RESUMO
At high levels, extracellular ATP operates as a "danger" molecule under pathologic conditions through purinergic receptors, including the ionotropic P2X7 receptor (P2X7R). Its endogenous activation is associated with neurodevelopmental disorders; however, its function during early embryonic stages remains largely unclear. Our objective was to determine the role of P2X7R in the regulation of neuronal outgrowth. For this purpose, we performed Sholl analysis of dendritic branches on primary hippocampal neurons and in acute hippocampal slices from WT mice and mice with genetic deficiency or pharmacological blockade of P2X7R. Because abnormal dendritic branching is a hallmark of certain neurodevelopmental disorders, such as schizophrenia, a model of maternal immune activation (MIA)-induced schizophrenia, was used for further morphologic investigations. Subsequently, we studied MIA-induced behavioral deficits in young adult mice females and males. Genetic deficiency or pharmacological blockade of P2X7R led to branching deficits under physiological conditions. Moreover, pathologic activation of the receptor led to deficits in dendritic outgrowth on primary neurons from WT mice but not those from P2X7R KO mice exposed to MIA. Likewise, only MIA-exposed WT mice displayed schizophrenia-like behavioral and cognitive deficits. Therefore, we conclude that P2X7R has different roles in the development of hippocampal dendritic arborization under physiological and pathologic conditions.SIGNIFICANCE STATEMENT Our main finding is a novel role for P2X7R in neuronal branching in the early stages of development under physiological conditions. We show how a decrease in the expression of P2X7R during brain development causes the receptor to play pathologic roles in adulthood. Moreover, we studied a neurodevelopmental model of schizophrenia and found that, at higher ATP concentrations, endogenous activation of P2X7R is necessary and sufficient for the development of positive and cognitive symptoms.
Assuntos
Neurônios , Receptores Purinérgicos P2X7 , Animais , Feminino , Masculino , Camundongos , Trifosfato de Adenosina/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Receptores Purinérgicos P2X7/genética , DendritosRESUMO
Nervous system development and plasticity involve changes in cellular morphology, making morphological analysis a valuable exercise in the study of nervous system development, function and disease. Morphological analysis is a time-consuming exercise requiring meticulous manual tracing of cellular contours and extensions. We have developed a software tool, called SMorph, to rapidly analyze the morphology of cells of the nervous system. SMorph performs completely automated Sholl analysis. It extracts 23 morphometric features based on cell images and Sholl analysis parameters, followed by principal component analysis (PCA). SMorph was tested on neurons, astrocytes and microglia and reveals subtle changes in cell morphology. Using SMorph, we found that chronic 21-day treatment with the antidepressant desipramine results in a significant structural remodeling in hippocampal astrocytes in mice. Given the proposed involvement of astroglial structural changes and atrophy in major depression in humans, our results reveal a novel kind of structural plasticity induced by chronic antidepressant administration.
Assuntos
Astrócitos , Hipocampo , Animais , Antidepressivos/farmacologia , Camundongos , Plasticidade Neuronal , Neurônios , SoftwareRESUMO
Physiological changes associated with aging increase the risk for the development of age-related diseases. This increase is non-specific to the type of age-related disease, although each disease develops through a unique pathophysiologic mechanism. People who age at a faster rate develop age-related diseases earlier in their life. They have an older "biological age" compared to their "chronological age". Early detection of individuals with accelerated aging would allow timely intervention to postpone the onset of age-related diseases. This would increase their life expectancy and their length of good quality life. The goal of this study was to investigate whether retinal microvascular complexity could be used as a biomarker of biological age. Retinal images of 68 participants ages ranging from 19 to 82 years were collected in an observational cross-sectional study. Twenty of the old participants had age-related diseases such as hypertension, type 2 diabetes, and/or Alzheimer's dementia. The rest of the participants were healthy. Retinal images were captured by a hand-held, non-mydriatic fundus camera and quantification of the microvascular complexity was performed by using Sholl's, box-counting fractal, and lacunarity analysis. In the healthy subjects, increasing chronological age was associated with lower retinal microvascular complexity measured by Sholl's analysis. Decreased box-counting fractal dimension was present in old patients, and this decrease was 2.1 times faster in participants who had age-related diseases (p = 0.047). Retinal microvascular complexity could be a promising new biomarker of biological age. The data from this study is the first of this kind collected in Montenegro. It is freely available for use.
Assuntos
Diabetes Mellitus Tipo 2 , Vasos Retinianos , Humanos , Projetos Piloto , Vasos Retinianos/diagnóstico por imagem , Estudos Transversais , Biomarcadores , EnvelhecimentoRESUMO
BACKGROUND: Stroke remains the leading cause of death and disability in the world. A new potential treatment for stroke is the granulocyte colony-stimulating factor (G-CSF), which exerts neuroprotective effects through multiple mechanisms. Memory impairment is the most common cognitive problem after a stroke. The suggested treatment for memory impairments is cognitive rehabilitation, which is often ineffective. The hippocampus plays an important role in memory formation. This project aimed to study the effect of G-CSF on memory and dendritic morphology of hippocampal CA1 pyramidal neurons after middle cerebral artery occlusion (MCAO)in rats. METHODS: Male Sprague-Dawley rats were divided into three groups: the sham, control (MCAO + Vehicle), and treatment (MCAO + G-CSF) groups. G-CSF (50 µg/kg S.C) was administered at 6, 24, and 48 h after brain ischemia induction. The passive avoidance task to evaluate learning and memory was performed on days 6 and 7 post-ischemia. Seven days after MCAO, the brain was removed and the hippocampal slices were stained with Golgi. After that, the neurons were analyzed for dendritic morphology and maturity. OUTCOMES: The data showed that stroke was associated with a significant impairment in the acquisition and retention of passive avoidance tasks, while the G-CSF improved learning and memory loss. The dendritic length, arborization, spine density, and mature spines of the hippocampus CA1 neurons were significantly reduced in the control group, and treatment with G-CSF significantly increased these parameters. CONCLUSION: G-CSF, even with three doses, improved learning and memory deficits, and dendritic morphological changes in the CA1 hippocampal neurons resulted from brain ischemia.
Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Células Piramidais , Isquemia Encefálica/tratamento farmacológico , Hipocampo , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Aprendizagem em Labirinto , Acidente Vascular Cerebral/tratamento farmacológico , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fator Estimulador de Colônias de Granulócitos/farmacologia , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Espinhas DendríticasRESUMO
Insulin and insulin-like growth factor type I (IGF-1) play prominent roles in brain activity throughout the lifespan. Insulin/IGF1 signaling starts with the activation of the intracellular insulin receptor substrates (IRS). In this work, we performed a comparative study of IRS1 and IRS2, together with the IGF1 (IGF1R) and insulin (IR) receptor expression in the hippocampus and prefrontal cortex during development. We found that IRS1 and IRS2 expression is prominent during development and declines in the aged hippocampus, contrary to IR, which increases in adulthood and aging. In contrast, IGF1R expression is unaffected by age. Expression patterns are similar in the prefrontal cortex. Neurite development occurs postnatally in the rodent hippocampus and cortex, and it declines in the mature and aged brain and is influenced by trophic factors. In our previous work, we demonstrated that knockdown of IRS1 by shRNA impairs learning and reduces synaptic plasticity in a rat model, as measured by synaptophysin puncta in axons. In this study, we report that shIRS1 alters spine maturation in adult hilar hippocampal neurons. Lastly, to understand the role of IRS1 in neuronal neurite tree, we transfect shIRS1 into primary neuronal cultures and observed that shIRS1 reduced neurite branching and neurite length. Our results demonstrate that IRS1/2 and insulin/IGF1 receptors display different age-dependent expression profiles and that IRS1 is required for spine maturation, demonstrating a novel role for IRS1 in synaptic plasticity.
Assuntos
Hipocampo , Proteínas Substratos do Receptor de Insulina , Insulina , Animais , Hipocampo/metabolismo , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Neurogênese , Ratos , Transdução de SinaisRESUMO
The hippocampus is a brain region crucially involved in regulating stress responses and highly sensitive to environmental changes, with elevated proliferative and adaptive activity of neurons and glial cells. Despite the prevalence of environmental noise as a stressor, its effects on hippocampal cytoarchitecture remain largely unknown. In this study, we aimed to investigate the impact of acoustic stress on hippocampal proliferation and glial cytoarchitecture in adult male rats, using environmental noise as a stress model. After 21 days of noise exposure, our results showed abnormal cellular proliferation in the hippocampus, with an inverse effect on the proliferation ratios of astrocytes and microglia. Both cell lineages also displayed atrophic morphologies with fewer processes and lower densities in the noise-stressed animals. Our findings suggest that, stress not only affects neurogenesis and neuronal death in the hippocampus, but also the proliferation ratio, cell density, and morphology of glial cells, potentially triggering an inflammatory-like response that compromises their homeostatic and repair functions.
Assuntos
Hipocampo , Neuroglia , Ratos , Masculino , Animais , Hipocampo/metabolismo , Neurônios/metabolismo , Astrócitos/metabolismo , Microglia/metabolismo , Neurogênese/fisiologiaRESUMO
Recent investigations of COVID-19 have largely focused on the effects of this novel virus on the vital organs in order to efficiently assist individuals who have recovered from the disease. In the present study we used hippocampal tissue samples extracted from people who died after COVID-19. Utilizing histological techniques to analyze glial and neuronal cells we illuminated a massive degeneration of neuronal cells and changes in glial cells morphology in hippocampal samples. The results showed that in hippocampus of the studied brains there were morphological changes in pyramidal cells, an increase in apoptosis, a drop in neurogenesis, and change in spatial distribution of neurons in the pyramidal and granular layer. It was also demonstrated that COVID-19 alter the morphological characteristics and distribution of astrocyte and microglia cells. While the exact mechanism(s) by which the virus causes neuronal loss and morphology in the central nervous system (CNS) remains to be determined, it is necessary to monitor the effect of SARS-CoV-2 infection on CNS compartments like the hippocampus in future investigations. As a result of what happened in the hippocampus secondary to COVID-19, memory impairment may be a long-term neurological complication which can be a predisposing factor for neurodegenerative disorders through neuroinflammation and oxidative stress mechanisms.
Assuntos
COVID-19 , Humanos , Apoptose , SARS-CoV-2 , Neurogênese/fisiologia , Hipocampo , CausalidadeRESUMO
The excessive production of pro-inflammatory mediators, characteristic of obesity, leads to neuroinflammation. Zinc (Zn) and the branched-chain amino acids (BCAA) are supplements known for their immunomodulatory properties. Our goal was to evaluate if Zn or BCAA supplementation can affect long-term recognition memory and neuroinflammatory parameters of obese rats after a high-fat diet (HFD). Three-month-old Wistar rats were divided into six groups: Standard diet (SD) + vehicle; SD + Zn; SD + BCAA; High-fat diet (HFD) + vehicle; HFD + Zn; and HFD + BCAA. Diets were administrated for 19 weeks, Zn (1,2 mg/kg/day) or BCAA (750 mg/kg/day) supplementation was conducted in the last 4 weeks. Long-term recognition memory was evaluated by the novel object recognition test. IL-1ß immunoreactivity in the cortex and hippocampus, and IL-6 levels in the cortex tissue were assessed. Astrogliosis were evaluated through GFAP + cell count and morphological analysis (Sholl Method). Zn supplementation improved object recognition memory in HFD-fed rats, which was not observed following BCAA supplementation. The levels of IL-6 in the cerebral cortex were higher after HFD, which was not diminished after neither supplementation. Obesity also led to increased IL-1ß immunoreactivity in the cerebral cortex and hippocampus, which was reduced by Zn. BCAA supplementation also diminished IL-1ß immunoreactivity, but only in the hippocampus. We also showed that astrocyte reactivity caused by HFD is area-dependent, being the cerebral cortex more susceptible to the diet. Even though BCAA and Zn can affect IL-1ß immunoreactivity and astrocyte morphology, only Zn improved memory. Future studies are needed to clarify the pathways by which Zn improves cognition in obesity.
Assuntos
Aminoácidos de Cadeia Ramificada , Zinco , Aminoácidos de Cadeia Ramificada/farmacologia , Aminoácidos de Cadeia Ramificada/uso terapêutico , Animais , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Inflamação/tratamento farmacológico , Interleucina-6 , Obesidade/tratamento farmacológico , Ratos , Ratos Wistar , Zinco/farmacologiaRESUMO
Major depressive disorder (MDD) is a debilitating neuropsychiatric illness affecting over 20% of the population worldwide. Despite its prevalence, our understanding of its pathophysiology is severely limited, thus hampering the development of novel therapeutic strategies. Recent advances have clearly established astrocytes as major players in the pathophysiology, and plausibly pathogenesis, of major depression. In particular, astrocyte density in the hippocampus is severely diminished in MDD patients and correlates strongly with the disease outcome. Moreover, astrocyte densities from different subfields of the hippocampus show varying trends in terms of their correlation to the disease outcome. Given the central role that hippocampus plays in the pathophysiology of depression and in the action of antidepressant drugs, changes in hippocampal astrocyte density and physiology may have a significant effect on behavioral symptoms of MDD. In this study, we used chronic mild unpredictable stress (CMUS) in mice, which induces a depressive-like state, and examined its effects on astrocytes from different subfields of the hippocampus. We used SOX9 and S100ß immunostaining to estimate the number of astrocytes per square millimeter from various hippocampal subfields. Furthermore, using confocal images of fluorescently labeled glial fibrillary acidic protein (GFAP)-immunopositive hippocampal astrocytes, we quantified various morphology-related parameters and performed Sholl analysis. We found that CMUS exerts differential effects on astrocyte cell numbers, ramification, cell radius, surface area, and process width of hippocampal astrocytes from different hippocampal subfields. Taken together, our study reveals that chronic stress does not uniformly affect all hippocampal astrocytes; but exerts its effects differentially on different astrocytic subpopulations within the hippocampus.
Assuntos
Astrócitos , Transtorno Depressivo Maior , Animais , Antidepressivos , Astrócitos/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Humanos , CamundongosRESUMO
BACKGROUND: The identification of endogenous signals that lead to microglial activation is a key step in understanding neuroinflammatory cascades. As ATP release accompanies mechanical strain to neural tissue, and as the P2X7 receptor for ATP is expressed on microglial cells, we examined the morphological and molecular consequences of P2X7 receptor stimulation in vivo and in vitro and investigated the contribution of the P2X7 receptor in a model of increased intraocular pressure (IOP). METHODS: In vivo experiments involved intravitreal injections and both transient and sustained elevation of IOP. In vitro experiments were performed on isolated mouse retinal and brain microglial cells. Morphological changes were quantified in vivo using Sholl analysis. Expression of mRNA for M1- and M2-like genes was determined with qPCR. The luciferin/luciferase assay quantified retinal ATP release while fura-2 indicated cytoplasmic calcium. Microglial migration was monitored with a Boyden chamber. RESULTS: Sholl analysis of Iba1-stained cells showed retraction of microglial ramifications 1 day after injection of P2X7 receptor agonist BzATP into mouse retinae. Mean branch length of ramifications also decreased, while cell body size and expression of Nos2, Tnfa, Arg1, and Chil3 mRNA increased. BzATP induced similar morphological changes in ex vivo tissue isolated from Cx3CR1+/GFP mice, suggesting recruitment of external cells was unnecessary. Immunohistochemistry suggested primary microglial cultures expressed the P2X7 receptor, while functional expression was demonstrated with Ca2+ elevation by BzATP and block by specific antagonist A839977. BzATP induced process retraction and cell body enlargement within minutes in isolated microglial cells and increased Nos2 and Arg1. While ATP increased microglial migration, this required the P2Y12 receptor and not P2X7 receptor. Transient elevation of IOP led to microglial process retraction, cell body enlargement, and gene upregulation paralleling changes observed with BzATP injection, in addition to retinal ATP release. Pressure-dependent changes were reduced in P2X7-/- mice. Death of retinal ganglion cells accompanied increased IOP in C57Bl/6J, but not P2X7-/- mice, and neuronal loss showed some association with microglial activation. CONCLUSIONS: P2X7 receptor stimulation induced rapid morphological activation of microglial cells, including process retraction and cell body enlargement, and upregulation of markers linked to both M1- and M2-type activation. Parallel responses accompanied IOP elevation, suggesting ATP release and P2X7 receptor stimulation influence the early microglial response to increased pressure.
Assuntos
Glaucoma/metabolismo , Glaucoma/patologia , Microglia/metabolismo , Microglia/patologia , Receptores Purinérgicos P2X7/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Regulação para CimaRESUMO
BACKGROUND: Neuromorphological changes are consistently reported in the prefrontal cortex of patients with stress-related disorders and in rodent stress models, but the effects of stress on astrocyte morphology and the potential link to behavioral deficits are relatively unknown. METHODS: To answer these questions, transgenic mice expressing green fluorescent protein (GFP) under the glial fibrillary acid protein (GFAP) promotor were subjected to 7, 21, or 35 days of chronic restraint stress (CRS). CRS-induced behavioral effects on anhedonia- and anxiety-like behaviors were measured using the sucrose intake and the PhenoTyper tests, respectively. Prefrontal cortex GFP+ or GFAP+ cell morphology was assessed using Sholl analysis, and associations with behavior were determined using correlation analysis. RESULTS: CRS-exposed male and female mice displayed anxiety-like behavior at 7, 21, and 35 days and anhedonia-like behavior at 35 days. Analysis of GFAP+ cell morphology revealed significant atrophy of distal processes following 21 and 35 days of CRS. CRS induced similar decreases in intersections at distal radii for GFP+ cells accompanied by increased proximal processes. In males, the number of intersections at the most distal radius step significantly correlated with anhedonia-like behavior (r = 0.622, P < .05) for GFP+ cells and with behavioral emotionality calculated by z-scoring all behavioral measured deficits (r = -0.667, P < .05). Similar but not significant correlations were observed in females. No correlation between GFP+ cell atrophy with anxiety-like behavior was found. CONCLUSION: Chronic stress exposure induces a progressive atrophy of cortical astroglial cells, potentially contributing to maladaptive neuroplastic and behavioral changes associated with stress-related disorders.
Assuntos
Astrócitos/metabolismo , Córtex Pré-Frontal/metabolismo , Estresse Psicológico/metabolismo , Animais , Ansiedade/metabolismo , Depressão/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Plasticidade Neuronal , Restrição FísicaRESUMO
Optic neuropathies, such as glaucoma, lead to retinal ganglion cell (RGC) death. Transgenic mouse strains that express fluorescent proteins under the control of the Thy1 promoter have permitted single RGC imaging. Specifically, in one strain of mice expressing yellow fluorescent protein (Thy1-YFP), fluorescence is expressed in only 0.2% of RGCs. This reduced expression allows visualization of the full dendritic arbour of YFP-expressing RGCs, facilitating the investigation of structural changes. As susceptibility amongst RGCs varies with morphology and subtype, labelling methods should ideally non-discriminately label RGCs to accurately determine the effects of experimental glaucoma. This study therefore sought to determine morphological subtypes of RGCs in the Thy1-YFP mouse strain. Retinas from Thy1-YFP mice were imaged ex vivo with fluorescence microscopy. With Sholl analysis, a technique for quantifying the morphology of individual neurons, the dendritic field (DF), area under the curve (AUC), normalized AUC (Nav), peak number of intersections (PNI), and skew for single RGCs were computed. The distance of the RGC from the optic nerve head (dONH) was also measured. These morphological parameters were inputted into a multivariate cluster analysis to determine the optimal number of clusters to group all RGCs analyzed, which were then grouped into "Small", "Medium", and "Large" sized cluster groups according to increasing DF size. A total of 178 RGCs from 10 retinas of 8 mice were analyzed from which the cluster analysis identified 13 clusters. Eighty-eight (49%), 77 (43.2%), and 13 (7.3%) RGCs were grouped into small, medium and large clusters, respectively. Clusters 1-6 had small DFs. Clusters 1 and 3 had the lowest AUC and Nav. Clusters 2, 3, and 5 had asymmetric DFs while Clusters 3, 5, and 6 were distal to the ONH. Clusters 7-11 had medium DFs; of these, Clusters 7 and 10 had the lowest AUC, Clusters 8 and 10 had the highest skew, and Clusters 7 and 11 were closest to the ONH. Clusters 12 and 13 had large DFs. Both had low skew and high AUC. High PNI and dONH distinguished Cluster 12 from Cluster 13. We present the largest study to date examining YFP expression in RGCs of transgenic Thy1-YFP mice. Among the 13 clusters, there was a wide range of morphological features with further variation within size categories. Our findings support the notion that YFP is expressed non-discriminatingly in RGCs of Thy1-YFP transgenic mice and this strain is a valuable tool for studies of experimental optic neuropathies.
Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Luminescentes/metabolismo , Células Ganglionares da Retina/citologia , Antígenos Thy-1/metabolismo , Animais , Contagem de Células , Linhagem Celular , Análise por Conglomerados , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Microscopia de Fluorescência , Análise Multivariada , Células Ganglionares da Retina/metabolismoRESUMO
The removal of afferent input to the olfactory bulb by both cautery and chemical olfactory organ ablation in adult zebrafish results in a significant decrease in volume of the ipsilateral olfactory bulb. To examine the effects of deafferentation at a cellular level, primary output neurons of the olfactory bulb, the mitral cells, were investigated using retrograde tract tracing with fluorescent dextran using ex vivo brain cultures. Morphological characteristics including the number of major dendritic branches, total length of dendritic branches, area of the dendritic arbor, overall dendritic complexity, and optical density of the arbor were used to determine the effects of deafferentation on mitral cell dendrites. Following 8 weeks of permanent deafferentation there were significant reductions in the total length of dendritic branches, the area of the dendritic arbor, and the density of fine processes in the dendritic tuft. With 8 weeks of chronic, partial deafferentation there were significant reductions in all parameters examined, including a modified Sholl analysis that showed significant decreases in overall dendritic complexity. These results show the plasticity of mitral cell dendritic structures in the adult brain and provide information about the response of these output neurons following the loss of sensory input in this key model system.
Assuntos
Dendritos/ultraestrutura , Neurônios Aferentes/fisiologia , Bulbo Olfatório/fisiologia , Animais , Plasticidade Neuronal/fisiologia , Bulbo Olfatório/citologia , Bulbo Olfatório/ultraestrutura , Peixe-ZebraRESUMO
OBJECTIVE: Research demonstrates a link between diet-induced obesity and cognitive impairments; however, no studies have utilized the Sholl analysis to assess changes in dendritic arborization as a possible cause of obesity-induced memory deficits. Therefore, the purpose of this study was to examine the effect of a Western-style diet (WSD) on memory and dendritic complexity of male Sprague-Dawley rats. METHODS: Male Sprague-Dawley rats (n = 18) were fed either a control or WSD. Spatial memory and episodic memory were assessed using the Morris Water Maze and novel object recognition (NOR) tasks, respectively. At termination, brains were removed and prepared with the Golgi-Cox method. Stained neurons in both the hippocampus and entorhinal cortex (EC) were imaged and digitally reconstructed. RESULTS: Results indicated significant differences in percent body fat and TNFα levels between dietary conditions. WSD males also experienced reduced NOR exploration ratios, but no deficits in spatial memory were observed. Analysis of dendritic length and number of branch points revealed no significant differences in either the EC or the hippocampus; however, the Sholl analysis indicated that a WSD increased neuronal complexity in the EC. DISCUSSION: Sholl analysis of the EC suggests a possible diet-induced dysfunction of pruning, which may contribute to reduced performance on the NOR task. Elevated TNFα levels indicate a putative role of inflammation in neuronal remodeling. The results demonstrate the importance of investigating mechanisms underlying obesity-related cognitive impairments.
Assuntos
Dendritos/fisiologia , Dieta Ocidental , Córtex Entorrinal/fisiologia , Hipocampo/fisiologia , Plasticidade Neuronal , Reconhecimento Psicológico/fisiologia , Animais , Córtex Entorrinal/citologia , Hipocampo/citologia , Masculino , Memória Episódica , Ratos Sprague-Dawley , Memória Espacial/fisiologiaRESUMO
Adolescence is accompanied by increased vulnerability to psychiatric illnesses, including anxiety, depression, schizophrenia, and eating disorders. The hippocampus is important for regulating emotional state through its ventral compartment and spatial cognition through its dorsal compartment. Previous animal studies have examined hippocampal development at stages before, after or at single time points during adolescence. However, only one study has investigated morphological changes at multiple time points during adolescence, and no study has yet compared developmental changes of dorsal versus ventral hippocampi. We analyzed the dorsal and ventral hippocampi of rats to determine the developmental trajectory of Golgi-stained hippocampal CA1 neurons by sampling at five time points, ranging from postnatal day (P) 35 (puberty) to 55 (end of adolescence). We show that the dorsal hippocampus undergoes transient dendritic retractions in stratum radiatum (SR), while the ventral hippocampus undergoes transient dendritic growths in SR. During adulthood, stress and hormonal fluctuations have been shown to alter the physiology and morphology of hippocampal neurons, but studies of the impact of these factors upon adolescent hippocampi are scarce. In addition, we show that female-female pair housing from P 36-44 significantly increases branching in the dorsal SR and reduces branching in the ventral SR. Taken together with data on spine density, these results indicate that pyramidal cells in the dorsal and ventral CA1 of female adolescents are remodeled differently following single housing. Social housing during adolescence elicits pathway-specific changes in the hippocampus that may underlie behavioral benefits, including stability of emotion regulation and superior cognition.
Assuntos
Região CA1 Hipocampal/citologia , Crescimento Neuronal , Células Piramidais/citologia , Estresse Psicológico/patologia , Animais , Região CA1 Hipocampal/crescimento & desenvolvimento , Dendritos/fisiologia , Feminino , Ratos , Ratos Sprague-Dawley , Isolamento SocialRESUMO
Proper communication among neurons depends on an appropriately formed dendritic arbor, and thus, aberrant changes to the arbor are implicated in many pathologies, ranging from cognitive disorders to neurodegenerative diseases. Due to the importance of dendritic shape to neuronal network function, the morphology of dendrites is tightly controlled and is influenced by both intrinsic and extrinsic factors. In this work, we examine how brain-derived neurotrophic factor (BDNF), one of the most well-studied extrinsic regulators of dendritic branching, affects the arbor when it is applied locally via microbeads to cultures of hippocampal neurons. We found that local application of BDNF increases both proximal and distal branching in a time-dependent manner and that local BDNF application attenuates pruning of dendrites that occurs with neuronal maturation. Additionally, we examined whether cytosolic PSD-95 interactor (cypin), an intrinsic regulator of dendritic branching, plays a role in these changes and found strong evidence for the involvement of cypin in BDNF-promoted increases in dendrites after 24 but not 48 h of application. This current study extends our previous work in which we found that bath application of BDNF for 72 h, but not shorter times, increases proximal dendrite branching and that this increase occurs through transcriptional regulation of cypin. Moreover, this current work illustrates how dendritic branching is regulated differently by the same growth factor depending on its spatial localization, suggesting a novel pathway for modulation of dendritic branching locally.
Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Dendritos/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Plasticidade Neuronal/efeitos dos fármacos , Animais , Dendritos/metabolismo , Dendritos/ultraestrutura , Proteína 4 Homóloga a Disks-Large , Embrião de Mamíferos , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Microesferas , Plasticidade Neuronal/genética , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Fatores de Tempo , Transcrição Gênica , TransfecçãoRESUMO
Polychlorinated biphenyls (PCBs), and in particular non-dioxin-like (NDL) congeners, continue to pose a significant risk to the developing nervous system. PCB 95, a prevalent NDL congener in the human chemosphere, promotes dendritic growth in rodent primary neurons by activating calcium-dependent transcriptional mechanisms that normally function to link activity to dendritic growth. Activity-dependent dendritic growth is also mediated by calcium-dependent translational mechanisms involving mechanistic target of rapamycin (mTOR), suggesting that the dendrite-promoting activity of PCB 95 may also involve mTOR signaling. Here, we test this hypothesis using primary neuron-glia co-cultures derived from the hippocampi of postnatal day 0 Sprague Dawley rats. PCB 95 (1 nM) activated mTOR in hippocampal cultures as evidenced by increased phosphorylation of mTOR at ser2448. Pharmacologic inhibition of mTOR signaling using rapamycin (20 nM), FK506 (5 nM), or 4EGI-1 (1 µM), and siRNA knockdown of mTOR, or the mTOR complex binding proteins, raptor or rictor, blocked PCB 95-induced dendritic growth. These data identify mTOR activation as a novel molecular mechanism contributing to the effects of PCB 95 on dendritic arborization. In light of clinical data linking gain-of-function mutations in mTOR signaling to neurodevelopmental disorders, our findings suggest that mTOR signaling may represent a convergence point for gene by environment interactions that confer risk for adverse neurodevelopmental outcomes.
Assuntos
Dendritos/efeitos dos fármacos , Hipocampo/citologia , Neurônios/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Serina-Treonina Quinases TOR/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Técnicas de Cocultura , Dendritos/fisiologia , Feminino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Neuroglia/citologia , Neurônios/metabolismo , Ratos Sprague-Dawley , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteína 1A de Ligação a Tacrolimo/metabolismoRESUMO
The architectures of dendritic trees are crucial for the wiring and function of neuronal circuits because they determine coverage of receptive territories, as well as the nature and strength of sensory or synaptic inputs. Here, we describe a cell-intrinsic pathway sculpting dendritic arborization (da) neurons in Drosophila that requires Longitudinals Lacking (Lola), a BTB/POZ transcription factor, and its control of the F-actin cytoskeleton through Spire (Spir), an actin nucleation protein. Loss of Lola from da neurons reduced the overall length of dendritic arbors, increased the expression of Spir, and produced inappropriate F-actin-rich dendrites at positions too near the cell soma. Selective removal of Lola from only class IV da neurons decreased the evasive responses of larvae to nociception. The increased Spir expression contributed to the abnormal F-actin-rich dendrites and the decreased nocifensive responses because both were suppressed by reduced dose of Spir. Thus, an important role of Lola is to limit expression of Spir to appropriate levels within da neurons. We found Spir to be expressed in dendritic arbors and to be important for their development. Removal of Spir from class IV da neurons reduced F-actin levels and total branch number, shifted the position of greatest branch density away from the cell soma, and compromised nocifensive behavior. We conclude that the Lola-Spir pathway is crucial for the spatial arrangement of branches within dendritic trees and for neural circuit function because it provides balanced control of the F-actin cytoskeleton.
Assuntos
Actinas/metabolismo , Dendritos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas dos Microfilamentos/metabolismo , Transcrição Gênica , Animais , Forma Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Dosagem de Genes/genética , Proteínas de Homeodomínio/metabolismo , Proteínas dos Microfilamentos/genética , Morfogênese/genética , Nociceptividade , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/metabolismo , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais/genética , Supressão Genética , Fatores de Transcrição/metabolismoRESUMO
Obesity in humans is associated with cognitive decline and elevated risk of neurodegenerative diseases of old age. Variations of high-fat diet are often used to model these effects in animal studies. However, we previously reported improvements in markers of memory and learning, as well as larger hippocampi and higher metabolite concentrations in Wistar rats fed high-fat, high-carbohydrate diet (HFCD, 60 % energy from fat, 28 % from carbohydrates) for 1 year; this diet leads to mild ketonemia (Setkowicz et al. in PLoS One 10:e0139987, 2015). In the present study, we follow up on this cohort to assess glial morphology and expression of markers related to gliosis. Twenty-five male Wistar rats were kept on HFCD and twenty-five on normal chow. At 12 months of age, the animals were sacrificed and processed for immunohistochemical staining for astrocytic (glial fibrillary acidic protein), microglial (Iba1), and neuronal (neuronal nitric oxide synthetase, nNOS) markers in the hippocampus. We have found changes in immunopositive area fraction and cellular complexity, as studied by a simplified Sholl procedure. To our knowledge, this study is the first to apply this methodology to the study of glial cells in HFCD animals. GFAP and Iba1 immunoreactive area fraction in the hippocampi of HFCD-fed rats were decreased, while the mean number of intersections (an indirect measure of cell complexity) was decreased in GFAP-positive astrocytes, but not in Iba1-expressing microglia. At the same time, nNOS expression was lowered after HFCD in both the cortex and the hippocampus.
Assuntos
Astrócitos/citologia , Astrócitos/enzimologia , Forma Celular , Dieta Hiperlipídica , Microglia/citologia , Microglia/enzimologia , Óxido Nítrico Sintase Tipo I/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Contagem de Células , Ensaio de Imunoadsorção Enzimática , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Masculino , Proteínas dos Microfilamentos/metabolismo , Ratos WistarRESUMO
Endocrine fibroblast growth factor 23 (FGF23) is predominantly secreted by osteocytes and facilitates renal phosphate excretion. However, FGF23 is also present in cerebrospinal fluid. In chronic kidney disease, FGF23 serum levels are excessively elevated and associated with learning and memory deficits. Structural plasticity of the hippocampus such as formation of new synapses or an altered dendritic arborization comprises a cellular and morphological correlate of memory formation. Therefore, we hypothesize that FGF23 alters hippocampal neuron morphology and synapses. To address this, we prepared primary murine hippocampal cultures and incubated them with recombinant FGF23 alone or together with a soluble isoform of its co-receptor α-Klotho. Neuronal expression of a fluorescent reporter allowed for a detailed evaluation of the neuronal morphology by Sholl analysis. Additionally, we evaluated synaptic density, identified by stainings, for synaptic markers. We show an enhanced number of primary neurites combined with a reduced arborization, resulting in a less complex morphology of neurons treated with FGF23. Moreover, FGF23 enhances the synaptic density in a FGF-receptor (FGF-R) dependent manner. Finally, we addressed the corresponding signaling events downstream of FGF-R employing a combination of western blots and quantitative immunofluorescence. Interestingly, FGF23 induces phospholipase Cγ activity in primary hippocampal neurons. Co-application of soluble α-Klotho leads to activation of the Akt-pathway and modifies FGF23-impact on neuronal morphology and synaptic density. Compared with other FGFs, this alternative signaling pattern is a possible reason for differential effects of FGF23 on hippocampal neurons and may thereby contribute to learning and memory deficits in chronic kidney disease patients. In this study, we show that fibroblast growth factor 23 inhibits neuronal ramification and enhances the synaptic density in primary hippocampal cultures accompanied by phospholipase Cγ-activation. Co-application of the co-receptor α-Klotho leads to an Akt-activation and further modifies neuronal morphology and number of synapses. Those effects provide a mechanistic basis for memory deficits in patients suffering from chronic kidney disease (CKD) characterized by excessively elevated FGF23 levels as well as memory deficits.