Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Environ Manage ; 347: 119062, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37783085

RESUMO

Poplar short rotation coppice (SRC) systems are important for biomass production and for short-to medium-term carbon (C) sequestration, contributing to a low-carbon bioeconomy and thus helping to mitigate global warming. The productivity and profitability of these plantations are, however, challenged under restrictive irrigation associated with climate change. This study compares the above- and below-ground C sequestration potential and economic viability of a 12-year plantation cycle (4 rotations of 3 years each) under Mediterranean conditions with optimum irrigation (T1) and 50% irrigation reduction (T2), analysing other promising biomass uses in the form of bioproducts. A total of 138 trees of the highly productive hybrid ('AF2') in a SRC-trial were sampled monthly (first rotation). Additionally, data from an extensive poplar plantation network (30 sites) was used to complete data for the plantation cycle. The average C content for above- and below-ground biomass was 17.04 Mg C ha-1 yr-1 (T1), falling by 24% in T2. The net present value (NPV) in T1 (6461 € ha-1) was 52% lower under T2 conditions. Extra payments for C sequestration increased the NPV to 8023 for T1 and 4331 € ha-1 for T2. Roots represent an important C storage in the soil, accumulating 29.9 Mg C ha-1 (T1) and 22.8 Mg C ha-1 (T2) by the end of the cycle in our study. The mitigation potential is strongly fortified when the share of bioproducts in biomass end-use increases. Assuming a distribution of 50% bioenergy and 50% bioproducts, emission were reduced between -114 Mg CO2eq ha-1 (T1) and -88 Mg CO2eq ha-1 (T2) compared to BAU until end of the century. This scenario plays a crucial sink-effect role by storing C contained in biomass, which is not immediately released into the atmosphere.


Assuntos
Carbono , Populus , Árvores , Biomassa , Solo , Sequestro de Carbono
2.
Int J Phytoremediation ; 20(1): 8-15, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-27929665

RESUMO

Poplar clones were studied for their phytoextraction capacity in the second growth cycle (6-year growth) on a site in the Belgian Campine region, which is contaminated with Cd and Zn via historic atmospheric deposition of nearby zinc smelter activities. The field trial revealed regrowth problems for some clones that could not be predicted in the first growth cycle. Four allometric relations were assessed for their capacity to predict biomass yield in the second growth cycle. A power function based on the shoot diameter best estimates the biomass production of poplar with R2 values between 0.94 and 0.98. The woody biomass yield ranged from 2.1 to 4.8 ton woody Dry Mass (DM) ha-1 y-1. The primary goal was to reduce soil concentrations of metals caused by phytoextraction. Nevertheless, increased metal concentrations were determined in the topsoil. This increase can partially be explained by the input of metals from deeper soil layers in the top soil through litterfall. The phytoextraction option with poplar short rotation coppice in this setup did not lead to the intended soil remediation in a reasonable time span. Therefore, harvest of the leaf biomass is put forward as a crucial part of the strategy for soil remediation through Cd/Zn phytoextraction.


Assuntos
Biodegradação Ambiental , Metais Pesados , Populus , Poluentes do Solo , Bélgica , Folhas de Planta , Madeira
3.
Photosynth Res ; 132(2): 151-164, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28238122

RESUMO

Present study describes the responses of short rotation coppice (SRC) mulberry, a potential bio-energy tree, grown under interactive environment of elevated CO2 (E) and water stress (WS). Growth in E stimulated photosynthetic performance in well-watered (WW) as well as during WS with significant increases in light-saturated photosynthetic rates (A Sat), water use efficiency (WUEi), intercellular [CO2], and photosystem-II efficiency (F V/F M and ∆F/F M') with concomitant reduction in stomatal conductance (g s) and transpiration (E) compared to ambient CO2 (A) grown plants. Reduced levels of proline, H2O2, and malondialdehyde (MDA) and higher contents of antioxidants including ascorbic acid and total phenolics in WW and WS in E plants clearly demonstrated lesser oxidative damage. Further, A plants showed higher transcript abundance and antioxidant enzyme activities under WW as well as during initial stages of WS (15 days). However, with increasing drought imposition (30 days), A plants showed down regulation of antioxidant systems compared to their respective E plants. These results clearly demonstrated that future increased atmospheric CO2 enhances the photosynthetic potential and also mitigate the drought-induced oxidative stress in SRC mulberry. In conclusion, mulberry is a potential bio-energy tree crop which is best suitable for short rotation coppice forestry-based mitigation of increased [CO2] levels even under intermittent drought conditions, projected to prevail in the fast-changing global climate.


Assuntos
Antioxidantes/metabolismo , Dióxido de Carbono/metabolismo , Morus/metabolismo , Secas , Fotossíntese/fisiologia
4.
J Environ Manage ; 186(Pt 2): 301-313, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27817970

RESUMO

(Aided) phytostabilisation has been proposed as a suitable technique to decrease the environmental risks associated with metal(loid)-enriched mine tailings. Field scale evaluations are needed for demonstrating their effectiveness in the medium- to long-term. A field trial was implemented in spring 2011 in Cu-rich mine tailings in the NW of Spain. The tailings were amended with composted municipal solid wastes and planted with Salix spp., Populus nigra L. or Agrostis capillaris L. cv. Highland. Plant growth, nutritive status and metal accumulation, and soil physico- and bio-chemical properties, were monitored over three years (four years for plant growth). The total bacterial community, α- and ß-Proteobacteria, Actinobacteria and Streptomycetaceae were studied by DGGE of 16s rDNA fragments. Compost amendment improved soil properties such as pH, CEC and fertility, and decreased soil Cu availability, leading to the establishment of a healthy vegetation cover. Both compost-amendment and plant root activity stimulated soil enzyme activities and induced important shifts in the bacterial community structure over time. The woody plant, S. viminalis, and the grassy species, A. capillaris, showed the best results in terms of plant growth and biomass production. The beneficial effects of the phytostabilisation process were maintained at least three years after treatment.


Assuntos
Biodegradação Ambiental , Cobre/toxicidade , Microbiologia do Solo , Poluentes do Solo/toxicidade , Solo/química , Agrostis/crescimento & desenvolvimento , Bactérias/genética , Biomassa , Cobre/farmacocinética , Consórcios Microbianos/genética , Mineração , Raízes de Plantas/química , Raízes de Plantas/microbiologia , Populus/crescimento & desenvolvimento , Salix/crescimento & desenvolvimento , Poluentes do Solo/análise , Poluentes do Solo/farmacocinética , Resíduos Sólidos , Espanha , Especificidade da Espécie
5.
J Environ Manage ; 127 Suppl: S96-S116, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23158524

RESUMO

This paper presents results of a case study in Middle Saxony, Germany, where the impact of conversion, afforestation and alternatively introduction of short rotation coppice areas on the provision of ecosystem services was tested in a spatially inexplicit and a spatially explicit way to formulate recommendations for regional planning. While the spatially inexplicit testing did not lead to clear results regarding to what degree forests or short rotation coppice areas are desirable and applicable, the spatially explicit testing revealed that an increase in the forest area or area with short rotation coppice by 29.7% in unstructured agriculturally dominated Loess regions, 14.4% in more topographically structured parts in the North-East of the model region and 23.6% in its mountainous parts would be beneficial. Potentially resulting losses in the provision of bioresources and regional economy can be considerably reduced by replacing afforestation areas with short rotation coppice. In summary, we found that the spatially explicit analysis of land use scenarios in combination with a more detailed land use classification and including an assessment of changes in land use pattern gave us an improved basis for assessing different possible planning strategies and to enhance the communication between forest management planners and regional planners.


Assuntos
Ecossistema , Árvores
6.
Materials (Basel) ; 16(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37445003

RESUMO

Typically, coniferous sawdust from debarked stems is used to make pellets. Given the high lignin content, which ensures strong binding and high calorific values, this feedstock provides the best quality available. However, finding alternative feedstocks for pellet production is crucial if small-scale pellet production is to be developed and used to support the economy and energy independence of rural communities. These communities have to be able to create pellets devoid of additives and without biomass pre-processing so that the feedstock price remains low. The features of pellets made from other sources of forest biomass, such as different types of waste, broadleaf species, and pruning biomass, have attracted some attention in this context. This review sought to provide an overview of the most recent (2019-2023) knowledge on the subject and to bring into consideration potential feedstocks for the growth of small-scale pellet production. Findings from the literature show that poor bulk density and mechanical durability are the most frequent issues when making pellets from different feedstocks. All of the tested alternative biomass typologies have these shortcomings, which are also a result of the use of low-performance pelletizers in small-scale production, preventing the achievement of adequate mechanical qualities. Pellets made from pruning biomass, coniferous residues, and wood from short-rotation coppice plants all have significant flaws in terms of ash content and, in some cases, nitrogen, sulfur, and chlorine content as well. All things considered, research suggests that broadleaf wood from beech and oak trees, collected through routine forest management activities, makes the best feasible feedstock for small-scale pellet production. Despite having poor mechanical qualities, these feedstocks can provide pellets with a low ash level. High ash content is a significant disadvantage when considering pellet manufacture and use on a small scale since it can significantly raise maintenance costs, compromising the supply chain's ability to operate cost-effectively. Pellets with low bulk density and low mechanical durability can be successfully used in a small-scale supply chain with the advantages of reducing travel distance from the production site and storage time.

7.
Biotechnol Biofuels Bioprod ; 16(1): 165, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37924121

RESUMO

Biogas from anaerobic digestion is a versatile energy carrier that can be upgraded to compressed biomethane gas (CBG) as a renewable and sustainable alternative to natural gas. Organic residues and energy crops are predicted to be major sources of bioenergy production in the future. Pre-treatment can reduce the recalcitrance of lignocellulosic energy crops such as Salix to anaerobic digestion, making it a potential biogas feedstock. This lignocellulosic material can be co-digested with animal manure, which has the complementary effect of increasing volumetric biogas yield. Salix varieties exhibit variations in yield, composition and biomethane potential values, which can have a significant effect on the overall biogas production system. This study assessed the impact of Salix varietal differences on the overall mass and energy balance of a co-digestion system using steam pre-treated Salix biomass and dairy manure (DaM) to produce CBG as the final product. Six commercial Salix varieties cultivated under unfertilised and fertilised conditions were compared. Energy and mass flows along this total process chain, comprising Salix cultivation, steam pre-treatment, biogas production and biogas upgrading to CBG, were evaluated. Two scenarios were considered: a base scenario without heat recovery and a scenario with heat recovery. The results showed that Salix variety had a significant effect on energy output-input ratio (R), with R values in the base scenario of 1.57-1.88 and in the heat recovery scenario of 2.36-2.94. In both scenarios, unfertilised var. Tordis was the best energy performer, while the fertilised var. Jorr was the worst. Based on this energy performance, Salix could be a feasible feedstock for co-digestion with DaM, although its R value was at the lower end of the range reported previously for energy crops.

8.
Microorganisms ; 10(1)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35056589

RESUMO

Short rotation coppice (SRC) is increasingly being adopted for bioenergy production, pollution remediation and land restoration. However, its long-term effects on soil microbial communities are poorly characterized. Here, we studied soil microbial functional genes and their biogeographic pattern under SRC with willow trees as compared to those under permanent grassland (C). GeoChip analysis showed a lower functional gene diversity in SRC than in C soil, whereas microbial ATP and respiration did not change. The SRC soil had lower relative abundances of microbial genes encoding for metal(-oid) resistance, antibiotic resistance and stress-related proteins. This indicates a more benign habitat under SRC for microbial communities after relieving heavy metal stress, consistent with the lower phytoavailability of some metals (i.e., As, Cd, Ni and Zn) and higher total organic carbon, NO3--N and P concentrations. The microbial taxa-area relationship was valid in both soils, but the space turnover rate was higher under SRC within 0.125 m2, which was possibly linked to a more benign environment under SRC, whereas similar values were reached beyond thisarea. Overall, we concluded that SRC management can be considered as a phytotechnology that ameliorates the habitat for soil microorganisms, owing to TOC and nutrient enrichment on the long-term.

9.
Plants (Basel) ; 10(9)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34579357

RESUMO

The increasing number of contaminated sites worldwide calls for sustainable remediation, such as phytoremediation, in which plants are used to decontaminate soils. We hypothesized that better anchoring phytoremediation in plant ecophysiology has the potential to drastically improve its predictability. In this study, we explored how the community composition, diversity and coppicing of willow plantations, influenced phytoremediation services in a four-year field trial. We also evaluated how community-level plant functional traits might be used as predictors of phytoremediation services, which would be a promising avenue for plant selection in phytoremediation. We found no consistent impact of neither willow diversity nor coppicing on phytoremediation services directly. These services were rather explained by willow traits related to resource economics and management strategy along the plant "fast-slow" continuum. We also found greater belowground investments to promote plant bioconcentration and soil decontamination. These traits-services correlations were consistent for several trace elements investigated, suggesting high generalizability among contaminants. Overall, our study provides evidence, even using a short taxonomic (and thus functional) plant gradient, that traits can be used as predictors for phytoremediation efficiency for a broad variety of contaminants. This suggests that a trait-based approach has great potential to develop predictive plant selection strategies in phytoremediation trials, through a better rooting of applied sciences in fundamental plant ecophysiology.

10.
Front Fungal Biol ; 2: 671270, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37744105

RESUMO

Soil fungi are strongly affected by plant species or genotypes since plants modify their surrounding environment, but the effects of plant genotype diversity on fungal diversity and function have not been extensively studied. The interactive responses of fungal community composition to plant genotypic diversity and environmental drivers were investigated in Salix biomass systems, posing questions about: (1) How fungal diversity varies as a function of plant genotype diversity; (2) If plant genotype identity is a strong driver of fungal community composition also in plant mixtures; (3) How the fungal communities change through time (seasonally and interannually)?; and (4) Will the proportion of ECM fungi increase over the rotation? Soil samples were collected over 4 years, starting preplanting from two Salix field trials, including four genotypes with contrasting phenology and functional traits, and genotypes were grown in all possible combinations (four genotypes in Uppsala, Sweden, two in Rostock, Germany). Fungal communities were identified, using Pacific Biosciences sequencing of fungal ITS2 amplicons. We found some site-dependent relationships between fungal community composition and genotype or diversity level, and site accounted for the largest part of the variation in fungal community composition. Rostock had a more homogenous community structure, with significant effects of genotype, diversity level, and the presence of one genotype ("Loden") on fungal community composition. Soil properties and plant and litter traits contributed to explaining the variation in fungal species composition. The within-season variation in composition was of a similar magnitude to the year-to-year variation. The proportion of ECM fungi increased over time irrespective of plant genotype diversity, and, in Uppsala, the 4-mixture showed a weaker response than other combinations. Species richness was generally higher in Uppsala compared with that in Rostock and increased over time, but did not increase with plant genotype diversity. This significant site-specificity underlines the need for consideration of diverse sites to draw general conclusions of temporal variations and functioning of fungal communities. A significant increase in ECM colonization of soil under the pioneer tree Salix on agricultural soils was evident and points to changed litter decomposition and soil carbon dynamics during Salix growth.

11.
Plants (Basel) ; 9(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271821

RESUMO

Shrub willow (Salix L. spp.) is a promising bioenergy resource crop due to its high growth rates and superb regenerative ability. Sprouting capacity is influenced by many factors, such as parent tree species and size, which are important limiting factors for stump survival or sprout growth. In this study, we aimed to quantify the survival and regeneration performance of sprouts (including sprout height, sprout diameter, sprout number, leaf morphological traits, leaf chlorophyll content, and ground part dry biomass) from the stumps of two Salix species from three diameter classes (10-15, 16-19, and 20-30 mm). An attempt was made to explore why the stump size affects the regeneration of willows by analyzing the carbon and nitrogen proportion of stumps. Stump survival did not differ between the two Salix species. However, the sprout regeneration of S. triandra was much better than that of S. suchowensis. An increase in stump diameter caused increases in the number of sprouts produced per stump, the mean height and basal diameter of sprouts per stump, the leaf chlorophyll content, and the biomass of sprouts per stump. By contrast, stump diameter did not significantly affect stump survival. The results indicate that the larger stumps store more carbon and nitrogen than small-sized stumps, which may be one of the reasons why the larger willow stumps have a stronger resprouting ability. This study provides essential information regarding the sprout regeneration of short-rotation coppice willow plantations after harvest.

12.
Glob Change Biol Bioenergy ; 11(11): 1298-1317, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31762786

RESUMO

When considering the large-scale deployment of bioenergy crops, it is important to understand the implication for ecosystem hydrological processes and the influences of crop type and location. Based on the potential for future land use change (LUC), the 10,280 km2 West Wales Water Framework Directive River Basin District (UK) was selected as a typical grassland dominated district, and the Soil & Water Assessment Tool (SWAT) hydrology model with a geographic information systems interface was used to investigate implications for different bioenergy deployment scenarios. The study area was delineated into 855 sub-basins and 7,108 hydrological response units based on rivers, soil type, land use, and slope. Changes in hydrological components for two bioenergy crops (Miscanthus and short rotation coppice, SRC) planted on 50% (2,192 km2) or 25% (1,096 km2) of existing improved pasture are quantified. Across the study area as a whole, only surface run-off with SRC planted at the 50% level was significantly impacted, where it was reduced by up to 23% (during April). However, results varied spatially and a comparison of annual means for each sub-basin and scenario revealed surface run-off was significantly decreased and baseflow significantly increased (by a maximum of 40%) with both Miscanthus and SRC. Evapotranspiration was significantly increased with SRC (at both planting levels) and water yield was significantly reduced with SRC (at the 50% level) by up to 5%. Effects on streamflow were limited, varying between -5% and +5% change (compared to baseline) in the majority of sub-basins. The results suggest that for mesic temperate grasslands, adverse effects from the drying of soil and alterations to streamflow may not arise, and with surface run-off reduced and baseflow increased, there could, depending on crop location, be potential benefits for flood and erosion mitigation.

13.
Glob Change Biol Bioenergy ; 11(11): 1283-1297, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31762785

RESUMO

Short rotation plantations are often considered as holding vast potentials for future global bioenergy supply. In contrast to raising biomass harvests in forests, purpose-grown biomass does not interfere with forest carbon (C) stocks. Provided that agricultural land can be diverted from food and feed production without impairing food security, energy plantations on current agricultural land appear as a beneficial option in terms of renewable, climate-friendly energy supply. However, instead of supporting energy plantations, land could also be devoted to natural succession. It then acts as a long-term C sink which also results in C benefits. We here compare the sink strength of natural succession on arable land with the C saving effects of bioenergy from plantations. Using geographically explicit data on global cropland distribution among climate and ecological zones, regionally specific C accumulation rates are calculated with IPCC default methods and values. C savings from bioenergy are given for a range of displacement factors (DFs), acknowledging the varying efficiency of bioenergy routes and technologies in fossil fuel displacement. A uniform spatial pattern is assumed for succession and bioenergy plantations, and the considered timeframes range from 20 to 100 years. For many parameter settings-in particular, longer timeframes and high DFs-bioenergy yields higher cumulative C savings than natural succession. Still, if woody biomass displaces liquid transport fuels or natural gas-based electricity generation, natural succession is competitive or even superior for timeframes of 20-50 years. This finding has strong implications with climate and environmental policies: Freeing land for natural succession is a worthwhile low-cost natural climate solution that has many co-benefits for biodiversity and other ecosystem services. A considerable risk, however, is C stock losses (i.e., emissions) due to disturbances or land conversion at a later time.

14.
Glob Change Biol Bioenergy ; 11(12): 1435-1443, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31894184

RESUMO

Biomass from short-rotation coppice (SRC) of woody perennials is being increasingly used as a bioenergy source to replace fossil fuels, but accurate assessments of the long-term greenhouse gas (GHG) balance of SRC are lacking. To evaluate its mitigation potential, we monitored the GHG balance of a poplar (Populus) SRC in Flanders, Belgium, over 7 years comprising three rotations (i.e., two 2 year rotations and one 3 year rotation). In the beginning-that is, during the establishment year and during each year immediately following coppicing-the SRC plantation was a net source of GHGs. Later on-that is, during each second or third year after coppicing-the site shifted to a net sink. From the sixth year onward, there was a net cumulative GHG uptake reaching -35.8 Mg CO2 eq/ha during the seventh year. Over the three rotations, the total CO2 uptake was -51.2 Mg CO2/ha, while the emissions of CH4 and N2O amounted to 8.9 and 6.5 Mg CO2 eq/ha, respectively. As the site was non-fertilized, non-irrigated, and only occasionally flooded, CO2 fluxes dominated the GHG budget. Soil disturbance after land conversion and after coppicing were the main drivers for CO2 losses. One single N2O pulse shortly after SRC establishment contributed significantly to the N2O release. The results prove the potential of SRC biomass plantations to reduce GHG emissions and demonstrate that, for the poplar plantation under study, the high CO2 uptake outweighs the emissions of non-CO2 greenhouse gases.

15.
Front Plant Sci ; 9: 1879, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30622547

RESUMO

Phytoextraction could be a potential management option for diffusely Cd-Zn-Pb-polluted agricultural land in Northeast Belgium. The use of high yielding crops with a sufficiently high metal accumulation is preferred as these are expected to both gradually decontaminate the soil while generating an income through biomass valorization. To find out which high biomass crop possessed the highest and most constant (in time) phytoextraction potential on these soils, different plant species and different mutants or clones of each species, were evaluated during consecutive years. Biomass production and metal accumulation of pre-selected tobacco somaclonal variants (Nicotiana tabacum L.) and pre-selected sunflower mutants (Helianthus annuus L.) were investigated for two productivity years, while the phytoextraction potential of experimental poplar (Populus) and willow (Salix) in short rotation coppice (SRC) was assessed at the end of the second cutting cycle (after two times four growing seasons). The tobacco clones and the sunflower mutants showed efficient extraction of, respectively, Cd and Zn, while the highest simultaneous extractions of Cd and Zn were gained with some SRC clones. Variation in biomass production and metal accumulation were high for all crops over the years. The highest biomass production was observed for the experimental poplar clone of the crossing type Populus deltoides (P. maximowiczii x P. trichocarpa) with 9.9 ton DW per ha per year. The remediation period to reach legal threshold values for the pseudo-total content of Cd in this specific soil was estimated to be at least 60 years. Combining estimated phytoextraction potential and economic and environmental aspects, the SRC option is proposed as the most suitable crop for implementing metal phytoextraction in the investigated area.

16.
Animal ; 12(8): 1621-1630, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29198248

RESUMO

Broiler chickens often make limited use of the free-range area. Range use is influenced by type of shelter available. Range use may possibly be improved by a more gradual transition from the house to the range and by using dark brooders (secluded warm, dark areas in the home pen) that mimic aspects of a broody hen and possibly reduce fearfulness. The aim of this study was to assess effects of dark brooders on fearfulness, free-range use and behaviour later in life. Another aim was to test the chickens' preference for shelter type and the effects of overhangs outside of the pop holes to provide a gradual transition to the range. Three production rounds, each with 440 Sasso broiler chickens (110/group), were completed. Chicks were housed indoors from days 0 to 25; per round, two groups had access to a dark brooder, whereas the other two groups had conventional IR lamps. Fearfulness was assessed by the open field (OF) and tonic immobility (TI) tests on days 22 to 24 on 25 chicks/group per round. Birds were then moved to four mobile houses from which they could access both grassland with artificial shelter (AS) and short rotation coppice (SRC). Two of the houses had overhangs extending from the pop holes; these were switched between the four houses weekly. Free-range use and behaviour were observed three times daily from Monday to Friday. Dark brooders did not affect results from the OF or TI test, except for jumps in the OF test which tended to occur less often in brooded chicks. Neither dark brooders (34.9% without v. 31.7% with brooder) nor overhangs (32.5% without v. 34.1% with overhangs) influenced the percentage of chickens outside. Chickens showed a clear preference for SRC, range use increased over time in SRC, and more birds ranged farther from the house in SRC. Behaviours of chickens observed outside were mainly influenced by shelter type, age of the birds and distance from the house. Locomotion tended to occur more in the presence of overhangs. Overall, these results could not confirm the hypothesis that dark brooders would decrease fearfulness and thereby increase free-range use. Overhangs also did not improve free-range use, and neither brooders nor overhangs had considerable impact on behaviour of chickens outside. Chickens clearly preferred dense natural vegetation over AS and ranged farther in it, indicating that this type of shelter is more suitable for slow-growing free-range broilers.


Assuntos
Galinhas , Medo , Abrigo para Animais , Animais , Comportamento Animal , Feminino
17.
Sci Total Environ ; 634: 963-973, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29660890

RESUMO

Initial changes in soil structure and C stocks were studied under short-rotation coppices (SRC) planted on former cropland near Göttingen, Central Germany. Plantations were established either as monocultures with willow (Willow-SRC) or poplar (Poplar-SRC), or as an agroforestry system with willow strips and grassland alleys in between (Willow-AF). A neighbouring cropland served as a control. Three sampling campaigns were applied in this study. The first sampling was conducted at a fine scale to reveal the differences in soil C with depth (i.e. 0-3, 3-6, 6-9, 9-12, 12-15, 15-20, 20-30cm). Here, results indicated the main differences between plantations in 0-3, 3-20 and 20-30cm layers. These soil depths were therefore chosen for the second sampling campaign to reveal differences in aggregate composition, C accumulation in aggregates and density fraction, and microbial biomass carbon (MBC) between plantations. Furthermore, quality of soil organic matter and amount of C mineralised by microorganisms were estimated by an incubation experiment. Results here indicated two times higher CO2 emissions from the top layer than from the lower layers under SRCs, as well as higher MBC in SRCs (490-788.7µgCg-1) than in cropland (266.4µgCg-1). The results of the third sampling on the texture of respective soil horizons indicated a significant correlation (R2=78%) of soil clay to C at 0-3cm depth. It was concluded that aggregation and C in microbial biomass and free light fractions were the first indicators of soil quality improvement after conversion of arable land to SRC plantations.

18.
Front Microbiol ; 9: 1012, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867898

RESUMO

The roots of Salix spp. can be colonized by two types of mycorrhizal fungi (ectomycorrhizal and arbuscular) and furthermore by dark-septate endophytes. The fungal root colonization is affected by the plant genotype, soil properties and their interactions. However, the impact of host diversity accomplished by mixing different Salix genotypes within the site on root-associated fungi and P-mobilization in the field is not known. It can be hypothesized that mixing of genotypes with strong eco-physiological differences changes the diversity and abundance of root-associated fungi and P-mobilization in the mycorrhizosphere based on different root characteristics. To test this hypothesis, we have studied the mixture of two fundamentally eco-physiologically different Salix genotypes (S. dasyclados cv. 'Loden' and S. schwerinii × S. viminalis cv. 'Tora') compared to plots with pure genotypes in a randomized block design in a field experiment in Northern Germany. We assessed the abundance of mycorrhizal colonization, fungal diversity, fine root density in the soil and activities of hydrolytic enzymes involved in P-mobilization in the mycorrhizosphere in autumn and following spring after three vegetation periods. Mycorrhizal and endophytic diversity was low under all Salix treatments with Laccaria tortilis being the dominating ectomyorrhizal fungal species, and Cadophora and Paraphaeosphaeria spp. being the most common endophytic fungi. Interspecific root competition increased richness and root colonization by endophytic fungi (four taxa in the mixture vs. one found in the pure host genotype cultures) more than by ectomycorrhizal fungi and increased the activities of hydrolytic soil enzymes involved in the P-mineralization (acid phosphatase and ß-glucosidase) in mixed stands. The data suggest selective promotion of endophytic root colonization and changed competition for nutrients by mixture of Salix genotypes.

19.
Waste Manag ; 61: 288-299, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28185852

RESUMO

Biomasses to be used in the phytoremediation process are generally selected to match agronomic parameters and heavy metals uptake ability. A proper selection can be made greatly effective if knowledge of the properties of the residual char from pyrolysis is available to identify possible valorization routes. In this study a comparative analysis of the yields and characteristics of char obtained from slow pyrolysis of five uncontaminated biomasses (Populus nigra, Salix alba, Fraxinus oxyphylla, Eucalyptus occidentalis and Arundo donax) was carried out under steam atmosphere to better develop char porosity. Moreover, the dependence of the properties of solid residue on the process final temperature was studied for E. occidentalis in the temperature range of 688-967K. The results demonstrate that, among the studied biomasses, chars from P. nigra and E. occidentalis have to be preferred for applications regulated by surface phenomena given their highest surface area (270-300m2/g), whereas char from E. occidentalis is the best choice when the goal is to maximize energy recovery.


Assuntos
Biodegradação Ambiental , Carvão Vegetal , Biomassa , Sequestro de Carbono , Eucalyptus/química , Poaceae/química , Populus/química , Salix/química , Solo , Temperatura , Resíduos
20.
Bioenergy Res ; 10(2): 353-362, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32104527

RESUMO

This study explores the use of static chamber boxes to detect whether there are fugitive emissions of greenhouse gases (GHGs) from a willow chip storage heap. The results from the boxes were compared with those from 3-m stainless steel probes inserted into the core of the heap horizontally and vertically at intervals. The results from probes showed that there were increases of carbon dioxide (CO2) concentrations in the heap over the first 10 days after heap establishment, which were correlated with a temperature rise to 60 °C. As the CO2 declined, there was a small peak in methane (CH4) concentration in probes orientated vertically in the heap. Static chambers positioned at the apex of the heap detected some CO2 fluxes as seen in the probes; however, the quantities were small and random in nature. A small (maximum 5 ppm) flux in CH4 occurred at the same time as the probe concentrations peaked. Overall, the static chamber method was not effective in monitoring fluxes from the heap as there was evidence that gases could enter and leave around the edges of the chambers during the course of the experiment. In general, the use of standard (25 cm high) static chambers for monitoring fluxes from wood chip heaps is not recommended.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa