percent of the participants perceived some type of tinnitus during/after 10 minutes of silence. No statistically significant difference was found in the total TEOAE amplitude and TEOAE suppression amplitude before and after ten minutes of silence. Post silence total TEOAE suppression between tinnitus perceiving and non-perceiving tinnitus participants were not statistically significantly different. CONCLUSION: These results suggest that the medial olivocochlear efferent pathway or lower brain stem area does not appear to play a role in the emergence of temporary tinnitus in silence however indicate the involvement of higher central auditory nervous system structures in perception of the tinnitus which support the well-accepted notion that tinnitus is the central auditory processing phenomenon.


Assuntos
Zumbido , Estimulação Acústica , Adolescente , Adulto , Percepção Auditiva/fisiologia , Vias Eferentes/fisiologia , Humanos , Masculino , Vias Neurais , Emissões Otoacústicas Espontâneas/fisiologia , Zumbido/diagnóstico , Adulto Jovem
8.
J Physiol ; 599(20): 4643-4669, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34418097

RESUMO

Cortical areas have the capacity of large-scale reorganization following sensory deafferentation. However, it remains unclear whether this phenomenon is a unique process that homogeneously affects the entire deprived cortical region or whether it is susceptible to changes depending on neuronal networks across distinct cortical layers. Here, we studied how the local circuitry within each layer of the deafferented cortex forms the basis for neuroplastic changes after immediate thoracic spinal cord injury (SCI) in anaesthetized rats. In vivo electrophysiological recordings from deafferented hindlimb somatosensory cortex showed that SCI induces layer-specific changes mediating evoked and spontaneous activity. In supragranular layer 2/3, SCI increased gamma oscillations and the ability of these neurons to initiate up-states during spontaneous activity, suggesting an altered corticocortical network and/or intrinsic properties that may serve to maintain the excitability of the cortical column after deafferentation. On the other hand, SCI enhanced the infragranular layers' ability to integrate evoked sensory inputs leading to increased and faster neuronal responses. Delayed evoked response onsets were also observed in layer 5/6, suggesting alterations in thalamocortical connectivity. Altogether, our data indicate that SCI immediately modifies the local circuitry within the deafferented cortex allowing supragranular layers to better integrate spontaneous corticocortical information, thus modifying column excitability, and infragranular layers to better integrate evoked sensory inputs to preserve subcortical outputs. These layer-specific neuronal changes may guide the long-term alterations in neuronal excitability and plasticity associated with the rearrangements of somatosensory networks and the appearance of central sensory pathologies usually associated with spinal cord injury. KEY POINTS: Sensory stimulation of forelimb produces cortical evoked responses in the somatosensory hindlimb cortex in a layer-dependent manner. Spinal cord injury favours the input statistics of corticocortical connections between intact and deafferented cortices. After spinal cord injury supragranular layers exhibit better integration of spontaneous corticocortical information while infragranular layers exhibit better integration of evoked sensory stimulation. Cortical reorganization is a layer-specific phenomenon.


Assuntos
Privação Sensorial , Traumatismos da Medula Espinal , Animais , Plasticidade Neuronal , Neurônios , Ratos , Córtex Somatossensorial
9.
J Neurosci ; 39(23): 4475-4488, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-30940716

RESUMO

During a critical period in development, spontaneous and evoked retinal activity shape visual pathways in an adaptive fashion. Interestingly, spontaneous activity is sufficient for spatial refinement of visual receptive fields (RFs) in superior colliculus (SC) and visual cortex (V1), but early visual experience is necessary to maintain inhibitory synapses and stabilize RFs in adulthood (Carrasco et al., 2005, 2011; Carrasco and Pallas, 2006; Balmer and Pallas, 2015a). In V1, BDNF and its high-affinity receptor TrkB are important for development of visual acuity, inhibition, and regulation of the critical period for ocular dominance plasticity (Hanover et al., 1999; Huang et al., 1999; Gianfranceschi et al., 2003). To examine the generality of this signaling pathway for visual system plasticity, the present study examined the role of TrkB signaling during the critical period for RF refinement in SC. Activating TrkB receptors during the critical period (P33-P40) in dark reared subjects produced normally refined RFs, and blocking TrkB receptors in light-exposed animals resulted in enlarged adult RFs like those in dark reared animals. We also report here that deprivation- or TrkB blockade-induced RF enlargement in adulthood impaired fear responses to looming overhead stimuli and negatively impacted visual acuity. Thus, early TrkB activation is both necessary and sufficient to maintain visual RF refinement, robust looming responses, and visual acuity in adulthood. These findings suggest a common signaling pathway exists for the maturation of inhibition between V1 and SC.SIGNIFICANCE STATEMENT Receptive field refinement in superior colliculus differs from more commonly studied examples of critical period plasticity in visual pathways in that it does not require visual experience to occur; rather, spontaneous activity is sufficient. Maintenance of refinement beyond puberty requires a brief, early exposure to light to stabilize the lateral inhibition that shapes receptive fields. We find that TrkB activation during a critical period can substitute for visual experience in maintaining receptive field refinement into adulthood, and that this maintenance is beneficial to visual survival behaviors. Thus, as in some other types of plasticity, TrkB signaling plays a crucial role in receptive field refinement.


Assuntos
Envelhecimento/fisiologia , Glicoproteínas de Membrana/fisiologia , Proteínas Tirosina Quinases/fisiologia , Privação Sensorial/fisiologia , Colículos Superiores/fisiologia , Percepção Visual/fisiologia , Animais , Azepinas/farmacologia , Benzamidas/farmacologia , Cricetinae , Período Crítico Psicológico , Escuridão , Medo/fisiologia , Feminino , Flavonas/farmacologia , Masculino , Aprendizagem em Labirinto , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/antagonistas & inibidores , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Estimulação Luminosa , Processamento de Proteína Pós-Traducional , Proteínas Tirosina Quinases/antagonistas & inibidores , Colículos Superiores/efeitos dos fármacos , Colículos Superiores/crescimento & desenvolvimento , Percepção Visual/efeitos da radiação
10.
Chem Senses ; 45(1): 3-13, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31562506

RESUMO

Adult-born neurons produced in the dentate gyrus subgranular zone (SGZ) develop as excitatory hippocampal granule cells (GCs), while those from the subventricular zone (SVZ) migrate to the olfactory bulb (OB), where most develop as GABAergic olfactory GCs. Both types of neurons express TrkB as they mature. Normally ~50% of new olfactory GCs survive, but survival declines if sensory drive is reduced. Increases in endogenous brain-derived neurotrophic factor (BDNF) in hippocampus, particularly with wheel running, enhance dentate GC survival. Whether survival of new olfactory GCs is impacted by augmenting BDNF in the OB, where they mature and integrate, is not known. Here, we determined if increasing OB BDNF expression enhances survival of new GCs, and if it counters their loss under conditions of reduced sensory activity. Neurogenesis was assessed under normal conditions, and following unilateral naris occlusion, in mice overexpressing BDNF in the granule cell layer (GCL). OB BDNF levels were significantly higher in transgenic mice compared to controls, and this was maintained following sensory deprivation. Bromodeoxyuridine (BrdU) cell birth dating showed that at 12-14 days post-BrdU, numbers of new GCs did not differ between genotypes, indicating normal recruitment to the OB. At later intervals, transgenic and control mice showed levels of GC loss in deprived and nondeprived animals that were indistinguishable, as was the incidence of apoptotic cells in the GCL. These results demonstrate that, in contrast to new dentate GCs, elevations in endogenous BDNF do not enhance survival of adult-born olfactory GCs.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Hipocampo/metabolismo , Animais , Sobrevivência Celular , Hipocampo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/citologia , Neurônios/metabolismo
11.
Proc Natl Acad Sci U S A ; 114(4): E600-E609, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28069964

RESUMO

The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior-lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain.


Assuntos
Córtex Auditivo/fisiologia , Surdez/fisiopatologia , Estimulação Acústica , Adulto , Córtex Auditivo/diagnóstico por imagem , Surdez/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Adulto Jovem
12.
J Neurosci ; 38(23): 5277-5288, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29760176

RESUMO

Retinoic acid (RA) and its receptors (RARs) are well established essential transcriptional regulators during embryonic development. Recent findings in cultured neurons identified an independent and critical post-transcriptional role of RA and RARα in the homeostatic regulation of excitatory and inhibitory synaptic transmission in mature neurons. However, the functional relevance of synaptic RA signaling in vivo has not been established. Here, using somatosensory cortex as a model system and the RARα conditional knock-out mouse as a tool, we applied multiple genetic manipulations to delete RARα postnatally in specific populations of cortical neurons, and asked whether synaptic RA signaling observed in cultured neurons is involved in cortical information processing in vivo Indeed, conditional ablation of RARα in mice via a CaMKIIα-Cre or a layer 5-Cre driver line or via somatosensory cortex-specific viral expression of Cre-recombinase impaired whisker-dependent texture discrimination, suggesting a critical requirement of RARα expression in L5 pyramidal neurons of somatosensory cortex for normal tactile sensory processing. Transcranial two-photon imaging revealed a significant increase in dendritic spine elimination on apical dendrites of somatosensory cortical layer 5 pyramidal neurons in these mice. Interestingly, the enhancement of spine elimination is whisker experience-dependent as whisker trimming rescued the spine elimination phenotype. Additionally, experiencing an enriched environment improved texture discrimination in RARα-deficient mice and reduced excessive spine pruning. Thus, RA signaling is essential for normal experience-dependent cortical circuit remodeling and sensory processing.SIGNIFICANCE STATEMENT The importance of synaptic RA signaling has been demonstrated in in vitro studies. However, whether RA signaling mediated by RARα contributes to neural circuit functions in vivo remains largely unknown. In this study, using a RARα conditional knock-out mouse, we performed multiple regional/cell-type-specific manipulation of RARα expression in the postnatal brain, and show that RARα signaling contributes to normal whisker-dependent texture discrimination as well as regulating spine dynamics of apical dendrites from layer (L5) pyramidal neurons in S1. Deletion of RARα in excitatory neurons in the forebrain induces elevated spine elimination and impaired sensory discrimination. Our study provides novel insights into the role of RARα signaling in cortical processing and experience-dependent spine maturation.


Assuntos
Percepção/fisiologia , Receptor alfa de Ácido Retinoico/metabolismo , Transdução de Sinais/fisiologia , Córtex Somatossensorial/fisiologia , Transmissão Sináptica/fisiologia , Animais , Feminino , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tretinoína/metabolismo
13.
J Physiol ; 597(15): 4025-4051, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31145483

RESUMO

KEY POINTS: Partial sensory deprivation (deafferentation) by removing whiskers from the rat snout resulted in a reduced responsiveness of related cortical representations. Repetitive transcranial magnetic stimulation (three blocks of intermittent theta-burst) applied for 5 days in combination with sensory exploration restored the normal responsiveness level of the deafferented barrel cortex. However, intracortical inhibition (lateral and recurrent) appeared to be reduced after repetitive transcranial magnetic stimulation, probably as the cause of improved responsiveness. Repetitive transcranial magnetic stimulation also reduced the asymmetry of the lateral spread of sensory activity. ABSTRACT: Repetitive transcranial magnetic stimulation (rTMS) modulates human cortical excitability. It has the potential to support recovery to normal cortical function when the excitation-inhibition balance is altered (e.g. after a stroke or loss of sensory input). We tested cortical map plasticity on the basis of sensory responses (local field potentials, LFPs) and expression of neuronal activity marker proteins within the barrel cortex of rats receiving either active or sham rTMS after selective unilateral deafferentation by whiskers plucking. Rats received daily rTMS [intermittent theta-burst (iTBS), active or sham] for 5 days before exploring an enriched environment. Our previous studies indicated a disinhibitory effect of iTBS on cortical activity. Therefore, we also expected disinhibitory effects if deafferentation causes depression of sensory responses. Deafferentation resulted in an acute general reduction of sensory responsiveness and enhanced expression of inhibitory activity markers (GAD67, parvalbumin) in the deafferented hemisphere. Active but not sham-iTBS-rTMS normalized these measures. The stronger caudal-to-frontal horizontal spread of activity across barrels was reduced after deafferentation but not restored after active iTBS, despite generally increased responses. Fitting the LFP data with a computational model of different strengths and types of excitatory and inhibitory connections further revealed an iTBS-induced reduction of lateral and recurrent inhibition as the most probable scenario. Whether the disinhibitory effect of iTBS for the restoration of normal cortical function in the acute phase of depression after deafferentiation is also beneficial in humans remains to be demonstrated. As recently discussed, disinhibition appears to be required to open a window for neuronal plasticity.


Assuntos
Córtex Cerebral/fisiologia , Plasticidade Neuronal , Privação Sensorial , Estimulação Magnética Transcraniana/métodos , Vibrissas/inervação , Animais , Denervação/efeitos adversos , Masculino , Inibição Neural , Ratos , Ratos Sprague-Dawley , Ritmo Teta
14.
Chem Senses ; 44(8): 639-648, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31363734

RESUMO

Olfactory sensory deprivation induces anosmia and reduces tyrosine hydroxylase and dopamine levels in the olfactory bulb. The behavioral consequences specific to the loss of olfactory bulb dopamine are difficult to determine because sensory deprivation protocols are either confounded by side effects or leave the animal anosmic. A new method to both induce sensory deprivation and to measure the behavioral and circuit consequences is needed. We developed a novel, recoverable anosmia protocol using nasal lavage with a dilute detergent solution. Detergent treatment did not damage the olfactory epithelium as measured by scanning electron microscopy, alcian blue histology, and acetylated tubulin immunohistochemistry. One treatment-induced anosmia that lasted 24 to 48 h. Three treatments over 5 days reduced olfactory bulb tyrosine hydroxylase and dopamine levels indicating that anosmia persists between treatments. Importantly, even with multiple treatments, olfactory ability recovered within 48 h. This is the first report of a sensory deprivation protocol that induces recoverable anosmia and can be paired with biochemical, histological, and behavioral investigations of olfaction.


Assuntos
Detergentes/farmacologia , Transtornos do Olfato/induzido quimicamente , Bulbo Olfatório/efeitos dos fármacos , Mucosa Olfatória/efeitos dos fármacos , Olfato/efeitos dos fármacos , Animais , Dopamina/metabolismo , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Transtornos do Olfato/metabolismo , Transtornos do Olfato/fisiopatologia , Bulbo Olfatório/anatomia & histologia , Bulbo Olfatório/metabolismo , Mucosa Olfatória/anatomia & histologia , Mucosa Olfatória/metabolismo , Privação Sensorial/fisiologia , Olfato/fisiologia , Tirosina 3-Mono-Oxigenase/antagonistas & inibidores , Tirosina 3-Mono-Oxigenase/metabolismo
15.
Glia ; 66(11): 2514-2525, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30240035

RESUMO

Oligodendrocytes myelinate neuronal axons to increase conduction velocity in the vertebrate central nervous system (CNS). Recent studies revealed that myelin formed on highly active axons is more stable compared to activity-silenced axons, and length of the myelin sheath is longer in active axons as well in the zebrafish larva. However, it is unclear whether oligodendrocytes preferentially myelinate active axons compared to sensory input-deprived axons in the adult mammalian CNS. It is also unknown if a single oligodendrocyte forms both longer myelin sheaths on active axons and shorter sheaths on input-deprived axons after long-term sensory deprivation. To address these questions, we applied simultaneous labeling of both neuronal axons and oligodendrocytes to mouse models of long-term monocular eyelid suturing and unilateral whisker removal. We found that individual oligodendrocytes evenly myelinated normal and input-deprived axons in the adult mouse CNS, and myelin sheath length on normal axons and input-deprived axons formed by a single oligodendrocyte were comparable. Importantly, the average length of the myelin sheath formed by individual oligodendrocytes did change depending on relative abundance of normal against sensory-input deprived axons, indicating an abundance of deprived axons near an oligodendrocyte impacts on myelination program by a single oligodendrocyte.


Assuntos
Sistema Nervoso Central/citologia , Regulação da Expressão Gênica/fisiologia , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Quiasma Óptico/metabolismo , Privação Sensorial/fisiologia , Análise de Variância , Animais , Animais Recém-Nascidos , Corpo Caloso/metabolismo , Olho/inervação , Feminino , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução Genética , Vibrissas/inervação
16.
J Neurophysiol ; 120(4): 1772-1775, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30207857

RESUMO

The production of new myelin has been highlighted as an underappreciated mechanism of brain plasticity, but whether plastic decreases in myelin also happen in the adult brain has been largely unexplored. Recently, Sinclair et al. (Sinclair JS, Fischl MJ, Alexandrova O, Heß M, Grothe B, Leibold C, and Kopp-Scheinpflug C. J Neurosci 37: 8239-8255, 2017) have shown that auditory deprivation can lead to decrease in myelination and axon caliber even in healthy adulthood. These findings show that activity-regulated myelination is more complex than previously thought and expand our knowledge of how adult brain plasticity could operate on a cellular level.


Assuntos
Bainha de Mielina , Corpo Trapezoide , Axônios , Tronco Encefálico , Plasticidade Neuronal
17.
Brain ; 140(12): 3153-3165, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29155975

RESUMO

Sensory areas of the cerebral cortex integrate the sensory inputs with the ongoing activity. We studied how complete absence of auditory experience affects this process in a higher mammal model of complete sensory deprivation, the congenitally deaf cat. Cortical responses were elicited by intracochlear electric stimulation using cochlear implants in adult hearing controls and deaf cats. Additionally, in hearing controls, acoustic stimuli were used to assess the effect of stimulus mode (electric versus acoustic) on the cortical responses. We evaluated time-frequency representations of local field potential recorded simultaneously in the primary auditory cortex and a higher-order area, the posterior auditory field, known to be differentially involved in cross-modal (visual) reorganization in deaf cats. The results showed the appearance of evoked (phase-locked) responses at early latencies (<100 ms post-stimulus) and more abundant induced (non-phase-locked) responses at later latencies (>150 ms post-stimulus). In deaf cats, substantially reduced induced responses were observed in overall power as well as duration in both investigated fields. Additionally, a reduction of ongoing alpha band activity was found in the posterior auditory field (but not in primary auditory cortex) of deaf cats. The present study demonstrates that induced activity requires developmental experience and suggests that higher-order areas involved in the cross-modal reorganization show more auditory deficits than primary areas.


Assuntos
Córtex Auditivo/fisiopatologia , Cóclea , Implantes Cocleares , Surdez/fisiopatologia , Estimulação Elétrica , Potenciais Evocados Auditivos/fisiologia , Privação Sensorial/fisiologia , Estimulação Acústica , Animais , Estudos de Casos e Controles , Gatos , Surdez/congênito , Eletroencefalografia
18.
Cereb Cortex ; 27(6): 3457-3470, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28407141

RESUMO

Hippocampus, a temporal lobe structure involved in learning and memory, receives information from all sensory modalities. Despite extensive research on the role of sensory experience in cortical map plasticity, little is known about whether and how sensory experience regulates functioning of the hippocampal circuits. Here, we show that 9 ± 2 days of whisker deprivation during early mouse development depresses activity of CA3 pyramidal neurons by several principal mechanisms: decrease in release probability, increase in the fraction of silent synapses, and reduction in intrinsic excitability. As a result of deprivation-induced presynaptic inhibition, CA3-CA1 synaptic facilitation was augmented at high frequencies, shifting filtering properties of synapses. The changes in the AMPA-mediated synaptic transmission were accompanied by an increase in NR2B-containing NMDA receptors and a reduction in the AMPA/NMDA ratio. The observed reconfiguration of the CA3-CA1 connections may represent a homeostatic adaptation to augmentation in synaptic activity during the initial deprivation phase. In adult mice, tactile disuse diminished intrinsic excitability without altering synaptic facilitation. We suggest that sensory experience regulates computations performed by the hippocampus by tuning its synaptic and intrinsic characteristics.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Privação Sensorial/fisiologia , Transmissão Sináptica/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Corticosterona/sangue , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Técnicas In Vitro , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , N-Metilaspartato/metabolismo , Rede Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurotransmissores/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Vibrissas/inervação , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
19.
Cereb Cortex ; 27(9): 4662-4675, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28922860

RESUMO

The axon initial segment (AIS) is essential for action potential generation. Recently, the AIS was identified as a site of neuronal plasticity. A subpopulation of AIS in cortical principal neurons contains stacks of endoplasmic reticulum (ER) forming the cisternal organelle (CO). The function of this organelle is poorly understood, but roles in local Ca2+-trafficking and AIS plasticity are discussed. To investigate whether the presence and/or the size of COs are linked to the development and maturation of AIS of cortical neurons, we analyzed the relationship between COs and the AIS during visual cortex development under control and visual deprivation conditions. In wildtype mice, immunolabeling for synaptopodin, ankyrin-G, and ßIV-spectrin were employed to label COs and the AIS, respectively. Dark rearing resulted in an increase in synaptopodin cluster sizes, suggesting a homeostatic function of the CO in this cellular compartment. In line with this observation, synaptopodin-deficient mice lacking the CO showed AIS shortening in the dark. Collectively, these data demonstrate that the CO is an essential part of the AIS machinery required for AIS plasticity during a critical developmental period of the visual cortex.


Assuntos
Segmento Inicial do Axônio/metabolismo , Axônios/metabolismo , Proteínas dos Microfilamentos/metabolismo , Plasticidade Neuronal/fisiologia , Córtex Visual/crescimento & desenvolvimento , Potenciais de Ação/fisiologia , Animais , Retículo Endoplasmático/metabolismo , Camundongos Endogâmicos C57BL , Neurogênese/fisiologia , Córtex Visual/metabolismo
20.
Cereb Cortex ; 26(4): 1762-77, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26803166

RESUMO

Cortical development extensively depends on sensory experience. Effects of congenital monaural and binaural deafness on cortical aural dominance and representation of binaural cues were investigated in the present study. We used an animal model that precisely mimics the clinical scenario of unilateral cochlear implantation in an individual with single-sided congenital deafness. Multiunit responses in cortical field A1 to cochlear implant stimulation were studied in normal-hearing cats, bilaterally congenitally deaf cats (CDCs), and unilaterally deaf cats (uCDCs). Binaural deafness reduced cortical responsiveness and decreased response thresholds and dynamic range. In contrast to CDCs, in uCDCs, cortical responsiveness was not reduced, but hemispheric-specific reorganization of aural dominance and binaural interactions were observed. Deafness led to a substantial drop in binaural facilitation in CDCs and uCDCs, demonstrating the inevitable role of experience for a binaural benefit. Sensitivity to interaural time differences was more reduced in uCDCs than in CDCs, particularly at the hemisphere ipsilateral to the hearing ear. Compared with binaural deafness, unilateral hearing prevented nonspecific reduction in cortical responsiveness, but extensively reorganized aural dominance and binaural responses. The deaf ear remained coupled with the cortex in uCDCs, demonstrating a significant difference to deprivation amblyopia in the visual system.


Assuntos
Córtex Auditivo/fisiopatologia , Surdez/fisiopatologia , Localização de Som/fisiologia , Estimulação Acústica , Animais , Vias Auditivas/fisiopatologia , Gatos , Cóclea/fisiopatologia , Implantes Cocleares , Surdez/congênito , Estimulação Elétrica , Lateralidade Funcional
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa