Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
BMC Psychiatry ; 24(1): 77, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279085

RESUMO

BACKGROUND: A significant number of individuals with alcohol use disorder remain unresponsive to currently available treatments, which calls for the development of new alternatives. In parallel, psilocybin-assisted therapy for alcohol use disorder has recently yielded promising preliminary results. Building on extant findings, the proposed study is set to evaluate the feasibility and preliminary clinical efficacy of psilocybin-assisted therapy when incorporated as an auxiliary intervention during inpatient rehabilitation for severe alcohol use disorder. Moreover, it intends to pinpoint the modifications in the two core neurocognitive systems underscored by dual-process models of addiction. METHODS: In this double-blind, randomized, placebo-controlled, 7-month parallel-group phase II superiority trial, 62 participants aged 21-64 years will be enrolled to undergo psilocybin-assisted therapy as part of a 4-week inpatient rehabilitation for severe alcohol use disorder. The experimental group will receive a high dose of psilocybin (30 mg), whereas the control group will receive an active placebo dose of psilocybin (5 mg), both within the context of a brief standardized psychotherapeutic intervention drawing from key elements of acceptance and commitment therapy. The primary clinical outcome is the between-group difference regarding the change in percentage of heavy drinking days from baseline to four weeks posthospital discharge, while safety and feasibility metrics will also be reported as primary outcomes. Key secondary assessments include between-group differences in terms of changes in (1) drinking behavior parameters up to six months posthospital discharge, (2) symptoms of depression, anxiety, trauma, and global functioning, (3) neuroplasticity and key neurocognitive mechanisms associated with addiction, and (4) psychological processes and alcohol-related parameters. DISCUSSION: The discussion outlines issues that might arise from our design. TRIAL REGISTRATION: EudraCT 2022-002369-14 and NCT06160232.


Assuntos
Terapia de Aceitação e Compromisso , Alcoolismo , Humanos , Psilocibina/uso terapêutico , Alcoolismo/tratamento farmacológico , Método Duplo-Cego , Consumo de Bebidas Alcoólicas , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto , Ensaios Clínicos Fase II como Assunto
2.
Int J Neuropsychopharmacol ; 24(1): 8-21, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33252694

RESUMO

BACKGROUND: The glutamatergic modulator ketamine has created a blueprint for studying novel pharmaceuticals in the field. Recent studies suggest that "classic" serotonergic psychedelics (SPs) may also have antidepressant efficacy. Both ketamine and SPs appear to produce rapid, sustained antidepressant effects after a transient psychoactive period. METHODS: This review summarizes areas of overlap between SP and ketamine research and considers the possibility of a common, downstream mechanism of action. The therapeutic relevance of the psychoactive state, overlapping cellular and molecular effects, and overlapping electrophysiological and neuroimaging observations are all reviewed. RESULTS: Taken together, the evidence suggests a potentially shared mechanism wherein both ketamine and SPs may engender rapid neuroplastic effects in a glutamatergic activity-dependent manner. It is postulated that, though distinct, both ketamine and SPs appear to produce acute alterations in cortical network activity that may initially produce psychoactive effects and later produce milder, sustained changes in network efficiency associated with therapeutic response. However, despite some commonalities between the psychoactive component of these pharmacologically distinct therapies-such as engagement of the downstream glutamatergic pathway-the connection between psychoactive impact and antidepressant efficacy remains unclear and requires more rigorous research. CONCLUSIONS: Rapid-acting antidepressants currently under investigation may share some downstream pharmacological effects, suggesting that their antidepressant effects may come about via related mechanisms. Given the prototypic nature of ketamine research and recent progress in this area, this platform could be used to investigate entirely new classes of antidepressants with rapid and robust actions.


Assuntos
Antidepressivos/farmacologia , Transtorno Depressivo/tratamento farmacológico , Antagonistas de Aminoácidos Excitatórios/farmacologia , Alucinógenos/farmacologia , Ketamina/farmacologia , Serotoninérgicos/farmacologia , Humanos
3.
Neuroimage ; 200: 281-291, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31247301

RESUMO

Classic serotonergic psychedelics are remarkable for their capacity to induce reversible alterations in consciousness of the self and the surroundings, mediated by agonism at serotonin 5-HT2A receptors. The subjective effects elicited by dissociative drugs acting as N-methyl-D-aspartate (NMDA) antagonists (e.g. ketamine and phencyclidine) overlap in certain domains with those of serotonergic psychedelics, suggesting some potential similarities in the brain activity patterns induced by both classes of drugs, despite different pharmacological mechanisms of action. We investigated source-localized magnetoencephalography recordings to determine the frequency-specific changes in oscillatory activity and long-range functional coupling that are common to two serotonergic compounds (lysergic acid diethylamide [LSD] and psilocybin) and the NMDA-antagonist ketamine. Administration of the three drugs resulted in widespread and broadband spectral power reductions. We established their similarity by using different pairs of compounds to train and subsequently evaluate multivariate machine learning classifiers. After applying the same methodology to functional connectivity values, we observed a pattern of occipital, parietal and frontal decreases in the low alpha and theta bands that were specific to LSD and psilocybin, as well as decreases in the low beta band common to the three drugs. Our results represent a first effort in the direction of quantifying the similarity of large-scale brain activity patterns induced by drugs of different mechanism of action, confirming the link between changes in theta and alpha oscillations and 5-HT2A agonism, while also revealing the decoupling of activity in the beta band as an effect shared between NMDA antagonists and 5-HT2A agonists. We discuss how these frequency-specific convergences and divergences in the power and functional connectivity of brain oscillations might relate to the overlapping subjective effects of serotonergic psychedelics and glutamatergic dissociative compounds.


Assuntos
Ondas Encefálicas/efeitos dos fármacos , Conectoma , Antagonistas de Aminoácidos Excitatórios/farmacologia , Alucinógenos/farmacologia , Ketamina/farmacologia , Dietilamida do Ácido Lisérgico/farmacologia , Aprendizado de Máquina , Rede Nervosa/efeitos dos fármacos , Psilocibina/farmacologia , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Adulto , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Alucinógenos/administração & dosagem , Humanos , Ketamina/administração & dosagem , Dietilamida do Ácido Lisérgico/administração & dosagem , Magnetoencefalografia , Psilocibina/administração & dosagem , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Agonistas do Receptor 5-HT2 de Serotonina/administração & dosagem
4.
Artigo em Inglês | MEDLINE | ID: mdl-38885875

RESUMO

Mounting evidence points towards a crucial role of the kynurenine pathway (KP) in the altered gut-brain axis (GBA) balance in severe mental illness (SMI, namely depression, bipolar disorder, and schizophrenia) and cardiometabolic comorbidities. Preliminary evidence shows that serotonergic psychedelics and their analogues may hold therapeutic potential in addressing the altered KP in the dysregulated GBA in SMI and comorbidities. In fact, aside from their effects on mood, psychedelics elicit therapeutic improvement in preclinical models of obesity, metabolic syndrome, and vascular inflammation, which are highly comorbid with SMI. Here, we review the literature on the therapeutic modulation of the KP in the dysregulated GBA in SMI and comorbidities, and the potential application of psychedelics to address the altered KP in the brain and systemic dysfunction underlying SMI and comorbidities. Psychedelics might therapeutically modulate the KP in the altered GBA in SMI and comorbidities either directly, via altering the metabolic pathway by influencing the rate-limiting enzymes of the KP and affecting the levels of available tryptophan, or indirectly, by affecting the gut microbiome, gut metabolome, metabolism, and the immune system. Despite promising preliminary evidence, the mechanisms and outcomes of the KP modulation with psychedelics in SMI and systemic comorbidities remain largely unknown and require further investigation. Several concerns are discussed surrounding the potential side effects of this approach in specific cohorts of individuals with SMI and systemic comorbidities.


Assuntos
Alucinógenos , Cinurenina , Humanos , Cinurenina/metabolismo , Alucinógenos/uso terapêutico , Alucinógenos/farmacologia , Animais , Eixo Encéfalo-Intestino/efeitos dos fármacos , Eixo Encéfalo-Intestino/fisiologia , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/metabolismo , Comorbidade , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia
5.
Front Pharmacol ; 14: 1184726, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056991

RESUMO

[This corrects the article DOI: 10.3389/fphar.2022.927984.].

6.
Neuropharmacology ; 226: 109422, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36646310

RESUMO

The discovery of ketamine as a rapid-acting antidepressant spurred significant research to understand its underlying mechanisms of action and to identify other novel compounds that may act similarly. Serotonergic psychedelics (SPs) have shown initial promise in treating depression, though the challenge of conducting randomized controlled trials with SPs and the necessity of long-term clinical observation are important limitations. This review summarizes the similarities and differences between the psychoactive effects associated with both ketamine and SPs and the mechanisms of action of these compounds, with a focus on the monoaminergic, glutamatergic, gamma-aminobutyric acid (GABA)-ergic, opioid, and inflammatory systems. Both molecular and neuroimaging aspects are considered. While their main mechanisms of action differ-SPs increase serotonergic signaling while ketamine is a glutamatergic modulator-evidence suggests that the downstream mechanisms of action of both ketamine and SPs include mechanistic target of rapamycin complex 1 (mTORC1) signaling and downstream GABAA receptor activity. The similarities in downstream mechanisms may explain why ketamine, and potentially SPs, exert rapid-acting antidepressant effects. However, research on SPs is still in its infancy compared to the ongoing research that has been conducted with ketamine. For both therapeutics, issues with regulation and proper controls should be addressed before more widespread implementation. This article is part of the Special Issue on "Ketamine and its Metabolites".


Assuntos
Alucinógenos , Ketamina , Ketamina/farmacologia , Ketamina/uso terapêutico , Alucinógenos/farmacologia , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Ácido gama-Aminobutírico , Transdução de Sinais , Depressão/tratamento farmacológico
7.
Artigo em Inglês | MEDLINE | ID: mdl-37874338

RESUMO

Serotonergic psychedelics such as psilocybin, lysergic acid diethylamide, and DOI exert a hallucinatory effect through serotonin 5-HT2A receptor (5-HT2A) activation. Recent studies have revealed that serotonergic psychedelics have therapeutic potential for neuropsychiatric disorders, including major depressive and anxiety-related disorders. However, the involvement of 5-HT2A in mediating the therapeutic effects of these drugs remains unclear. In this study, we ethopharmacologically analyzed the role of 5-HT2A in the occurrence of anxiolytic- and antidepressant-like effects of serotonergic psychedelics such as psilocin, an active metabolite of psilocybin, DOI, and TCB-2 in mice 24 h post-treatment. Mice with acute intraperitoneal psychedelic treatment exhibited significantly shorter immobility times in the forced swimming test (FST) and tail-suspension test (TST) than vehicle-treated control mice. These effects were eliminated by pretreatment with volinanserin, a 5-HT2A antagonist. Surprisingly, the decreasing immobility time in the FST in response to acute psilocin treatment was sustained for at least three weeks. In the novelty-suppressed feeding test (NSFT), the latency to feed, an indicator of anxiety-like behavior, was decreased by acute administration of psilocin; however, pretreatment with volinanserin did not diminish this effect. In contrast, DOI and TCB-2 did not affect the NSFT performance in mice. Furthermore, psilocin, DOI, and TCB-2 treatment did not affect the spontaneous locomotor activity or head-twitch response, a hallucination-like behavior in rodents. These results suggest that 5-HT2A contributes to the antidepressant effects of serotonergic psychedelics rather than anxiolytic effects.

8.
Res Sq ; 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37461593

RESUMO

Serotonergic psychedelics such as psilocybin, lysergic acid diethylamide, and DOI exert a hallucinatory effect through serotonin 5-HT 2A receptor (5-HT2A) activation. Recent studies have revealed that serotonergic psychedelics have therapeutic potential for neuropsychiatric disorders, including major depressive and anxiety-related disorders. However, the involvement of 5-HT2A in mediating the therapeutic effects of these drugs remains unclear. In this study, we ethopharmacologically analyzed the role of 5-HT2A in the occurrence of anxiolytic-and antidepressant-like effects of serotonergic psychedelics such as psilocin, an active metabolite of psilocybin, DOI, and TCB-2 in mice. Mice with acute intraperitoneal psychedelic treatment exhibited significantly shorter immobility times in the forced swimming test (FST) and tail-suspension test (TST) than vehicle-treated control mice 24 h post-treatment. These effects were eliminated by pretreatment with volinanserin, a 5-HT2A antagonist. Surprisingly, the decreasing immobility time in the FST in response to acute psilocin treatment was sustained for at least three weeks. In the novelty-suppressed feeding test (NSFT), the latency to feed, an indicator of anxiety-like behavior, was decreased by acute administration of psilocin; however, pretreatment with volinanserin did not diminish this effect. In contrast, DOI and TCB-2 did not affect the NSFT performance in mice. Furthermore, psilocin, DOI, and TCB-2 treatment did not affect the spontaneous locomotor activity or head-twitch response, a hallucination-like behavior in rodents. These results suggest that 5-HT2A contributes to the antidepressant effects of serotonergic psychedelics rather than an anxiolytic effects.

9.
Front Neurosci ; 17: 1152578, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37425017

RESUMO

Introduction: Psilocybin is one of the most extensively studied psychedelic drugs with a broad therapeutic potential. Despite the fact that its psychoactivity is mainly attributed to the agonism at 5-HT2A receptors, it has high binding affinity also to 5-HT2C and 5-HT1A receptors and indirectly modulates the dopaminergic system. Psilocybin and its active metabolite psilocin, as well as other serotonergic psychedelics, induce broadband desynchronization and disconnection in EEG in humans as well as in animals. The contribution of serotonergic and dopaminergic mechanisms underlying these changes is not clear. The present study thus aims to elucidate the pharmacological mechanisms underlying psilocin-induced broadband desynchronization and disconnection in an animal model. Methods: Selective antagonists of serotonin receptors (5-HT1A WAY100635, 5-HT2A MDL100907, 5-HT2C SB242084) and antipsychotics haloperidol, a D2 antagonist, and clozapine, a mixed D2 and 5-HT receptor antagonist, were used in order to clarify the underlying pharmacology. Results: Psilocin-induced broadband decrease in the mean absolute EEG power was normalized by all antagonists and antipsychotics used within the frequency range 1-25 Hz; however, decreases in 25-40 Hz were influenced only by clozapine. Psilocin-induced decrease in global functional connectivity and, specifically, fronto-temporal disconnection were reversed by the 5-HT2A antagonist while other drugs had no effect. Discussion: These findings suggest the involvement of all three serotonergic receptors studied as well as the role of dopaminergic mechanisms in power spectra/current density with only the 5-HT2A receptor being effective in both studied metrics. This opens an important discussion on the role of other than 5-HT2A-dependent mechanisms underlying the neurobiology of psychedelics.

10.
Front Pharmacol ; 13: 927984, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837277

RESUMO

Classical psychedelics represent a family of psychoactive substances with structural similarities to serotonin and affinity for serotonin receptors. A growing number of studies have found that psychedelics can be effective in treating various psychiatric conditions, including post-traumatic stress disorder, major depressive disorder, anxiety, and substance use disorders. Mental health disorders are extremely prevalent in the general population constituting a major problem for the public health. There are a wide variety of interventions for mental health disorders, including pharmacological therapies and psychotherapies, however, treatment resistance still remains a particular challenge in this field, and relapse rates are also quite high. In recent years, psychedelics have become one of the promising new tools for the treatment of mental health disorders. In this review, we will discuss the three classic serotonergic naturally occurring psychedelics, psilocybin, ibogaine, and N, N-dimethyltryptamine, focusing on their pharmacological properties and clinical potential. The purpose of this article is to provide a focused review of the most relevant research into the therapeutic potential of these substances and their possible integration as alternative or adjuvant options to existing pharmacological and psychological therapies.

11.
World J Psychiatry ; 11(6): 201-214, 2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34168967

RESUMO

Depression is a common mental disorder and one of the leading causes of disability around the world. Monoaminergic antidepressants often take weeks to months to work and are not effective for all patients. This has led to a search for a better understanding of the pathogenesis of depression as well as to the development of novel antidepressants. One such novel antidepressant is ketamine, which has demonstrated both clinically promising results and contributed to new explanatory models of depression, including the potential role of neuroplasticity in depression. Early clinical trials are now showing promising results of serotonergic psychedelics for depression; however, their mechanism of action remains poorly understood. This paper seeks to review the effect of depression, classic antidepressants, ketamine, and serotonergic psychedelics on markers of neuroplasticity at a cellular, molecular, electrophysiological, functional, structural, and psychological level to explore the potential role that neuroplasticity plays in the treatment response of serotonergic psychedelics.

12.
Front Psychiatry ; 12: 706017, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721097

RESUMO

Psychiatry has a well-established tradition of comparing drug-induced experiences to psychotic symptoms, based on shared phenomena such as altered perceptions. The present review focuses on experiences induced by classic psychedelics, which are substances capable of eliciting powerful psychoactive effects, characterized by distortions/alterations of several neurocognitive processes (e.g., hallucinations). Herein we refer to such experiences as psychedelic states. Psychosis is a clinical syndrome defined by impaired reality testing, also characterized by impaired neurocognitive processes (e.g., hallucinations and delusions). In this review we refer to acute phases of psychotic disorders as psychotic states. Neuropharmacological investigations have begun to characterize the neurobiological mechanisms underpinning the shared and distinct neurophysiological changes observed in psychedelic and psychotic states. Mounting evidence indicates changes in thalamic filtering, along with disturbances in cortico-striato-pallido-thalamo-cortical (CSPTC)-circuitry, in both altered states. Notably, alterations in thalamocortical functional connectivity were reported by functional magnetic resonance imaging (fMRI) studies. Thalamocortical dysconnectivity and its clinical relevance are well-characterized in psychotic states, particularly in schizophrenia research. Specifically, studies report hyperconnectivity between the thalamus and sensorimotor cortices and hypoconnectivity between the thalamus and prefrontal cortices, associated with patients' psychotic symptoms and cognitive disturbances, respectively. Intriguingly, studies also report hyperconnectivity between the thalamus and sensorimotor cortices in psychedelic states, correlating with altered visual and auditory perceptions. Taken together, the two altered states appear to share clinically and functionally relevant dysconnectivity patterns. In this review we discuss recent findings of thalamocortical dysconnectivity, its putative extension to CSPTC circuitry, along with its clinical implications and future directions.

13.
J Neurosci Methods ; 334: 108595, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31954738

RESUMO

BACKGROUND: Head-twitch response (HTR) is a manifestation of the serotonergic system behavioral pharmacology commonly used as a proxy of psychedelic drug action in rodents. NEW METHOD: We developed a minimally invasive magnetic ear tag reporter and designed a detection system that performs a comprehensive characterization of each potential HTR event on an electromagnetic readout. RESULTS: Magnetic ear tags were easy to install and generally well tolerated by the animals. On the low-threshold first phase of detection, the tags' signal recorded in a magnetometer was filtered and screened for potential HTR events. On the second phase, the detector performed a comprehensive spectral analysis evaluation of each event and identified the HTR characteristic distribution of power density. Our system delivered satisfactory performance in the identification of pharmacologically-induced HTR and discrimination power against common non-HTR behaviors. COMPARISON WITH EXISTING METHODS: Our system offers a high-throughput solution for studying HTR in mice employing minimally invasive procedures and superior standalone discriminative power compared to our previously reported fully-automated approach. CONCLUSIONS: High-throughput identification of HTR utilizing magnetic ear-tagging and biphasic detection delivers satisfactory detection and discrimination power employing less invasive procedures.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa