Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 317, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700737

RESUMO

Perylenequinones (PQs) are natural photosensitizing compounds used as photodynamic therapy, and heat stress (HS) is the main limiting factor of mycelial growth and secondary metabolism of fungi. This study aimed to unravel the impact of HS-induced Ca2+ and the calcium signaling pathway on PQ biosynthesis of Shiraia sp. Slf14(w). Meanwhile, the intricate interplay between HS-induced NO and Ca2+ and the calcium signaling pathway was investigated. The outcomes disclosed that Ca2+ and the calcium signaling pathway activated by HS could effectively enhance the production of PQs in Shiraia sp. Slf14(w). Further investigations elucidated the specific mechanism through which NO signaling molecules induced by HS act upon the Ca2+/CaM (calmodulin) signaling pathway, thus propelling PQ biosynthesis in Shiraia sp. Slf14(w). This was substantiated by decoding the downstream positioning of the CaM/CaN (calcineurin) pathway in relation to NO through comprehensive analyses encompassing transcript levels, enzyme assays, and the introduction of chemical agents. Concurrently, the engagement of Ca2+ and the calcium signaling pathway in heat shock signaling was also evidenced. The implications of our study underscore the pivotal role of HS-induced Ca2+ and the calcium signaling pathway, which not only participate in heat shock signal transduction but also play an instrumental role in promoting PQ biosynthesis. Consequently, our study not only enriches our comprehension of the mechanisms driving HS signaling transduction in fungi but also offers novel insights into the PQ synthesis paradigm within Shiraia sp. Slf14(w). KEY POINTS: • The calcium signaling pathway was proposed to participate in PQ biosynthesis under HS. • HS-induced NO was revealed to act upon the calcium signaling pathway for the first time.


Assuntos
Ascomicetos , Sinalização do Cálcio , Perileno , Perileno/análogos & derivados , Quinonas , Ascomicetos/metabolismo , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Quinonas/metabolismo , Perileno/metabolismo , Óxido Nítrico/metabolismo , Resposta ao Choque Térmico , Cálcio/metabolismo , Temperatura Alta
2.
Int J Mol Sci ; 25(18)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39337596

RESUMO

Perylenequinones (PQs) are important natural compounds that have been extensively utilized in recent years as agents for antimicrobial, anticancer, and antiviral photodynamic therapies. In this study, we investigated the molecular mechanisms regulating PQ biosynthesis by comparing Shiraia sp. Slf14 with its low PQ titer mutant, Slf14(w). The results indicated that the strain Slf14 exhibited a higher PQ yield, a more vigorous energy metabolism, and a more pronounced oxidation state compared to Slf14(w). Transcriptome analysis consistently revealed that the differences in gene expression between Slf14 and Slf14(w) are primarily associated with genes involved in redox processes and energy metabolism. Additionally, reactive oxygen species (ROS) were shown to play a crucial role in promoting PQ synthesis, as evidenced by the application of ROS-related inhibitors and promoters. Further results demonstrated that mitochondria are significant sources of ROS, which effectively regulate PQ biosynthesis in Shiraia sp. Slf14. In summary, this research revealed a noteworthy finding: the higher energy metabolism of the strain Slf14 is associated with increased intracellular ROS accumulation, which in turn triggers the activation and expression of gene clusters responsible for PQ synthesis.


Assuntos
Metabolismo Energético , Mitocôndrias , Perileno , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Perileno/análogos & derivados , Perileno/metabolismo , Mitocôndrias/metabolismo , Quinonas/metabolismo , Ascomicetos/metabolismo , Ascomicetos/genética , Regulação Fúngica da Expressão Gênica , Perfilação da Expressão Gênica
3.
Appl Microbiol Biotechnol ; 107(11): 3745-3761, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37126084

RESUMO

Perylenequinones (PQs) are a class of natural polyketides used as photodynamic therapeutics. Heat stress (HS) is an important environmental factor affecting secondary metabolism of fungi. This study investigated the effects of HS treatment on PQs biosynthesis of Shiraia sp. Slf14(w) and the underlying molecular mechanism. After the optimization of HS treatment conditions, the total PQs amount reached 577 ± 34.56 mg/L, which was 20.89-fold improvement over the control. Also, HS treatment stimulated the formation of intracellular nitric oxide (NO). Genome-wide analysis of Shiraia sp. Slf14(w) revealed iNOSL and cNOSL encoding inducible and constitutive NOS-like proteins (iNOSL and cNOSL), respectively. Cloned iNOSL in Escherichia coli BL21 showed higher nitric oxide synthase (NOS) activity than cNOSL, and the expression level of iNOSL under HS treatment was observably higher than that of cNOSL, suggesting that iNOSL is more responsible for NO production in the HS-treated strain Slf14(w) and may play an important role in regulating PQs biosynthesis. Moreover, the putative biosynthetic gene clusters for PQs and genes encoding iNOSL and nitrate reductase (NR) in the HS-treated strain Slf14(w) were obviously upregulated. PQs biosynthesis and efflux stimulated by HS treatment were significantly inhibited upon the addition of NO scavenger, NOS inhibitor, and NR inhibitor, indicating that HS-induced NO, as a signaling molecule, triggered promoted PQs biosynthesis and efflux. Our results provide an effective strategy for PQs production and contribute to the understanding of heat shock signal transduction studies of other fungi.Key points• PQs titer of Shiraia sp. Slf14(w) was significantly enhanced by HS treatment.• HS-induced NO was first reported to participate in PQs biosynthetic regulation.• Novel inducible and constitutive NOS-like proteins (iNOSL and cNOSL) were obtained and their NOS activities were determined.


Assuntos
Ascomicetos , Óxido Nítrico , Óxido Nítrico/metabolismo , Ascomicetos/metabolismo , Quinonas/metabolismo , Resposta ao Choque Térmico
4.
Appl Microbiol Biotechnol ; 106(7): 2619-2636, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35291023

RESUMO

Perylenequinones (PQ) are natural polyketides used as anti-microbial, -cancers, and -viral photodynamic therapy agents. Herein, the effects of L-arginine (Arg) on PQ biosynthesis of Shiraia sp. Slf14(w) and the underlying molecular mechanism were investigated. The total content of PQ reached 817.64 ± 72.53 mg/L under optimal conditions of Arg addition, indicating a 30.52-fold improvement over controls. Comparative transcriptome analysis demonstrated that Arg supplement promoted PQ precursors biosynthesis of Slf14(w) by upregulating the expression of critical genes associated with the glycolysis pathway, and acetyl-CoA and malonyl-CoA synthesis. By downregulating the expression of genes related to the glyoxylate cycle pathway and succinate dehydrogenase, more acetyl-CoA flow into the formation of PQ. Arg supplement upregulated the putative biosynthetic gene clusters for PQ and activated the transporter proteins (MFS and ABC) for exudation of PQ. Further studies showed that Arg increased the gene transcription levels of nitric oxide synthase (NOS) and nitrate reductase (NR), and activated NOS and NR, thus promoting the formation of nitric oxide (NO). A supplement of NO donor sodium nitroprusside (SNP) also confirmed that NO triggered promoted biosynthesis and efflux of PQ. PQ production stimulated by Arg or/and SNP can be significantly inhibited upon the addition of NO scavenger carboxy-PTIO, NOS inhibitor Nω-nitro-L-arginine, or soluble guanylate cyclase inhibitor NS-2028. These results showed that Arg-derived NO, as a signaling molecule, is involved in the biosynthesis and regulation of PQ in Slf14(W) through the NO-cGMP-PKG signaling pathway. Our results provide a valuable strategy for large-scale PQ production and contribute to further understanding of NO signaling in the fungal metabolite biosynthesis. KEY POINTS: • PQ production of Shiraia sp. Slf14(w) was significantly improved by L-arginine addition. • Arginine-derived NO was firstly reported to be involved in the biosynthesis and regulation of PQ. • The NO-cGMP-PKG signaling pathway was proposed for the first time to participate in PQ biosynthesis.


Assuntos
Ascomicetos , Acetilcoenzima A/metabolismo , Arginina/metabolismo , Ascomicetos/metabolismo , GMP Cíclico/metabolismo , Óxido Nítrico/metabolismo , Nitroprussiato , Perileno/análogos & derivados , Quinonas , Transdução de Sinais
5.
Appl Microbiol Biotechnol ; 102(1): 153-163, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29098415

RESUMO

Perylenequinones (PQ) that notably produce reactive oxygen species upon exposure to visible light are a class of photoactivated polyketide mycotoxins produced by fungal plant pathogens such as Shiraia sp. The involvement of Ca2+/calmodulin (CaM) signalling in PQ biosynthesis was investigated by submerged culturing of Shiraia sp. Slf14, a species that produces hypocrellins HA and HB and elsinochromes EA, EB, and EC. Our results showed that the total content of PQ reached 1894.66 ± 21.93 mg/L under optimal conditions of Ca2+ addition, which represents a 5.8-fold improvement over controls. The addition of pharmacological Ca2+ sensor inhibitors strongly inhibited PQ production, which indicates that Ca2+/CaM signalling regulates PQ biosynthesis. The expression levels of Ca2+ sensor and PQ biosynthetic genes were downregulated following addition of inhibitors but were upregulated upon addition of Ca2+. Inhibition was partially released by external Ca2+ supplementation. Fluo-3/AM experiments revealed that similar cytosolic Ca2+ variation occurred under these conditions. These results demonstrated that Ca2+ signalling via the CaM transduction pathway plays a pivotal role in PQ biosynthesis.


Assuntos
Ascomicetos/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Perileno/análogos & derivados , Quinonas/metabolismo , Transdução de Sinais , Ascomicetos/efeitos dos fármacos , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Vias Biossintéticas/genética , Cálcio/farmacologia , Citosol/química , Citosol/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Perileno/análise , Perileno/metabolismo , Fenol , Quinonas/análise , Espécies Reativas de Oxigênio
6.
3 Biotech ; 10(5): 190, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32269895

RESUMO

Perylenequinones (PQ), a class of naturally occurring polypeptides, are widely used as a clinical drug for treating skin diseases and as a photodynamic therapy against cancers and viruses. In this study, the effects of different carbon sources on PQ biosynthesis by Shiraia sp. Slf14 were compared, and the underlying molecular mechanism of fructose as the sole carbon to enhance PQ production was investigated by transcriptome analysis. The results indicated that fructose enhanced PQ yield to 1753.64 mg/L, which was 1.73-fold higher than that obtained with glucose. Comparative transcriptome analysis demonstrated that most of the upregulated genes were related to transport systems, energy and central carbon metabolism in Shiraia sp. Slf14 cultured in fructose. The genes involved in glycolysis and pentose phosphate pathways, and encoding citrate synthase, ATP-citrate lyase, and acetyl-CoA carboxylase were substantially upregulated, resulting in increased overall acetyl-CoA and malonyl-CoA production. However, genes involved in gluconeogenesis, glyoxylate cycle pathway, and fatty acid synthesis were significantly downregulated, resulting in higher acetyl-CoA influx for PQ formation. In particular, the putative PQ biosynthetic cluster was upregulated in Shiraia sp. Slf14 cultured in fructose, leading to a significant increase in PQ production. The results of real-time qRT-PCR and related enzyme activities were also consistent with those of transcriptome analysis. These findings provide a remarkable insight into the underlying mechanism of PQ biosynthesis and pave the way for improvements in PQ production by Shiraia sp. Slf14.

7.
J Microbiol ; 56(11): 805-812, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30353466

RESUMO

A new type III polyketide synthase gene (Ssars) was discovered from the genome of Shiraia sp. Slf14, an endophytic fungal strain from Huperzia serrata. The intron-free gene was cloned from the cDNA and ligated to two expression vectors pET28a and YEpADH2p-URA3 for expression in Escherichia coli BL21(DE3) and Saccharomyces cerevisiae BJ5464, respectively. SsARS was efficiently expressed in E. coli BL21(DE3), leading to the synthesis of a series of polyketide products. Six major products were isolated from the engineered E. coli and characterized as 1,3-dihydroxyphenyl-5-undecane, 1,3-dihydroxyphenyl-5-cis-6'-tridecene,1,3-dihydroxyphenyl-5-tridecane, 1,3-dihydroxyphenyl-5-cis-8'-pentadecene, 1,3-dihydroxyphenyl-5-pentadecane, and 1,3-dihydroxyphenyl-5-cis-10'-heptadecene, respectively, based on the spectral data and biosynthetic origin. Expression of SsARS in the yeast also led to the synthesis of the same polyketide products, indicating that this enzyme can be reconstituted in both heterologous hosts. Supplementation of soybean oil into the culture of E. coli BL21(DE3)/SsARS increased the production titers of 1-6 and led to the synthesis of an additional product, which was identified as 5-(8'Z,11'Z-heptadecadienyl) resorcinol. This work thus allowed the identification of SsARS as a 5-alk(en)ylresorcinol synthase with flexible substrate specificity toward endogenous and exogenous fatty acids. Desired resorcinol derivatives may be synthesized by supplying corresponding fatty acids into the culture medium.


Assuntos
Aciltransferases/química , Aciltransferases/genética , Aciltransferases/isolamento & purificação , Ascomicetos/enzimologia , Ascomicetos/genética , Aciltransferases/biossíntese , Meios de Cultura , DNA Complementar , Escherichia coli/genética , Ácidos Graxos/metabolismo , Fermentação , Regulação da Expressão Gênica , Vetores Genéticos , Huperzia/microbiologia , Filogenia , Resorcinóis/metabolismo , Saccharomyces cerevisiae/genética , Óleo de Soja/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa