Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cardiovasc Eng Technol ; 11(3): 308-315, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32016917

RESUMO

PURPOSE: A treatment device without a stent is needed for peripheral stenotic artery treatment. We have proposed short-term heating balloon angioplasty, photo-thermo dynamic balloon angioplasty (PTDBA). Though smooth muscle cells (SMCs) after PTDBA are fixed in a stretched formation in a porcine model, influences of this stimulus on SMCs have not been investigated. SMC migration after vascular dilatation would be related to chronic restenosis. The aim of this study was to examine respiratory activity and recovery ability of SMCs after short-term heating/stretch-fixing in vitro for chronic phase treatment effect discussion. METHODS: SMCs on a stretch chamber were heated for 15 s with stretching and fixed in a stretched formation. SMC migration is correlated with the cell respiratory activity. The amount of ATP production was measured using a WST-8 assay for respiratory activity evaluation. The intracellular expression of heat shock protein 70 was measured by an ELISA for recovery ability evaluation. RESULTS: In the case of 60 °C heating, SMC respiratory activity after short-term heating/stretch-fixing decreased drastically in all stretching rates. In the case of 50 °C heating, SMC respiratory activity decreased and then increased. Alternatively, the recovery ability at 60 °C was greater than that at 50 °C. CONCLUSIONS: SMCs heated at 60 °C with stretching would have high recovery ability and low respiratory activity related to SMC migration. These results may be important evidence in determining the treatment condition in PTDBA.


Assuntos
Angioplastia com Balão/instrumentação , Respiração Celular , Proteínas de Choque Térmico HSP70/metabolismo , Temperatura Alta , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Dispositivos de Acesso Vascular , Angioplastia com Balão/efeitos adversos , Animais , Movimento Celular , Proliferação de Células , Células Cultivadas , Desenho de Equipamento , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Pressão , Transdução de Sinais , Sus scrofa , Fatores de Tempo
2.
Front Genet ; 6: 245, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26257772

RESUMO

Different environmental factors (i.e., toxins, heavy metals, ultraviolet (UV) rays, and X-radiation) cause damage to DNA, cell membranes and other organelles and induce oxidative stress, which results in the excessive production of reactive oxygen species (ROS) by phagocytes. All types of cell stress are accompanied by the activation of anti-stress genes that can suppress ROS synthesis. We hypothesized that different environmental factors would affect organisms through the activation of anti-stress genes by autologous serum (AS) proteins, followed by the synthesis of molecules that increase cell resistance to oxidative stress. The goal of this work was to study the influence of AS on ROS production by peripheral blood neutrophils isolated from donors in different age groups. Neutrophils were isolated from 59 donors (38-94 years old). AS was heated at 100°C for 30 s. or irradiated by UV light at 200-280 nm and 8 W for 10 min. Neutrophils were exposed to heat shock at 42°C for 1 min. (short-term heating stress) or 43°C for 10 min., followed by the determination of the chemiluminescence reaction induced by zymosan. AS can increase or decrease ROS production by neutrophils depending on the structure of the proteins in the serum; these structures can be changed by heating or UV treatment and the temperature of their interaction (4 or 37°C). We propose that the effect of environmental factors on AS proteins can cause an adverse increase in oxidative stress levels due to the functional reduction of anti-stress genes. We found a negative correlation between the quantity of intracellular Hsp70 and levels of intracellular ROS production following 10 min of heat shock at 43°C. Short-term heating stress (1 min) at 42°C was followed by a prominent reduction in ROS production. This effect may be a result of the impact of the hormone adrenaline on the functions of anti-stress genes. Indeed, the same effect was observed after treatment of the neutrophils with adrenaline at concentrations of 10(-4) and 10(-5) M. In contrast, dexamethasone from the other stress hormone group did not evoke the same effect at the same concentrations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa