Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Sensors (Basel) ; 24(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39275601

RESUMO

The detection of dimethyl sulphide (DMS) at levels between ppb and ppm is a significant area of research due to the necessity of monitoring the presence of this gas in a variety of environments. These include environmental protection, industrial safety and medical diagnostics. Issues related to certain uncertainties concerning the influence of high humidity on DMS measurements with resistive gas sensors, e.g., in the detection of this marker in exhaled air, of the still unsatisfactory lower detection limit of DMS are the subject of intensive research. This paper presents the results of modifying the composition of the ZnO-based sensor layer to develop a DMS sensor with higher sensitivity and lower detection limit (LOD). Improved performance was achieved by using ZnO in the form of hexagonal nano- and microplates doped with gold nanoparticles (0.75 wt.%) and by using a well-proven sepiolite-based passive filter. The modification of the layer composition with respect to the authors' previous studies contributed to the development of a sensor that is highly sensitive to 1 ppm DMS (S = 11.4) and achieves an LOD of up to 406 ppb, despite the presence of a high water vapour content (90% RH) in the analysed atmosphere.

2.
Molecules ; 29(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38930891

RESUMO

The current study involved the preparation of a number of MnOx/Sep catalysts using the impregnation (MnOx/Sep-I), hydrothermal (MnOx/Sep-H), and precipitation (MnOx/Sep-P) methods. The MnOx/Sep catalysts that were produced were examined for their ability to catalytically oxidize formaldehyde (HCHO). Through the use of several technologies, including N2 adsorption-desorption, XRD, FTIR, TEM, H2-TPR, O2-TPD, CO2-TPD, and XPS, the function of MnOx in HCHO elimination was examined. The MnOx/Sep-H combination was shown to have superior catalytic activities, outstanding cycle stability, and long-term activity. It was also able to perform complete HCHO conversion at 85 °C with a high GHSV of 6000 mL/(g·h) and 50% humidity. Large specific surface area and pore size, a widely dispersed active component, a high percentage of Mn3+ species, and lattice oxygen concentration all suggested a potential reaction route for HCHO oxidation. This research produced a low-cost, highly effective catalyst for HCHO purification in indoor or industrial air environments.

3.
Environ Res ; 221: 115286, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36642127

RESUMO

This research aimed to synthesize Chitosan/PVA-blank and a series of Cs/PVA/Sepolite based pH-sensitive membranes using a solution casting process. The synthesized Cs/PVA-blank and Cs/PVA/Sep based membranes were investigated via SEM, FTIR, XRD, and TGA techniques. The SEM results of Cs/PVA/Sep based membrane reveal that the hydrolytic stability and strength were improved in acidic and basic media owing to the incorporation of sepiolite content into chitosan. The characteristic band at 3741 cm-1 in the FTIR spectra of the Cs/PVA/Sep membrane confirmed the successful synthesis. The obtained XRD results showed higher d-spacing for Cs/PVA/Sep membranes as compared to the Cs/PVA-blank membranes owing to the intercalation of chitosan in the interlayer spacing of the sepiolite. The obtained TGA results show higher thermally stability for Cs/PVA/Sep membrane as compared to the Cs/PVA-blank sample due to the interaction of sepiolite content with the chitosan matrix. The obtained hydrolytic and swelling studies revealed that the Cs/PVA/Sep membrane displayed enhanced stability in basic and neutral media while showing minimum swelling in an acidic medium. The water uptake ability was checked for Cs/PVA/-blank and Cs/PVA/Sep-60% membrane and the results exhibited that the Cs/PVA/-blank membrane had maximum water uptake value as compared to the Cs/PVA/Sep-60% membrane. While those with a considerable amount of filler had the lowest water uptake values. As Sepolite content increased, the water uptake % values decreases because of weakness in H-bonding (of hydrophilic groups) and due to intercalation in Sepolite layers during polymer formation.


Assuntos
Quitosana , Polímeros Responsivos a Estímulos , Concentração de Íons de Hidrogênio , Água
4.
Environ Res ; 238(Pt 1): 117026, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659642

RESUMO

Exposure to thallium (Tl), a noxious heavy metal, poses significant health risks to both humans and animals upon ingestion. Therefore, monitoring Tl levels in the environment is crucial to prevent human exposure and reduce the risk of developing severe health problems. This paper presents the development of a highly sensitive Tl ions sensor through surface modification of a glassy carbon electrode with a nanocomposite comprising MnO2 magnetic sepiolite and multi-walled carbon nanotubes (MnO2@Fe3O4/Sep/MWCNT/GCE). Multiple methodologies were employed to assess the performance of the newly developed sensor. By employing square wave anodic stripping voltammetry (SWASV) to optimize the measurement conditions, notable enhancements were observed in the stripping peak currents of Tl (I) on the MnO2@Fe3O4/Sep/MWCNT/GCE surface. The effectiveness of the nanocomposite in facilitating electron transfer between the Tl (I) ions (guest) and the electrode (host) was demonstrated from the enhanced signals observed at the different modified electrode surfaces under optimal conditions. The developed sensor displayed a wide linear range of 0.1-1500 ppb for Tl (I) and a low detection limit of 0.03 ppb for Tl (I). It was found to be selective for Tl (I) ions while remaining unaffected by interfering non-target ions in the presence of the target ions. Despite its simple preparation procedure, the modified electrode exhibited high stability and excellent reproducibility for measuring Tl (I). The outstanding electroanalytical performances of the MnO2@Fe3O4/Sep/MWCNT/GCE electrode enabled its successful use as an ultrasensitive sensor for determining trace amounts of Tl in environmental samples.


Assuntos
Nanotubos de Carbono , Tálio , Animais , Humanos , Reprodutibilidade dos Testes , Compostos de Manganês , Limite de Detecção , Óxidos
5.
Environ Res ; 238(Pt 2): 117260, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37775012

RESUMO

An environmentally friendly strategy was used in this study to synthesize gold nanoparticles decorated on sepiolite clay (GNPs-SC) using Heracleum persicum grass extract. The physicochemical characters of the prepared composite were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). A GNPs-SC modified carbon pate electrode (CPE) was used to study the electrochemical oxidation of nitrite. The proposed nitrite sensor exhibits excellent performance, including a broad linear range (1.0-150 µM), a low limit of detection (0.4 µM), and acceptable reproducibility (RSD = 2.6%). As well, the prepared GNPs-SC was tested for its effectiveness against human gastric adenocarcinoma (AGS) cell line. The MTT assay protocol revealed that the bio-synthesized product displayed significant cytotoxic activity against gastric cancer in human subjects. The findings of this study indicate that GNPs-SC, synthesized using environmentally friendly protocol, exhibit great potential for use in electrochemical sensing and treatment of human cancer.


Assuntos
Nanopartículas Metálicas , Neoplasias Gástricas , Humanos , Ouro/química , Nitritos/análise , Argila , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes
6.
Ecotoxicol Environ Saf ; 266: 115573, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856983

RESUMO

Mechanochemistry and photocatalysis are emergent technologies for the remediation of polycyclic aromatic hydrocarbons (PAHs) in soils. In this work, mechanochemistry and photocatalysis are combined for pyrene degradation. The photodegradation of pyrene, when in contact with sepiolite under pressure application, is studied. The mechanical treatment leads to a pyrene crystal phase transformation. In this new phase, pyrene undergoes a fast photodegradation in the 320-420 nm range. We show that sepiolite is superior as a photocatalyst in pyrene degradation to TiO2, the most exploited photocatalyst. A broad physicochemical characterization is carried out to propose a mechanism in which the photoexcitation of mechanically altered pyrene leads to an electron transfer to sepiolite matrix, which triggers the PAH degradation. Finally, we want to highlight that the pyrene/sepiolite combination is a simplified system to shed light on how PAH photodegradation may occur in soils.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Fotólise , Hidrocarbonetos Policíclicos Aromáticos/química , Pirenos , Luz , Solo/química
7.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902232

RESUMO

The need for safe, therapeutically effective, and patient-compliant drug delivery systems continuously leads researchers to design novel tools and strategies. Clay minerals are widely used in drug products both as excipients and active agents but, in recent years, there has been a growing interest in research aimed at the development of new organic or inorganic nanocomposites. The attention of the scientific community has been drawn by nanoclays, thanks to their natural origin, worldwide abundance, availability, sustainability, and biocompatibility. In this review, we focused our attention on the studies inherent to the pharmaceutical and biomedical applications of halloysite and sepiolite, and their semi-synthetic or synthetic derivatives, as drug delivery systems. After having described the structure of both materials and their biocompatibility, we delineate the use of the nanoclays to enhance the stability, the controlled release, the bioavailability, and the adsorption properties of drugs. Several types of surface functionalization have been discussed, showing that these materials could be used for the development of an innovative therapeutic approach.


Assuntos
Sistemas de Liberação de Medicamentos , Nanotubos , Humanos , Argila/química , Silicatos de Magnésio , Preparações Farmacêuticas , Nanotubos/química
8.
Nanotechnology ; 33(42)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35820374

RESUMO

Electrospun PAN/PVdF-HFP membranes have the potential to be used as separators for Li-ion batteries owing to their good mechanical properties and high chemical stability. However, the application of PAN/PVdF-HFP separators has been hampered by their poor electrochemical performances. In this study, semi-aligned PAN/PVdF-HFP nanofiber separators have been fabricated by an electrospinning technology. Sepiolite and ZIF-67 co-modification was employed to enhance the physical properties of the PAN/PVdF-HFP separators. The test cells with the as-prepared composite separator showed better electrochemical performance than the commercial and raw PAN/PVdF-HFP separators.

9.
Ecotoxicol Environ Saf ; 234: 113388, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35272193

RESUMO

In-situ immobilization does not remove Cd from the contaminated soil. It is vital to investigate the effects of fertilizers on soil Cd mobility during remediation with amendments. In the current study, a pot experiment was conducted to investigate the effects of calcium magnesium phosphate (CMP) and calcium superphosphate (SSP) on the remediation of Cd-contaminated soil by sepiolite. We mainly focused on changes in soil Cd immobilization, plant toxicity, and soil microbial communities after applying two phosphates during Cd-contaminated soil remediation by sepiolite. The results demonstrated that sepiolite decreased Cd concentration in brown rice, straw, and roots by 32.66%, 38.89%, and 30.94%, respectively. During soil remediation by sepiolite, the Cd concentrations of brown rice and straw were not affected by CMP or SSP, except for the treatment with sepiolite plus high-dose CMP. Sepiolite significantly decreased HCl-extractable Cd and DTPA-extractable Cd by 32.21% and 10.50%, respectively. During soil remediation by sepiolite, the HCl-extractable and DTPA-extractable Cd further decreased with CMP or SSP. The decreasing amplitude with CMP was 40.57-72.60% and 7.05-14.53%, and that of SSP was 37.68-59.66% and 20.71-25.07%, respectively. The superoxide dismutase, peroxidase, catalase activities, and malondialdehyde concentration in rice roots decreased inordinately with the addition of sepiolite, CMP, and SSP, indicating that the application of sepiolite, CMP, or SSP alleviated Cd-induced rice root stress and protected rice roots from Cd toxicity. Alpha diversity estimators (including the Chao, ACE, and Shannon indices) indicated that sepiolite, CMP, or SSP applications had no adverse effects on soil bacterial richness and diversity. Hierarchical clustering analysis revealed that the two phosphate fertilizers and sepiolite were the main factors affecting changes in the bacterial communities structure. Redundancy analysis revealed that soil pH, Eh, and soil-extractable Cd were critical factors affecting the structure of the bacterial communities.

10.
J Environ Manage ; 319: 115658, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35842987

RESUMO

Arsenic (As) and cadmium (Cd) are two highly toxic elements. In recent years, many newly synthesized chemical materials have been used widely for treatments of As- and Cd-contaminated effluents. However, most materials do not exhibit high efficiencies for simultaneous removal of As and Cd from water systems. Our study established a simple scheme for synthesizing a sepiolite (SEP)-modified nanoscale zero-valent iron (S-nZVI) for simultaneous removal of coexisting As and Cd from water and illuminated a possible underlying mechanism. Batch experiments showed that the maximum capacities for adsorption of As(III) and Cd(II) by S-nZVI were 230.29 mg/g and 11.37 mg/g, respectively, which represented better effects than those of other materials, as reported previously. Removal of Cd(II) depended on pH, but As(III) removal showed little dependence on pH. Coexisting ions such as phosphate (PO43-) and the conjugate base of humic acid (HA) significantly inhibited simultaneous removal of As(III) and Cd(II). In the mixed As(III)-Cd(II) system, the presence of As(III)-pretreated S-nZVI significantly enhanced Cd(II) adsorption by a factor of four over that seen for aqueous solution without As(III). XRD and XPS results showed that CdFe2O4 (Fe-O-Cd), Fe2As2O14 or FeAsO4 (Fe-O-As) were formed after As(III) and Cd(II) were captured by S-nZVI. However, a further zeta (ζ) potential analysis showed that the mechanism for As(III) and Cd(II) adsorption by S-nZVI is not just simple formation of the above chemicals, since the adsorbed As(III) increased the negative charge of S-nZVI; this suggested an electrostatic attraction between S-nZVI and Cd(II) and indicated that adsorbed As(III) created new sorption sites for Cd(II), which enhanced Cd(II) sorption via formation of ternary complexes (Fe-As-Cd). These results suggested that S-nZVI is a promising material for in situ remediation of heavy metal-contaminated groundwaters or paddy soils.


Assuntos
Arsênio , Poluentes Químicos da Água , Adsorção , Arsênio/análise , Cádmio/análise , Ferro/química , Silicatos de Magnésio , Água , Poluentes Químicos da Água/análise
11.
Molecules ; 27(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458658

RESUMO

Herein, novel visible light active graphitic carbon nitride (g-C3N4)/sepiolite fiber (CN/SS) composites were fabricated via a facile calcination route, exploiting melamine and thiourea as precursors, and sepiolite fiber as support, for efficient degradation of organic dye methylene blue (MB). The as-prepared CN/SS composites were characterized by various characterization techniques based on structural and microstructural analyses. The effects of CN loading amount, catalyst dosage and initial concentration of dye on the removal rate of dye under visible light were systematically studied. The removal rate of MB was as high as 99.5%, 99.6% and 99.6% over the composites when the CN loading amount, catalyst dosage and initial concentration of dye were 20% (mass percent), 0.1 g, and 15 mg/L in 120 min, respectively. The active species scavenging experiments and electron paramagnetic resonance (EPR) measurement indicated that the holes (h+), hydroxyl radical (·OH) and superoxide radicals (·O2-) were the main active species. This study provides for the design of low-cost, environmentally friendly and highly efficient catalysts for the removal of organic dye.


Assuntos
Luz , Silicatos de Magnésio , Catálise , Azul de Metileno/química
12.
Trop Anim Health Prod ; 54(4): 201, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35672484

RESUMO

The present study aimed to examine the influence of sepiolite on growth performance, meat quality, intestinal health, some blood parameters, and digestibility of nutrients in broilers fed low-protein diets with the constant energy-protein ratio. A total of 252, daily male broiler chicks were allocated to four treatment groups further divided into 9 replicates each containing 7 chicks. Low-protein diets having a constant energy-protein ratio were formulated by lowering protein and energy levels of the control group diet by 5%. Sepiolite was used at the level of 1% in the diets. After 42 days of trial, total feed consumption, total body weight gain, total feed conversion ratio, and carcass yield were not influenced by reducing protein, sepiolite supplementation, and interaction between low-protein-low-energy diet and sepiolite. Reducing protein in the diets led to reducing the digestibility of nutrients, increasing ileal viscosity, decreasing villus height, villus surface area in duodenum and jejunum, and increasing abdominal fat and ether extract, cooking losses, total oxidant status, and oxidative status index in breast meat. Sepiolite supplementation to low-protein diets increased crude protein digestibility, reduced viscosity, increased villus height/crypt depth values and reduced cooking losses, and increased water holding capacity in breast meat. Blood serum biochemical parameters and minerals were not affected by sepiolite supplementation to low-protein diets. Therefore, it is concluded that sepiolite can be added as a beneficial supplement in broiler diets as well as in low-protein diets with a constant energy-protein ratio.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Galinhas , Ração Animal/análise , Animais , Dieta/veterinária , Dieta com Restrição de Proteínas/veterinária , Suplementos Nutricionais , Silicatos de Magnésio , Masculino
13.
Ecotoxicol Environ Saf ; 208: 111600, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396120

RESUMO

Field experiments was conducted to evaluate the effectiveness of sepiolite (S), sepiolite + fungi residues (SFR) and sepiolite + vermicompost (SVC) on in situ immobilization remediation of Cd contaminated soils. The results showed that treatments of S, SFR and SVC decreased soil Cd availability by 15.2-47.8%, 17.5-44.9% and 13.2-44.9%, respectively, when compared with the control groups. Moreover, the content of Cd in edible parts of Lactuca sativa L., Cichorium endivia L. and Brassica campestris L. was experienced a decrease of 15.9-41.9%, 1.6-38.0% and 29.0-37.4% reduction, respectively, under the amended soil. The improvement of soil fertility was obtained under addition of SVC and SFR, while the amounts of available P, K, organic matter, microbial carbon, microbial nitrogen and dehydrogenase activity were increased by 9.6-68.2%, 1.2-28.3%, 37.5-70.5%, 4.1-121.0%, 220-640% and 6.8-56.8%, respectively, in contrast to CK. Moreover, high-throughput sequencing analysis showed that the combined treated soils got higher values of alpha diversity indices, Chao1, ACE and Shannon. The number of dominant phyla (Proteobacteria, Acidobacteria, Gemmatimonadetes, Crenarchaeota) and genera (Aquicella, Lysobacter, Candidatus Nitrososphaera, Sphingopyxis, Mesorhizobium) were enhanced. Therefore, the use of sepiolite and organic amendments could be an adequate strategy to immobilization remediation of Cd-contaminated soils.


Assuntos
Cádmio/análise , Recuperação e Remediação Ambiental , Poluentes do Solo/análise , Brassica , Poluição Ambiental , Silicatos de Magnésio , Solo/química , Microbiologia do Solo
14.
Molecules ; 26(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925934

RESUMO

Liquid crystal polymer (LCP) composites filled with sepiolite and glass microcapsules were prepared by melt compounding. The composites were extruded using a twin-screw extruder and injection-molded. The objective of this study is to check a possibility of producing a polymeric composite with a low dielectric constant. Physical characteristics of the composites, such as morphological, rheological, mechanical, and electrical properties were analyzed. In particular, the glass microcapsule-reinforced LCP composites showed a significant improvement in lowering the dielectric constant due to its high air content. Additionally, sepiolite could act as an effective filler to improve the mechanical properties of the composites.

15.
Environ Geochem Health ; 43(7): 2679-2697, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32918158

RESUMO

To evaluate the potential of sepiolite-based materials to resolve environmental pollution problems, a study is needed which looks at the whole life cycle of material application, including the residual value of material classified as waste from the exploitation of sepiolite deposits in the region or from its processing and purification. This would also maximize value from the exploitation process and provide new potential for local waste management. We review the geographical distribution of sepiolite, its application in the treatment of potentially toxic elements in soil and across the wider landscape, an assessment of modification and compositional variation of sepiolite-based applications within site remediation and wastewater treatment. The potential of sepiolite-based technologies is widespread and a number of processes utilize sepiolite-derived materials. Along with its intrinsic characteristics, both the long-term durability and the cost-effectiveness of the application need to be considered, making it possible to design ready-to-use products with good market acceptance. From a critical analysis of the literature, the most frequently associated terms associated with sepiolite powder are the use of lime and bentonite, while fly ash ranked in the top ten of the most frequently used material with sepiolite. These add improved performance for the inclusion as a soil or wastewater treatment options, alone or applied in combination with other treatment methods. This approach needs an integrated assessment to establish economic viability and environmental performance. Applications are not commonly evaluated from a cost-benefit perspective, in particular in relation to case studies within geographical regions hosting primary sepiolite deposits and wastes that have the potential for beneficial reuse.


Assuntos
Poluição Ambiental/análise , Recuperação e Remediação Ambiental/métodos , Silicatos de Magnésio/química , Poluentes do Solo/análise , Bentonita/química , Compostos de Cálcio/química , Cinza de Carvão/química , Óxidos/química , Solo/química , Gerenciamento de Resíduos , Purificação da Água
16.
J Environ Sci (China) ; 102: 352-362, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33637260

RESUMO

The aqueous foam template without any solvent and only using the particles stabilizer has attracted much attention for preparation of the porous adsorbents. Herein, a novel porous adsorbent was fabricated via thermal-initiated polymerization of Pickering aqueous foams, which was stabilized by the natural sepiolite (Sep) and pine pollen, and utilized for the removal of antibiotic from aqueous solution. The stabilizing mechanism of Pickering aqueous foam of that the Sep was modified with the leaching substance from pine pollen and arranged orderly around the bubble to form a dense "shell" structure was revealed. The adsorbents possessed the hierarchical porous structure and excellent adsorption performance for antibiotic of chlorotetracycline hydrochloride (CTC) and tetracycline hydrochloride (TC). The equilibrium adsorption capacities of CTC and TC were achieved with 465.59 and 330.59 mg/g within 60 min at 25°C, respectively. The adsorption process obeyed Langmuir model and pseudo-second-order adsorption kinetic model. This work provided eco-friendly approach for fabricate porous adsorbents for wastewater treatment.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Antibacterianos , Cinética , Porosidade
17.
J Environ Manage ; 254: 109788, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31698299

RESUMO

Sepiolite (SEP) is a clay mineral with great potential to stabilize soil heavy metals. A two-year field experiment was conducted to explore the optimum use of SEP to immobilize soil Cd and to promote the consumption safety of rice grown in a typical paddy field in Southern China. SEP was applied once or twice over the two-year study at three levels (0.1, 0.5, and 1%, w/w) before rice planting. The results showed that SEP effectively reduced rice grain Cd concentrations by 47-49% in the first year and by 44-50% in the second year due to the residue effect. Application of SEP for two consecutive years reduced the rice grain Cd concentration by up to 75%, achieving a safe level (<0.2 mg kg-1). SEP also reduced Zn concentrations in rice grains (by 6-10%), while the Cd/Zn ratios of rice grains were decreased by 24-72% over the two years, implying it was much safer for consumption. SEP significantly increased the soil pH (0.9-1.8 units) and available phosphorus, and it reduced the soil available Cd (by 20-95%) and Zn concentrations (by 30-99%). In brief, SEP effectively stabilized soil Cd and reduced uptake by rice; the effect was dose-dependent and 0.5% (w/w) was optimum in the present study. The main mechanism of SEP to stabilize soil Cd is the increase in soil pH analogous to liming. This study shows that SEP application can be an efficient way to remediate Cd contaminated rice paddies and fulfill the goal of safe production of rice and thereby reduce the health risks associated with consuming rice.


Assuntos
Oryza , Poluentes do Solo , Cádmio , China , Silicatos de Magnésio , Solo
18.
J Environ Manage ; 270: 110817, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32721295

RESUMO

We investigated the application of cheap but efficient sepiolite for the removal of phosphate and the use of phosphate-adsorbed sepiolite for rice cultivation. Sepiolite was calcined under different temperatures to improve its phosphate adsorption capacity; the sepiolite calcined at 950 °C (950-SPL) was found to have highest adsorption capacity. As the calcination temperature increased, the amount of Ca eluted from sepiolite also increased, resulting in the formation of Ca-P precipitates. Phosphate adsorption on 950-SPL reached equilibrium within 12 h. Both the Langmuir and Freudlich models were not well-fitted to the equilibrium adsorption model because phosphate at initial concentration was fully removed by 950-SPL. The maximum adsorption capacity of 950-SPL with respect to phosphate was 172.34 mg/g. The phosphate adsorption of 950-SPL was endothermic and spontaneous. Phosphate adsorption at pH 3 was two times higher than at pH 11. The presence of bicarbonate significantly influenced the decrease of phosphate by 950-SPL. A breakthrough of column packed with 950-SPL/sand was not observed during >200 h. The phosphate fraction in 950-SPL was mainly composed of apatite-P and residual fraction. A toxicity test using Daphnia magna showed that the toxic units of 950-SPL corresponded to no acute toxicity. Tiller number, shoot height, shoot dry weight and total dry weight were significantly higher in P-adsorbed 950-SPL application than control. It can be concluded that calcined sepiolite can be effective in the removal of phosphate and that the sepiolite after phosphate adsorption can be used as a P fertilizer in soil.


Assuntos
Fósforo , Poluentes Químicos da Água , Adsorção , Fertilizantes , Concentração de Íons de Hidrogênio , Cinética , Silicatos de Magnésio , Fosfatos , Solo , Água
19.
J Environ Manage ; 271: 110832, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32778254

RESUMO

A Fenton-like reaction and anaerobic ammonium oxidation (anammox) were combined to construct a novel process named FenTaMox for removing nitrogen (N) and organic carbon (measured as chemical oxidation demand (COD)). Two columns were packed with iron-manganese-sepiolite, a catalyst that uses hydrogen peroxide (H2O2) to catalyze Fenton-like reactions, and inoculated with marine anammox bacteria. During the start-up, marine anammox medium was fed into both columns to acclimate the marine anammox bacteria to iron-manganese-sepiolite. Batch experiments revealed that the marine anammox bacteria were not affected by 60 mgL-1 of H2O2. Next, medium containing glucose and H2O2 was fed into one column as the FenTaMox treatment, while medium containing glucose but no H2O2 was fed into the other column as the control. At a COD/N of 4, FenTaMox exhibited higher removal efficiencies of N and COD compared with that of the control, suggesting the application of FenTaMox for organic carbon- and N- removal.


Assuntos
Carbono , Nitrogênio , Anaerobiose , Reatores Biológicos , Desnitrificação , Peróxido de Hidrogênio , Oxirredução
20.
J Environ Manage ; 258: 110020, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31929061

RESUMO

Metals that contaminate soil are one of the major problems seriously affecting sustainable agriculture worldwide. Cadmium (Cd) toxicity to agricultural crops is a global problem. Mobility of Cd in contaminated soil can be minimized by the amendment of soil passivators which will ultimately reduce its movement from soil to plants. A pot study was performed to evaluate the impact of sepiolite from 1% to 5% on Cd solubility and its accumulation in spinach tissues. Soil pH, Cd fractionation, Cd accumulation in spinach tissue and Cd adsorption mechanism were determined. Results were recorded that soil pH was increased from 0.3 to 1.0 units with the increasing rate of sepiolite from 1% to 5%. Similarly, Cd contents in acid soluble phase was decreased by 42.8% and increased in residual phase by 35.8% at 5% rate, relative to control. Moreover, the significant reduction in Cd uptake by spinach shoots and roots was occurred by 26.2% and 30.6% at 5% rate, respectively. Furthermore, the maximum Cd adsorption capacity 37.35 mg g-1 was recorded at 5% rate relative to control. The analysis of FTIR, XRD and SEM also confirm the ability of sepiolite for Cd polluted soil restoration and thereby, reduces its phytoavailability in polluted soil to alleviate food security challenges.


Assuntos
Cádmio , Poluentes do Solo , Agricultura , Silicatos de Magnésio , Solo , Spinacia oleracea , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa