Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Biotechnol Appl Biochem ; 71(2): 414-428, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38282371

RESUMO

The mechanisms regulating the content ratio of unsaturated fatty acid in sesame oil need to be clarified in order to breed novel varieties with high contents of unsaturated fatty acids. Full-length cDNA libraries prepared from sesame seeds 1 to 3 weeks after flowering were subtracted with cDNAs from plantlets of 4 weeks after germination. A total of 1545 cDNA clones was sequenced. The functions of novel genes expressed specifically during the early maturation of sesame seeds were investigated by the transformation of Arabidopsis thaliana. Thirteen genes for a transcription factor were identified, four of which were involved in ethylene signaling. Fifty-nine genes, including those for the aquaporin-like protein and ethylene response factor, were analyzed by overexpression in A. thaliana. The overexpression of novel genes and the aquaporin-like protein gene in A. thaliana increased the content of unsaturated fatty acids. The localization of these products was investigated by the induction of the expression vectors for the GFP fusion protein into onion epidermal cells and sesame root cells with a particle gun. As a result, two cDNA clones were identified as good candidate genes to clarify the regulation in the yield and the ratio of unsaturated fatty acids in sesame seeds. Sein60414 (Accession No. LC603128), an intrinsic membrane protein, may be involved in the increase of unsaturated fatty acids, and Sein61074 (Accession No. LC709278) MAP3K δ-1 protein kinase in the regulation of the total ratio of unsaturated fatty acids in sesame seeds.


Assuntos
Aquaporinas , Arabidopsis , Sesamum , Sesamum/genética , Sesamum/metabolismo , DNA Complementar , Arabidopsis/genética , Ácidos Graxos Insaturados/metabolismo , Sementes/genética , Sementes/metabolismo , Aquaporinas/metabolismo , Etilenos/metabolismo
2.
Plant Cell Physiol ; 64(7): 716-728, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37233612

RESUMO

Sesame (Sesamum indicum L.) plants contain large amounts of acteoside, a typical phenylethanoid glycoside (PhG) that exhibits various pharmacological activities. Although there is increasing interest in the biosynthesis of PhGs for improved production, the pathway remains to be clarified. In this study, we established sesame-cultured cells and performed transcriptome analysis of methyl jasmonate (MeJA)-treated cultured cells to identify enzyme genes responsible for glucosylation and acylation in acteoside biosynthesis. Among the genes annotated as UDP-sugar-dependent glycosyltransferase (UGT) and acyltransferase (AT), 34 genes and one gene, respectively, were upregulated by MeJA in accordance with acteoside accumulation. Based on a phylogenetic analysis, five UGT genes (SiUGT1-5) and one AT gene (SiAT1) were selected as candidate genes involved in acteoside biosynthesis. Additionally, two AT genes (SiAT2-3) were selected based on sequence identity. Enzyme assays using recombinant SiUGT proteins revealed that SiUGT1, namely, UGT85AF10, had the highest glucosyltransferase activity among the five candidates against hydroxytyrosol to produce hydroxytyrosol 1-O-glucoside. SiUGT1 also exhibited glucosyltransferase activity against tyrosol to produce salidroside (tyrosol 1-O-glucoside). SiUGT2, namely, UGT85AF11, had similar activity against hydroxytyrosol and tyrosol. Enzyme assay using the recombinant SiATs indicated that SiAT1 and SiAT2 had activity transferring the caffeoyl group to hydroxytyrosol 1-O-glucoside and salidroside (tyrosol 1-O-glucoside) but not to decaffeoyl-acteoside. The caffeoyl group was attached mainly at the 4-position of glucose of hydroxytyrosol 1-O-glucoside, followed by attachment at the 6-position and the 3-position of glucose. Based on our results, we propose an acteoside biosynthetic pathway induced by MeJA treatment in sesame.


Assuntos
Sesamum , Sesamum/metabolismo , Glicosiltransferases/genética , Açúcares , Filogenia , Glucosídeos , Glicosídeos/metabolismo , Proteínas Recombinantes/genética , Glucose , Glucosiltransferases/metabolismo , Difosfato de Uridina
3.
Molecules ; 28(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37110801

RESUMO

Sesamol is a phenolic lignan isolated from Sesamum indicum seeds and sesame oil. Numerous studies have reported that sesamol exhibits lipid-lowering and anti-atherogenic properties. The lipid-lowering effects of sesamol are evidenced by its effects on serum lipid levels, which have been attributed to its potential for significantly influencing molecular processes involved in fatty acid synthesis and oxidation as well as cholesterol metabolism. In this review, we present a comprehensive summary of the reported hypolipidemic effects of sesamol, observed in several in vivo and in vitro studies. The effects of sesamol on serum lipid profiles are thoroughly addressed and evaluated. Studies highlighting the ability of sesamol to inhibit fatty acid synthesis, stimulate fatty acid oxidation, enhance cholesterol metabolism, and modulate macrophage cholesterol efflux are outlined. Additionally, the possible molecular pathways underlying the cholesterol-lowering effects of sesamol are presented. Findings reveal that the anti-hyperlipidemic effects of sesamol are achieved, at least in part, by targeting liver X receptor α (LXRα), sterol regulatory element binding protein-1 (SREBP-1), and fatty acid synthase (FAS) expression, as well as peroxisome proliferator-activated receptor α (PPARα) and AMP activated protein kinase (AMPK) signaling pathways. A detailed understanding of the molecular mechanisms underlying the anti-hyperlipidemic potential of sesamol is necessary to assess the possibility of utilizing sesamol as an alternative natural therapeutic agent with potent hypolipidemic and anti-atherogenic properties. Research into the optimal sesamol dosage that may bring about such favorable hypolipidemic effects should be further investigated, most importantly in humans, to ensure maximal therapeutic benefit.


Assuntos
Benzodioxóis , Fenóis , Humanos , Fenóis/farmacologia , Benzodioxóis/farmacologia , Colesterol , Metabolismo dos Lipídeos , Ácidos Graxos
4.
Molecules ; 28(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37959677

RESUMO

Diabetes is a chronic metabolic disease characterized by improperly regulating proteins, carbohydrates, and lipids due to insulin deficiency or resistance. The increasing prevalence of diabetes poses a tremendous socioeconomic burden worldwide, resulting in the rise of many studies on Chinese herbal medicines to discover the most effective cure for diabetes. Sesame seeds are among these Chinese herbal medicines that were found to contain various pharmacological activities, including antioxidant and anti-inflammatory properties, lowering cholesterol, improving liver function, blood pressure and sugar lowering, regulating lipid synthesis, and anticancer activities. These medicinal benefits are attributed to sesamin, which is the main lignan found in sesame seeds and oil. In this study, Wistar rat models were induced with type 2 diabetes using streptozotocin (STZ) and nicotinamide, and the effect of sesamin on the changes in body weight, blood sugar level, glycosylated hemoglobin (HbA1c), insulin levels, and the states of the pancreas and liver of the rats were evaluated. The results indicate a reduced blood glucose level, HbA1c, TG, and ALT and AST enzymes after sesamin treatment, while increased insulin level, SOD, CAT, and GPx activities were also observed. These findings prove sesamin's efficacy in ameliorating the symptoms of diabetes through its potent pharmacological activities.


Assuntos
Diabetes Mellitus Tipo 2 , Lignanas , Ratos , Animais , Ratos Wistar , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hemoglobinas Glicadas , Lignanas/farmacologia , Lignanas/uso terapêutico , Dioxóis/farmacologia , Dioxóis/uso terapêutico , Insulina , Extratos Vegetais
5.
Molecules ; 28(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903500

RESUMO

Seven known analogs, along with two previously undescribed lignan derivatives sesamlignans A (1) and B (2), were isolated from a water-soluble extract of the defatted sesame seeds (Sesamum indicum L.) by applying the chromatographic separation method. Structures of compounds 1 and 2 were elucidated based on extensive interpretation of 1D, 2D NMR, and HRFABMS spectroscopic data. The absolute configurations were established by analyzing the optical rotation and circular dichroism (CD) spectrum. Inhibitory effects against the formation of advanced glycation end products (AGEs) and peroxynitrite (ONOO-) scavenging assays were performed to evaluate the anti-glycation effects of all isolated compounds. Among the isolated compounds, (1) and (2) showed potent inhibition towards AGEs formation, with IC50 values of 7.5 ± 0.3 and 9.8 ± 0.5 µM, respectively. Furthermore, the new aryltetralin-type lignan 1 exhibited the most potent activity when tested in the in vitro ONOO- scavenging assay.


Assuntos
Lignanas , Sesamum , Lignanas/química , Sesamum/química , Antioxidantes/farmacologia , Sementes/química , Produtos Finais de Glicação Avançada/análise
6.
Physiol Mol Biol Plants ; 29(9): 1353-1369, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38024952

RESUMO

Drought is one of the main environmental stresses affecting the quality and quantity of sesame production worldwide. The present study was conducted to investigate the effect of drought stress and subsequent re-watering on physiological, biochemical, and molecular responses of two contrasted sesame genotypes (susceptible vs. tolerant). Results showed that plant growth, photosynthetic rate, stomatal conductance, transpiration rate, and relative water content were negatively affected in both genotypes during water deficit. Both genotypes accumulated more soluble sugars, free amino acids, and proline and exhibited an increased enzyme activity for peroxidase, catalase, superoxide dismutase, and pyruvate dehydrogenase in response to drought damages including increased lipid peroxidation and membrane disruption. However, the tolerant genotype revealed a more extended root system and a more efficient photosynthetic apparatus. It also accumulated more soluble sugars (152%), free amino acids (48%), proline (75%), and antioxidant enzymes while showing lower electrolyte leakage (26%), lipid peroxidation (31%), and starch (35%) content, compared to the susceptible genotype at severe drought. Moreover, drought-related genes such as MnSOD1, MnSOD2, and PDHA-M were more expressed in the tolerant genotype, which encode manganese-dependent superoxide dismutase and the alpha subunit of pyruvate dehydrogenase, respectively. Upon re-watering, tolerant genotype recovered to almost normal levels of photosynthesis, carboxylation efficiency, lipid peroxidation, and electrolyte leakage, while susceptible genotype still suffered critical issues. Overall, these results suggest that a developed root system and an efficient photosynthetic apparatus along with the timely and effective accumulation of protective compounds enabled the tolerant sesame to withstand stress and successfully return to a normal growth state after drought relief. The findings of this study can be used as promising criteria for evaluating genotypes under drought stress in future sesame breeding programs. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01372-y.

7.
Biochem Biophys Res Commun ; 590: 158-162, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-34974305

RESUMO

The progression of chronic kidney disease (CKD) increases the risks of cardiovascular morbidity and end-stage kidney disease. Indoxyl sulfate (IS), which is derived from dietary l-tryptophan by the action of bacterial l-tryptophan indole-lyase (TIL) in the gut, serves as a uremic toxin that exacerbates CKD-related kidney disorder. A mouse model previously showed that inhibition of TIL by 2-aza-l-tyrosine effectively reduced the plasma IS level, causing the recovery of renal damage. In this study, we found that (+)-sesamin and related lignans, which occur abundantly in sesame seeds, inhibit intestinal bacteria TILs. Kinetic studies revealed that (+)-sesamin and sesamol competitively inhibited Escherichia coli TIL (EcTIL) with Ki values of 7 µM and 14 µM, respectively. These Ki values were smaller than that of 2-aza-l-tyrosine (143 µM). Molecular docking simulation of (+)-sesamin- (or sesamol-)binding to EcTIL predicted that these inhibitors potentially bind near the active site of EcTIL, where the cofactor pyridoxal 5'-phosphate is bound, consistent with the kinetic results. (+)-Sesamin is a phytochemical with a long history of consumption and is generally regarded as safe. Hence, dietary supplementation of (+)-sesamin encapsulated in enteric capsules could be a promising mechanism-based strategy to prevent CKD progression. Moreover, the present findings would provide a new structural basis for designing more potent TIL inhibitors for the development of mechanism-based therapeutic drugs to treat CKD.


Assuntos
Dioxóis/farmacologia , Inibidores Enzimáticos/farmacologia , Microbioma Gastrointestinal , Lignanas/farmacologia , Insuficiência Renal Crônica/enzimologia , Insuficiência Renal Crônica/etiologia , Sesamum/química , Triptofanase/antagonistas & inibidores , Benzodioxóis/química , Benzodioxóis/farmacologia , Dioxóis/química , Microbioma Gastrointestinal/efeitos dos fármacos , Cinética , Lignanas/química , Simulação de Acoplamento Molecular , Fenóis/química , Fenóis/farmacologia , Triptofanase/metabolismo
8.
BMC Plant Biol ; 22(1): 256, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35606719

RESUMO

BACKGROUND: The adverse effects of climate change on crop production are constraining breeders to develop high-quality environmentally stable varieties. Hence, efforts are being made to identify key genes that could be targeted for enhancing crop tolerance to environmental stresses. ERF transcription factors play an important role in various abiotic stresses in plants. However, the roles of the ERF family in abiotic stresses tolerance are still largely unknown in sesame, the "queen" of oilseed crops. RESULTS: In total, 114 sesame ERF genes (SiERFs) were identified and characterized. 96.49% of the SiERFs were distributed unevenly on the 16 linkage groups of the sesame genome. The phylogenetic analysis with the Arabidopsis ERFs (AtERFs) subdivided SiERF subfamily proteins into 11 subgroups (Groups I to X; and VI-L). Genes in the same subgroup exhibited similar structure and conserved motifs. Evolutionary analysis showed that the expansion of ERF genes in sesame was mainly induced by whole-genome duplication events. Moreover, cis-acting elements analysis showed that SiERFs are mostly involved in environmental responses. Gene expression profiles analysis revealed that 59 and 26 SiERFs are highly stimulated under drought and waterlogging stress, respectively. In addition, qRT-PCR analyses indicated that most of SiERFs are also significantly up-regulated under osmotic, submerge, ABA, and ACC stresses. Among them, SiERF23 and SiERF54 were the most induced by both the abiotic stresses, suggesting their potential for targeted improvement of sesame response to multiple abiotic stresses. CONCLUSION: This study provides a comprehensive understanding of the structure, classification, evolution, and abiotic stresses response of ERF genes in sesame. Moreover, it offers valuable gene resources for functional characterization towards enhancing sesame tolerance to multiple abiotic stresses.


Assuntos
Arabidopsis , Sesamum , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sesamum/metabolismo , Estresse Fisiológico/genética
9.
Crit Rev Food Sci Nutr ; 62(18): 5081-5112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33544009

RESUMO

Inflammation is associated with the development and progression of various disorders including atherosclerosis, diabetes mellitus and cancer. Sesamin, a fat-soluble lignan derived from Sesamum indicum seeds and oil, has received increased attention due to its wide array of pharmacological properties including its immunomodulatory and anti-inflammatory potential. To date, no review has been conducted to summarize or analyze the immunomodulatory and anti-inflammatory roles of sesamin. Herein, we provide a comprehensive review of experimental findings that were reported with regards to the ability of sesamin to modulate inflammation, cellular and humoral adaptive immune responses and Th1/Th2 paradigm. The potential influence of sesamin on the cytotoxic activity of NK cells against cancer cells is also highlighted. The molecular mechanisms and the signal transduction pathways underlying such effects are underscored. The metabolism, pharmacokinetics, absorption, tissue distribution and bioavailability of sesamin in different species, including humans, are reviewed. Moreover, we propose future preclinical and clinical investigations to further validate the potential preventive and/or therapeutic efficacy of sesamin against various immune-related and inflammatory conditions. We anticipate that sesamin may be employed in future therapeutic regimens to enhance the efficacy of treatment and dampen the adverse effects of synthetic chemical drugs currently used to alleviate immune-related and inflammatory conditions.


Assuntos
Lignanas , Sesamum , Anti-Inflamatórios/farmacologia , Dioxóis , Humanos , Imunidade , Inflamação/tratamento farmacológico , Lignanas/farmacologia , Sesamum/química
10.
Mol Biol Rep ; 49(3): 2059-2071, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34993726

RESUMO

BACKGROUND: Sesame is an ancient oilseed crop, known for its high oil content and quality. Its sensitivity to drought at early seedling stage is one of the limiting factors affecting its world-wide growth and productivity. Among plant specific transcription factors, the association of HD-ZIPs with sesame drought responses at early seedling stage is not well-established yet and is very important to develop our molecular understanding on sesame drought tolerance. METHODS AND RESULTS: In this study, total 61 sesame HD-ZIP proteins were identified, based on their protein sequence homology with Arabidopsis and protein domain(s) architecture prediction, followed by their phylogenetic, conserved domain(s) motifs and gene structure analyses to classify them into four classes (HD-ZIP Class I-IV). HD-ZIP Class I was also subdivided into four subgroups: α (SiHZ25, SiHZ43, SiHZ9 and SiHZ16), ß1 (SiHZ10, SiHZ30, SiHZ32 and SiHZ26), ß2 (SiHZ42 and SiHZ45) and γ (SiHZ17, SiHZ7 and SiHZ35) by a comparative phylogenetic analysis of sesame with Arabidopsis and maize. Afterwards, twenty-one days old sesame seedlings were exposed to drought stress by withholding water for 7 days (when soil moisture content reduced to ~16%) and gene expression of HD-ZIP Class I (13 members) was performed in well- watered (control) and drought stressed seedlings. The gene expression analysis showed that the expressions of SiHZ7 (6.8 fold) and SiHZ35 (2.6 fold) from γ subgroup were significantly high in drought seedlings. CONCLUSIONS: This study is useful in demonstrating the role of SiHD-ZIP Class I in sesame drought responses at early seedling stage and to develop its novel drought tolerant varieties.


Assuntos
Sesamum , Desidratação/genética , Desidratação/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plântula/genética , Plântula/metabolismo , Sesamum/genética , Sesamum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
J Sci Food Agric ; 102(15): 6950-6960, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35674420

RESUMO

BACKGROUND: This study aimed to investigate the effects of the supplementation of sesame flour in fermented chicken sausages ('S1' containing 800 g kg-1 chicken fillet, 180 g kg-1 veal fat and 20 g kg-1 sesame flour and 'S2' containing 800 g kg-1 chicken fillet, 160 g kg-1 veal fat and 40 g kg-1 sesame flour) compared with control sausages (containing 800 g kg-1 chicken fillet and 200 g kg-1 veal fat) on the physico-chemical characteristics, texture, and structure during the fermentation stage. RESULTS: The physicochemical parameters of samples belonging to the control, S1, and S2 batches were significantly affected by the addition of sesame flour and the fermentation stage. For instance: (i) the lowest protein content was observed for control samples on day 1 (61.4 ± 6.52 g kg-1 ) whereas the highest level was noted for S2 samples on day 15 (327.5 ± 22.2 g kg-1 ), and (ii) an inverse trend was observed for the fat content because the lowest content was observed for samples in the S2 batch on day 1 (129.0 ± 5.30 g kg-1 ) whereas the highest fat content was noted for samples belonging to control batch on day 15 (332.0 ± 1.29 g kg-1 ). The application of statistical methods to mid-infrared spectroscopy allowed clear discrimination between control, S1, and S2 batches. The addition of sesame flour in the recipes induced some modification in the secondary structure because ß-turn levels ranged from 39.30 to 34.50, 36.76 to 34.70, and 38.93 to 34.70 for control, S1, and S2 batches, respectively, throughout the fermentation stage. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed a similar protein profile pattern in the three batches on days 1 and 5, but on day 10 control and S2 batches showed the most intense degradation of myofibrillar proteins. CONCLUSION: The results demonstrated that mid-infrared spectroscopy coupled with chemometric tools could be used as a rapid screening tool to assess and monitor the quality of dry chicken sausages enriched with sesame flour throughout the fermentation stage. © 2022 Society of Chemical Industry.


Assuntos
Produtos da Carne , Sesamum , Animais , Bovinos , Farinha/análise , Galinhas , Produtos da Carne/análise , Análise Espectral
12.
Physiol Mol Biol Plants ; 28(1): 139-152, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35221576

RESUMO

Determinacy is a desirable trait in sesame, an important oilseed crop. We have developed an inter-specific hybrid between basally branched indeterminate cultivated Sesamum indicum genotype and wild S. prostratum with no branching yet synchronous pods on the shoot. The hybrid and a few exotic sesame germplasms were successfully screened with a determinacy (dt) gene-based DNA marker. In-silico translation of the partial coding sequences of the dt gene from the two contrasting parent genotypes revealed an SNP (V159A) in S. prostratum. The predicted cytoplasmic dt protein showed a high resemblance with flowering protein centroradialis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-022-01135-1.

13.
Plant J ; 101(5): 1221-1233, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31654577

RESUMO

Sesame (Sesamum indicum) seeds contain a large number of lignans, phenylpropanoid-related plant specialized metabolites. (+)-Sesamin and (+)-sesamolin are major hydrophobic lignans, whereas (+)-sesaminol primarily accumulates as a water-soluble sesaminol triglucoside (STG) with a sugar chain branched via ß1→2 and ß1→6-O-glucosidic linkages [i.e. (+)-sesaminol 2-O-ß-d-glucosyl-(1→2)-O-ß-d-glucoside-(1→6)-O-ß-d-glucoside]. We previously reported that the 2-O-glucosylation of (+)-sesaminol aglycon and ß1→6-O-glucosylation of (+)-sesaminol 2-O-ß-d-glucoside (SMG) are mediated by UDP-sugar-dependent glucosyltransferases (UGT), UGT71A9 and UGT94D1, respectively. Here we identified a distinct UGT, UGT94AG1, that specifically catalyzes the ß1→2-O-glucosylation of SMG and (+)-sesaminol 2-O-ß-d-glucosyl-(1→6)-O-ß-d-glucoside [termed SDG(ß1→6)]. UGT94AG1 was phylogenetically related to glycoside-specific glycosyltransferases (GGTs) and co-ordinately expressed with UGT71A9 and UGT94D1 in the seeds. The role of UGT94AG1 in STG biosynthesis was further confirmed by identification of a STG-deficient sesame mutant that predominantly accumulates SDG(ß1→6) due to a destructive insertion in the coding sequence of UGT94AG1. We also identified UGT94AA2 as an alternative UGT potentially involved in sugar-sugar ß1→6-O-glucosylation, in addition to UGT94D1, during STG biosynthesis. Yeast two-hybrid assays showed that UGT71A9, UGT94AG1, and UGT94AA2 were found to interact with a membrane-associated P450 enzyme, CYP81Q1 (piperitol/sesamin synthase), suggesting that these UGTs are components of a membrane-bound metabolon for STG biosynthesis. A comparison of kinetic parameters of these UGTs further suggested that the main ß-O-glucosylation sequence of STG biosynthesis is ß1→2-O-glucosylation of SMG by UGT94AG1 followed by UGT94AA2-mediated ß1→6-O-glucosylation. These findings together establish the complete biosynthetic pathway of STG and shed light on the evolvability of regio-selectivity of sequential glucosylations catalyzed by GGTs.


Assuntos
Vias Biossintéticas , Glucosídeos/metabolismo , Glicosiltransferases/metabolismo , Lignanas/metabolismo , Sesamum/enzimologia , Catálise , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Dioxóis/metabolismo , Furanos/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicosiltransferases/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/química , Sementes/enzimologia , Sementes/genética , Sesamum/química , Sesamum/genética
14.
Plant J ; 104(4): 1117-1128, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32955771

RESUMO

Sesamum spp. (sesame) are known to accumulate a variety of lignans in a lineage-specific manner. In cultivated sesame (Sesamum indicum), (+)-sesamin, (+)-sesamolin and (+)-sesaminol triglucoside are the three major lignans found richly in the seeds. A recent study demonstrated that SiCYP92B14 is a pivotal enzyme that allocates the substrate (+)-sesamin to two products, (+)-sesamolin and (+)-sesaminol, through multiple reaction schemes including oxidative rearrangement of α-oxy-substituted aryl groups (ORA). In contrast, it remains unclear whether (+)-sesamin in wild sesame undergoes oxidation reactions as in S. indicum and how, if at all, the ratio of the co-products is tailored at the molecular level. Here, we functionally characterised SrCYP92B14 as a SiCYP92B14 orthologue from a wild sesame, Sesamum radiatum, in which we revealed accumulation of the (+)-sesaminol derivatives (+)-sesangolin and its novel structural isomer (+)-7´-episesantalin. Intriguingly, SrCYP92B14 predominantly produced (+)-sesaminol either through ORA or direct oxidation on the aromatic ring, while a relatively low but detectable level of (+)-sesamolin was produced. Amino acid substitution analysis suggested that residues in the putative distal helix and the neighbouring heme propionate of CYP92B14 affect the ratios of its co-products. These data collectively show that the bimodal oxidation mechanism of (+)-sesamin might be widespread across Sesamum spp., and that CYP92B14 is likely to be a key enzyme in shaping the ratio of (+)-sesaminol- and (+)-sesamolin-derived lignans from the biochemical and evolutionary perspectives.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Dioxóis/metabolismo , Lignanas/metabolismo , Sesamum/enzimologia , Sequência de Aminoácidos , Vias Biossintéticas , Sistema Enzimático do Citocromo P-450/genética , Dioxóis/química , Furanos/química , Furanos/metabolismo , Glucosídeos/química , Glucosídeos/metabolismo , Lignanas/química , Modelos Moleculares , Oxirredução , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/química , Sementes/enzimologia , Sementes/genética , Alinhamento de Sequência , Sesamum/química , Sesamum/genética
15.
BMC Plant Biol ; 21(1): 159, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33781203

RESUMO

BACKGROUND: Sesame (Sesamum indicum) charcoal rot, a destructive fungal disease caused by Macrophomina phaseolina (Tassi) Goid (MP), is a great threat to the yield and quality of sesame. However, there is a lack of information about the gene-for-gene relationship between sesame and MP, and the molecular mechanism behind the interaction is not yet clear. The aim of this study was to interpret the molecular mechanism of sesame resistance against MP in disease-resistant (DR) and disease-susceptible (DS) genotypes based on transcriptomics. This is the first report of the interaction between sesame and MP using this method. RESULTS: A set of core genes that response to MP were revealed by comparative transcriptomics and they were preferentially associated with GO terms such as ribosome-related processes, fruit ripening and regulation of jasmonic acid mediated signalling pathway. It is also exhibited that translational mechanism and transcriptional mechanism could co-activate in DR so that it can initiate the immunity to MP more rapidly. According to weighted gene co-expression network analysis (WGCNA) of differentially expressed gene sets between two genotypes, we found that leucine-rich repeat receptor-like kinase (LRR-RLK) proteins may assume an important job in sesame resistance against MP. Notably, compared with DS, most key genes were induced in DR such as pattern recognition receptors (PRRs) and resistance genes, indicating that DR initiated stronger pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). Finally, the study showed that JA/ET and SA signalling pathways all play an important role in sesame resistance to MP. CONCLUSIONS: The defence response to MP of sesame, a complex bioprocess involving many phytohormones and disease resistance-related genes, was illustrated at the transcriptional level in our investigation. The findings shed more light on further understanding of different responses to MP in resistant and susceptible sesame.


Assuntos
Ascomicetos , Doenças das Plantas/microbiologia , Sesamum/genética , Sesamum/imunologia , Sesamum/microbiologia , Ascomicetos/imunologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , Genótipo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Raízes de Plantas/genética , Transcriptoma
16.
Plant Biotechnol J ; 19(5): 1065-1079, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33369837

RESUMO

Developing crops with improved root system is crucial in current global warming scenario. Underexploited crops are valuable reservoirs of unique genes that can be harnessed for the improvement of major crops. In this study, we performed genome-wide association studies on seven root traits in sesame (Sesamum indicum L.) and uncovered 409 significant signals, 19 quantitative trait loci containing 32 candidate genes. A peak SNP significantly associated with root number and root dry weight traits was located in the promoter of the gene named 'Big Root Biomass' (BRB), which was subsequently validated in a bi-parental population. BRB has no functional annotation and is restricted to the Lamiales order. We detected the presence of a novel motif 'AACACACAC' located in the 5'-UTR of BRB in single and duplicated copy in accessions with high and small root biomass, respectively. A strong expression level of BRB was negatively correlated with high root biomass, and this was attributed to the gene SiMYB181 which represses the activity of BRB by binding specifically to the single motif but not to the duplicated one. Curiously, the allele that enhanced BRB expression has been intensively selected by modern breeding. Overexpression of BRB in Arabidopsis modulates auxin pathway leading to reduced root biomass, improved yield parameters under normal growth conditions and increased drought stress sensitivity. Overall, BRB represents a solid gene model for improving the performance of sesame and other crops.


Assuntos
Sesamum , Regiões 5' não Traduzidas/genética , Biomassa , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Sesamum/genética
17.
BMC Microbiol ; 21(1): 207, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238245

RESUMO

BACKGROUND: Microbial contamination of edible low moisture food poses a significant public health risk for human. In this study, the microbial quality of sweet dehulled sesame seed croquettes, salted dehulled sesame seed and the raw sesame seed, sold under ambient conditions were examined. The samples were collected in the cities of Burkina Faso. The first type is sweet dehulled sesame seed croquettes (n1 = 25); the second type is salted dehulled sesame seed (n2 = 25) and the third type is raw sesame seed (n3 = 25). Assessment of the microbial quality was based on the total aerobic mesophilic bacteria, the thermotolerant coliforms, the yeasts and moulds, the E. coli, and the Salmonella spp. using ISO methods. RESULTS: The results showed the presence of microorganisms varying from <1.0 to 1.72 × 105 CFU g- 1 for thermotolerant coliforms, from <1.0 to 6,12 × 106 CFU g- 1 for the total mesophilic aerobic flora and from <1.0 to 8.10 × 105 CFU g- 1 for yeasts and moulds. The higher contaminations rates were mostly observed in raw sesame seed samples. No E coli or Salmonella pathogens were detected. Based on international standards of dehydrated food, 50.67% of the ready to eat sesame are satisficing while 17.33% are acceptable and 32% are not satisficing. CONCLUSION: Attention should be emphasized on the processing practices, especially in crowded places where RTE sesames seeds are mostly sold. The high numbers of all microbial groups in these sesame seed samples suggested that the production of RTE sesame seed should be improved by better hygiene. This study highlights also that RTE sesame seed might harbor a wide range of microorganisms when processes are weak of hygiene.


Assuntos
Fenômenos Fisiológicos Bacterianos , Microbiologia de Alimentos/normas , Alimentos em Conserva/microbiologia , Fungos/fisiologia , Sesamum/microbiologia , Burkina Faso
18.
Mol Breed ; 41(7): 43, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37309387

RESUMO

Improving yield is one of the most important targets of sesame breeding. Identifying quantitative trait loci (QTLs) of yield-related traits is a prerequisite for marker-assisted selection (MAS) and QTL/gene cloning. In this study, a BC1 population was developed and genotyped with the specific-locus amplified fragment (SLAF) sequencing technology, and a high-density genetic map was constructed. The map consisted of 13 linkage groups, contained 3528 SLAF markers, and covered a total of 1312.52 cM genetic distance, with an average distance of 0.37 cM between adjacent markers. Based on the map, 46 significant QTLs were identified for seven yield-related traits across three environments. These QTLs distributed on 11 linkage groups, each explaining 2.34-71.41% of the phenotypic variation. Of the QTLs, 23 were stable QTLs that were detected in more than one environment, and 20 were major QTLs that explained more than 10% of the corresponding phenotypic variation in at least one environment. Favorable alleles of 38 QTLs originated from the locally adapted variety, Yuzhi 4; the exotic germplasm line, BS, contributed favorable alleles to only 8 QTLs. The results should provide useful information for future molecular breeding and functional gene cloning. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01236-x.

19.
Int J Mol Sci ; 22(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069840

RESUMO

The biosynthesis and storage of lipids in oil crop seeds involve many gene families, such as nonspecific lipid-transfer proteins (nsLTPs). nsLTPs are cysteine-rich small basic proteins essential for plant development and survival. However, in sesame, information related to nsLTPs was limited. Thus, the objectives of this study were to identify the Sesamum indicum nsLTPs (SiLTPs) and reveal their potential role in oil accumulation in sesame seeds. Genome-wide analysis revealed 52 SiLTPs, nonrandomly distributed on 10 chromosomes in the sesame variety Zhongzhi 13. Following recent classification methods, the SiLTPs were divided into nine types, among which types I and XI were the dominants. We found that the SiLTPs could interact with several transcription factors, including APETALA2 (AP2), DNA binding with one finger (Dof), etc. Transcriptome analysis showed a tissue-specific expression of some SiLTP genes. By integrating the SiLTPs expression profiles and the weighted gene co-expression network analysis (WGCNA) results of two contrasting oil content sesame varieties, we identified SiLTPI.23 and SiLTPI.28 as the candidate genes for high oil content in sesame seeds. The presumed functions of the candidate gene were validated through overexpression of SiLTPI.23 in Arabidopsis thaliana. These findings expand our knowledge on nsLTPs in sesame and provide resources for functional studies and genetic improvement of oil content in sesame seeds.


Assuntos
Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Sesamum/genética , Proteínas de Transporte/metabolismo , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Óleos de Plantas/metabolismo , Sementes/genética , Sesamum/metabolismo , Fatores de Transcrição/metabolismo
20.
Molecules ; 26(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34641392

RESUMO

Sesame seeds are rich in lignan content and have been well-known for their health benefits. Unlike the other sesame lignan compounds (i.e., sesamin and sesamol), the study of the pharmacological activity of sesamolin has not been explored widely. This review, therefore, summarizes the information related to sesamolin's pharmacological activities, and the mechanism of action. Moreover, the influence of its physicochemical properties on pharmacological activity is also discussed. Sesamolin possessed neuroprotective activity against hypoxia-induced reactive oxygen species (ROS) and oxidative stress in neuron cells by reducing the ROS and inhibiting apoptosis. In skin cancer, sesamolin exhibited antimelanogenesis by affecting the expression of the melanogenic enzymes. The anticancer activity of sesamolin based on antiproliferation and inhibition of migration was demonstrated in human colon cancer cells. In addition, treatment with sesamolin could stimulate immune cells to enhance the cytolytic activity to kill Burkitt's lymphoma cells. However, the toxicity and safety of sesamolin have not been reported. And there is also less information on the experimental study in vivo. The limited aqueous solubility of sesamolin becomes the main problem, which affects its pharmacological activity in the in vitro experiment and clinical efficacy. Therefore, solubility enhancement is needed for further investigation and determination of its pharmacological activity profiles. Since there are fewer reports studying this issue, it could become a future prospective research opportunity.


Assuntos
Antineoplásicos/farmacologia , Dioxóis/farmacologia , Fármacos Neuroprotetores/farmacologia , Sesamum/química , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa