RESUMO
Abscission is the final step of cytokinesis that allows the physical separation of sister cells through the scission of the cellular membrane. This deformation is driven by ESCRT-III proteins, which can bind membranes and form dynamic helices. A crucial step in abscission is the recruitment of ESCRT-III proteins at the right time and place. Alix is one of the best characterized proteins that recruits ESCRT-III proteins from yeast to mammals. However, recent studies in vivo have revealed that pathways acting independently or redundantly with Alix are also required at abscission sites in different cellular contexts. Here, we show that Lgd acts redundantly with Alix to properly localize ESCRT-III to the abscission site in germline stem cells (GSCs) during Drosophila oogenesis. We further demonstrate that Lgd is phosphorylated at multiple sites by the CycB/Cdk1 kinase. We found that these phosphorylation events potentiate the activity of Shrub, a Drosophila ESCRT-III, during abscission of GSCs. Our study reveals that redundancy between Lgd and Alix, and coordination with the cell cycle kinase Cdk1, confers robust and timely abscission of Drosophila germline stem cells.
Assuntos
Proteínas de Drosophila , Complexos Endossomais de Distribuição Requeridos para Transporte , Células Germinativas , Células-Tronco , Animais , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Ciclina B , Citocinese/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células Germinativas/metabolismo , Mamíferos/metabolismo , Células-Tronco/metabolismoRESUMO
BACKGROUND: The Endosomal Sorting Complex Required for Transport (ESCRT) is a highly conserved cellular machinery essential for many cellular functions, including transmembrane protein sorting, endosomal trafficking, and membrane scission. CHMP4B is a key component of ESCRT-III subcomplex and has been thoroughly studied in the meroistic ovaries of Drosophila melanogaster showing its relevance in maintaining this reproductive organ during the life of the fly. However, the role of the CHMP4B in the most basal panoistic ovaries remains elusive. RESULTS: Using RNAi, we examined the function of CHMP4B in the ovary of Blattella germanica in two different physiological stages: in last instar nymphs, with proliferative follicular cells, and in vitellogenic adults when follicular cells enter in polyploidy and endoreplication. In Chmp4b-depleted specimens, the actin fibers change their distribution, appearing accumulated in the basal pole of the follicular cells, resulting in an excess of actin bundles that surround the basal ovarian follicle and modifying their shape. Depletion of Chmp4b also determines an actin accumulation in follicular cell membranes, resulting in different cell morphologies and sizes. In the end, these changes disrupt the opening of intercellular spaces between the follicular cells (patency) impeding the incorporation of yolk proteins to the growing oocyte and resulting in female sterility. In addition, the nuclei of follicular cells appeared unusually elongated, suggesting an incomplete karyokinesis. CONCLUSIONS: These results proved CHMP4B essential in preserving the proper expression of cytoskeleton proteins vital for basal ovarian follicle growth and maturation and for yolk protein incorporation. Moreover, the correct distribution of actin fibers in the basal ovarian follicle emerged as a critical factor for the successful completion of ovulation and oviposition. SIGNIFICANCE: The overall results, obtained in two different proliferative stages, suggest that the requirement of CHMP4B in B. germanica follicular epithelium is not related to the proliferative stage of the tissue.
Assuntos
Blattellidae , Complexos Endossomais de Distribuição Requeridos para Transporte , Proteínas de Insetos , Folículo Ovariano , Animais , Feminino , Folículo Ovariano/metabolismo , Folículo Ovariano/citologia , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Blattellidae/metabolismo , Blattellidae/genética , Blattellidae/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Ovário/metabolismo , Ovário/citologia , Oócitos/metabolismo , Oócitos/citologiaRESUMO
Shrub recruitment, a key component of vegetation dynamics beyond forests, is a highly sensitive indicator of climate and environmental change. Warming-induced tipping points in Arctic and alpine treeless ecosystems are, however, little understood. Here, we compare two long-term recruitment datasets of 2,770 shrubs from coastal East Greenland and from the Tibetan Plateau against atmospheric circulation patterns between 1871 and 2010 Common Era. Increasing rates of shrub recruitment since 1871 reached critical tipping points in the 1930s and 1960s on the Tibetan Plateau and in East Greenland, respectively. A recent decline in shrub recruitment in both datasets was likely related to warmer and drier climates, with a stronger May to July El Niño Southern Oscillation over the Tibetan Plateau and a stronger June to July Atlantic Multidecadal Oscillation over Greenland. Exceeding the thermal optimum of shrub recruitment, the recent warming trend may cause soil moisture deficit. Our findings suggest that changes in atmospheric circulation explain regional climate dynamics and associated response patterns in Arctic and alpine shrub communities, knowledge that should be considered to protect vulnerable high-elevation and high-latitude ecosystems from the cascading effects of anthropogenic warming.
Assuntos
Desenvolvimento Vegetal , Temperatura , Regiões Árticas , Mudança Climática , Ecossistema , Groenlândia , TibetRESUMO
BACKGROUND: Water stress seriously affects the survival of plants in natural ecosystems. Plant resistance to water stress relies on adaptive strategies, which are mainly based on plant anatomy with following relevant functions: (1) increase in water uptake and storage; (2) reduction of water loss; and (3) mechanical reinforcement of tissues. We measured 15 leaf-stem anatomical traits of five dominant shrub species from 12 community plots in the eastern Qaidam Basin to explore adaptive strategies based on plant leaf-stem anatomy at species and community levels. and their relationship with environmental stresses were tested. RESULTS: Results showed that the combination of leaf-stem anatomical traits formed three types of adaptive strategies with the drought tolerance of leaf and stem taken as two coordinate axes. Three types of water stress were caused by environmental factors in the eastern Qaidam Basin, and the established adaptive strategy triangle could be well explained by these environmental stresses. The interpretation of the strategic triangle was as follows: (1) exploitative plant strategy, in which leaf and stem adopt the hydraulic efficiency strategy and safety strategy, respectively. This strategy is mostly applied to plants in sandy desert (i.e., Nitraria tangutorum, and Artemisia sphaerocephala) which is mainly influenced by drought stress; (2) stable plant strategy, in which both leaf/assimilation branches and stem adopt hydraulic safety strategy. This strategy is mostly applied to plants in salty desert (i.e., Kalidium foliatum and Haloxylon ammodendron) which aridity has little effect on them; and (3) opportunistic plant strategy, in which leaf and stem adopt hydraulic safety strategy and water transport efficiency strategy. This strategy is mostly applied to plants in multiple habitats (i.e., Sympegma regelii) which is mainly affected by coldness stress. CONCLUSION: The proposed adaptive strategy system could provide a basis for elucidating the ecological adaptation mechanism of desert woody plants and the scientific management of natural vegetation in the Qinghai-Tibet Plateau.
Assuntos
Adaptação Fisiológica , Folhas de Planta , Caules de Planta , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Caules de Planta/anatomia & histologia , Caules de Planta/fisiologia , Secas , Água/metabolismo , China , Ecossistema , Estresse FisiológicoRESUMO
Root-associated fungi (RAF) and root traits regulate plant acquisition of nitrogen (N), which is limiting to growth in Arctic ecosystems. With anthropogenic warming, a new N source from thawing permafrost has the potential to change vegetation composition and increase productivity, influencing climate feedbacks. Yet, the impact of warming on tundra plant root traits, RAF, and access to permafrost N is uncertain. We investigated the relationships between RAF, species-specific root traits, and uptake of N from the permafrost boundary by tundra plants experimentally warmed for nearly three decades at Toolik Lake, Alaska. Warming increased acquisitive root traits of nonmycorrhizal and mycorrhizal plants. RAF community composition of ericoid (ERM) but not ectomycorrhizal (ECM) shrubs was impacted by warming and correlated with root traits. RAF taxa in the dark septate endophyte, ERM, and ECM guilds strongly correlated with permafrost N uptake for ECM and ERM shrubs. Overall, a greater proportion of variation in permafrost N uptake was related to root traits than RAF. Our findings suggest that warming Arctic ecosystems will result in interactions between roots, RAF, and newly thawed permafrost that may strongly impact feedbacks to the climate system through mechanisms of carbon and N cycling.
Assuntos
Micorrizas , Nitrogênio , Pergelissolo , Raízes de Plantas , Tundra , Nitrogênio/metabolismo , Raízes de Plantas/microbiologia , Pergelissolo/microbiologia , Micorrizas/fisiologia , Fungos/fisiologia , Característica Quantitativa Herdável , Temperatura , Especificidade da EspécieRESUMO
The seasonal coupling of plant and soil microbial nutrient demands is crucial for efficient ecosystem nutrient cycling and plant production, especially in strongly seasonal alpine ecosystems. Yet, how these seasonal nutrient cycling processes are modified by climate change and what the consequences are for nutrient loss and retention in alpine ecosystems remain unclear. Here, we explored how two pervasive climate change factors, reduced snow cover and shrub expansion, interactively modify the seasonal coupling of plant and soil microbial nitrogen (N) cycling in alpine grasslands, which are warming at double the rate of the global average. We found that the combination of reduced snow cover and shrub expansion disrupted the seasonal coupling of plant and soil N-cycling, with pronounced effects in spring (shortly after snow melt) and autumn (at the onset of plant senescence). In combination, both climate change factors decreased plant organic N-uptake by 70% and 82%, soil microbial biomass N by 19% and 38% and increased soil denitrifier abundances by 253% and 136% in spring and autumn, respectively. Shrub expansion also individually modified the seasonality of soil microbial community composition and stoichiometry towards more N-limited conditions and slower nutrient cycling in spring and autumn. In winter, snow removal markedly reduced the fungal:bacterial biomass ratio, soil N pools and shifted bacterial community composition. Taken together, our findings suggest that interactions between climate change factors can disrupt the temporal coupling of plant and soil microbial N-cycling processes in alpine grasslands. This could diminish the capacity of these globally widespread alpine ecosystems to retain N and support plant productivity under future climate change.
Assuntos
Ecossistema , Solo , Mudança Climática , Estações do Ano , Microbiologia do Solo , NutrientesRESUMO
Indigenous communities throughout California, USA, are increasingly advocating for and practicing cultural fire stewardship, leading to a host of social, cultural, and ecological benefits. Simultaneously, state agencies are recognizing the importance of controlled burning and cultural fire as a means of reducing the risk of severe wildfire while benefiting fire-adapted ecosystems. However, much of the current research on the impacts of controlled burning ignores the cultural importance of these ecosystems, and risks further marginalizing Indigenous knowledge systems. Our work adds a critical Indigenous perspective to the study of controlled burning in California's unique coastal grasslands, one of the most biodiverse and endangered ecosystems in the country. In this study, we partnered with the Amah Mutsun Tribal Band to investigate how the abundance and occurrence of shrubs, cultural plants, and invasive plants differed among three adjacent coastal grasslands with varying fire histories. These three sites are emblematic of the state's diverging approaches to grassland management: fire suppression, fire suppression followed by wildfire, and an exceedingly rare example of a grassland that has been repeatedly burned approximately every 2 years for more than 30 years. We found that Danthonia californica was significantly more abundant on the burned sites, whereas all included shrub species (Baccharis pilularis, Frangula californica, and Rubus ursinus) were significantly more abundant on the site with no recorded fire, results that have important implications for future cultural revitalization efforts and the loss of coastal grasslands to shrub encroachment. In addition to conducting a culturally relevant vegetation survey, we used Sentinel-2 satellite imagery to compare the relative severities of the two most recent fire events within the study area. Critically, we used interviews with Amah Mutsun tribal members to contextualize the results of our vegetation survey and remote sensing analysis, and to investigate how cultural burning contrasts from typical Western fire management approaches in this region. Our study is a novel example of how interviews, field data, and satellite imagery can be combined to gain a deeper ecological and cultural understanding of fire in California's endangered coastal grasslands.
Assuntos
Conservação dos Recursos Naturais , Incêndios , Pradaria , California , Humanos , Incêndios Florestais , Povos IndígenasRESUMO
Environmental change is expected to alter trophic interactions and food web dynamics with consequences for ecosystem structure, function and stability. However, the mechanisms by which environmental change influences top-down and bottom-up processes are poorly documented. Here, we examined how environmental change caused by shrub encroachment affects trophic interactions in a dryland. The predator-prey system included an apex canid predator (coyote; Canis latrans), an intermediate canid predator (kit fox; Vulpes macrotis), and two herbivorous lagomorph prey (black-tailed jackrabbit, Lepus californicus; and desert cottontail, Sylvilagus audubonii) in the Chihuahuan Desert of New Mexico, USA. We evaluated alternative hypotheses for how shrub encroachment could affect habitat use and trophic interactions, including (i) modifying bottom-up processes by reducing herbaceous forage, (ii) modifying top-down processes by changing canid space use or the landscape of fear experienced by lagomorph prey and (iii) altering intraguild interactions between the dominant coyote and the intermediate kit fox. We used 7 years of camera trap data collected across grassland-to-shrubland gradients under variable precipitation to test our a priori hypotheses within a structural equation modelling framework. Lagomorph prey responded strongly to bottom-up pulses during years of high summer precipitation, but only at sites with moderate to high shrub cover. This outcome is inconsistent with the hypothesis that bottom-up effects should be strongest in grasslands because of greater herbaceous food resources. Instead, this interaction likely reflects changes in the landscape of fear because perceived predation risk in lagomorphs is reduced in shrub-dominated habitats. Shrub encroachment did not directly affect predation pressure on lagomorphs by changing canid site use intensity. However, site use intensity of both canid species was positively associated with jackrabbits, indicating additional bottom-up effects. Finally, we detected interactions between predators in which coyotes restricted space use of kit foxes, but these intraguild interactions also depended on shrub encroachment. Our findings demonstrate how environmental change can affect trophic interactions beyond traditional top-down and bottom-up processes by altering perceived predation risk in prey. These results have implications for understanding spatial patterns of herbivory and the feedbacks that reinforce shrubland states in drylands worldwide.
RESUMO
There is a need to assess whether ecological resources are being protected on large, federal lands. The aim of this study was to present a methodology which consistently and transparently determines whether two large Department of Energy (U.S. DOE) facilities have protected valuable ecological lands on their sites compared to the surrounding region. The National Land Cover Database (2019) was used to examine the % shrub-scrub (shrub-steppe) and other habitats on the DOE's Hanford Site (HS, Washington) and on the Idaho National Laboratory (INL), compared to a 10-km and 30-km diameter band of land surrounding each site. On both sites, over 95% is in shrub-scrub or grassland, compared to the surrounding region. Approximately 70% of 10 km and 30-km bands around INL, and less than 50% of land surrounding HS is located in these two habitat types. INL has preserved a significantly higher % shrub/scrub habitat than HS, but INL allows grazing on 60% of its land. HS has preserved a significantly higher % grassland than INL but no grazing on site is present. The methodology presented may be used to compare key ecological habitat types such as grasslands, forest, and desert among sites in different parts of the country. This methodology enables managers, resource trustees, and the public to (1) make remediation decisions that protect resources, (2) assess whether landowners and managers have adequately characterized and protected environmental resources on their sites, and (3) whether landowners and managers have protected the integrity of that land as well as its climax vegetation.
RESUMO
Globally, antibiotic resistance is a challenging issue in healthcare sector. The emergence of multiple drug-resistant bacteria has forced us to modify existing medicines and or formulate newer medicines that are effective and inexpensive. In this perspective, this study involves the formation of zinc oxide nanoparticles (ZnO NPs) by utilizing the Lawsonia inermis (Li) leaf extract. The prepared L. inermis leaf extract mediated ZnO NPs (Li-ZnO NPs) were bio-physically characterized. The antibacterial and radical scavenging effects of Li-ZnO NPs were evaluated. In addition, ZnO NPs were conjugated with standard antibiotic (ciprofloxacin) and its drug loading efficiency, drug release and antibacterial efficacy were tested and compared with non-drug loaded ZnO NPs. An absorbance peak at 340 nm was noted for Li-ZnO NPs. After conjugation with the drug, two absorbance peaks- one at 242 nm characteristic of ciprofloxacin and the other at 350 nm characteristics of ZnO NPs were observed. The crystallite size was 18.7 nm as determined by XRD. The antibacterial effect was higher on Gram-positive (S. aureus and S. pyogenes) than the Gram-negative pathogens (E. coli and K. pneumoniae). Inhibition of S. aureus and S. pyogenes biofilm at 100 µg mL-1were, respectively, 97.5 and 92.6%. H2O2 free radicals was inhibited to 90% compared to the standard ascorbic acid at 100 µg mL-1. After drug loading, the FTIR spectrum confirmed the existence of ciprofloxacin peaks at 965 cm-1 and Zn-O bond at 492 cm-1. The drug loading capacity of 15 nm sized ZnO NPs was higher (58, 75, 90 and 95% at 1, 2.5, 5 and 10% drug concentrations, respectively) compared to 20 nm. Similarly, the percentage of drug (ciprofloxacin) released from 15 nm ZnO NPs were increased to 90% at 10% drug-loaded samples, respectively. Also, the antibiotic loaded ZnO NPs had significant antibacterial effects against tested bacteria compared to Li-ZnO NPs and ciprofloxacin alone. This revealed that the antibiotic loaded ZnO NPs offer a sustainable route to treat multi-drug-resistant bacterial infections.
Assuntos
Antibacterianos , Antioxidantes , Biofilmes , Lawsonia (Planta) , Extratos Vegetais , Folhas de Planta , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Lawsonia (Planta)/química , Folhas de Planta/química , Biofilmes/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Ciprofloxacina/farmacologia , Ciprofloxacina/químicaRESUMO
Vegetation cover has been consistently reported to be a factor influencing soil biota. Massive spreading of invasive plants may transform native plant communities, changing the quality of habitats as a result of modification of soil properties, most often having a directional effect on soil microorganisms and soil fauna. One of the most numerous microarthropods in the litter and soil is Acari. It has been shown that invasive plants usually have a negative effect on mites. We hypothesized that invasive Spiraea tomentosa affects the structure of the Uropodina community and that the abundance and species richness of Uropodina are lower in stands monodominated by S. tomentosa than in wet meadows free of this alien species. The research was carried out in wet meadows, where permanent plots were established in an invaded and uninvaded area of each meadow, soil samples were collected, soil moisture was determined and the mites were extracted. We found that Uropodina mite communities differed in the abundance of individual species but that the abundance and richness of species in their communities were similar. S. tomentosa invasion led primarily to changes in the quality of Uropodina communities, due to an increase in the shares of species from forest and hygrophilous habitats. Our results suggest that alien plant invasion does not always induce directional changes in mite assemblages, and conclude that the impact of an alien species on Uropodina may cause significant changes in the abundance and richness of individual species without causing significant changes in the abundance and diversity of their community.
Assuntos
Espécies Introduzidas , Ácaros , Animais , Ácaros/fisiologia , Pradaria , Biodiversidade , SoloRESUMO
In recent decades, there has been a discernible reduction in temperate and Mediterranean grasslands with consequences on the decline of biodiversity and landscape heterogeneity. When this decline is due to agricultural abandonment, a renewed joint management, combining bush clearing by conservationists and grazing by farmers, should favor the maintenance of grasslands, their protected habitats and species and forage production. Rainfall irregularity explains part of the variation of these parameters. To verify these hypotheses, we conduct a comprehensive, multi-scale, multi-taxa study over a ten-year period in a Mediterranean protected area. At the regional scale, experimental plots in which this joint management was implemented are representative of residual managed grasslands of the protected area. At the mesoscale, rainfall irregularity is the main factor explaining inter-annual differences in the biomass of open landscapes, while fauna depends on management, tree cover and trophic resources. At the local scale, in a representative experimental plot, clearing had an immediate negative impact on plant richness and bird and positive on forage. Over a decade, plant biodiversity increased while forage, specialist plants and bird maintained, despite the regrowth of bush. Drought had a negative impact on richness, plant and forage abundance and phenological asynchrony on butterflies. In conclusion, joint management has positive, neutral and negative impacts to be considered before implementing this strategy. This long-term monitoring study draws important lessons for designing a sustainable management of grasslands under abandonment and irregular climate, that should be applied in temperate and Mediterranean regions that are increasingly vulnerable to these trends.
Assuntos
Borboletas , Pradaria , Animais , Humanos , Fazendeiros , Biodiversidade , Ecossistema , PlantasRESUMO
Trees and shrubs expanded in the last decades in European mountains due to land abandonment and the decrease in grazing pressure, and are expected to further spread also due to climate change. As a consequence of low forage quality and topographic constraints, the management of mountain environments dominated by woody vegetation with livestock is often challenging. Silvopastoral systems based on cattle hardy breeds able to forage on woody plants, such as Highland cattle, could be a suitable option for the management and restoration of such environments. In this study, we used direct observations to explore the foraging behavior of Highland cattle in four study areas across the western Alps. In particular, we assessed: (1) cattle diet composition, (2) the selection for more than 30 tree and shrub species, and (3) the relationships between species consumption and their abundance in the environment. Highland cattle fed on a mixture of both woody and herbaceous species, including between 15 and 46% of woody plants in the diet. Some trees (e.g., Celtis australis, Fraxinus spp., and Populus tremula) and shrubs (e.g., Frangula alnus, Rhamnus spp., and Rubus idaeus) were positively selected by cattle, thus they could be an important forage supplement to their diet. Moreover, the results highlighted that relative species consumption generally increased with increasing species abundance in the environment, suggesting that this cattle breed could be suitable to control shrub expansion in highly encroached areas. The outcomes of this study can support the development of targeted silvopastoral systems in the Alps. Supplementary Information: The online version contains supplementary material available at 10.1007/s10457-023-00926-z.
RESUMO
Ericaceous shrubs adapt to the nutrient-poor conditions in ombrotrophic peatlands by forming symbiotic associations with ericoid mycorrhizal (ERM) fungi. Increased nutrient availability may diminish the role of ERM pathways in shrub nutrient uptake, consequently altering the biogeochemical cycling within bogs. To explore the significance of ERM fungi in ombrotrophic peatlands, we developed the model MWMmic (a peat cohort-based biogeochemical model) into MWMmic-NP by explicitly incorporating plant-soil nitrogen (N) and phosphorus (P) cycling and ERM fungi processes. The new model was applied to simulate the biogeochemical cycles in the Mer Bleue (MB) bog in Ontario, Canada, and their responses to fertilization. MWMmic_NP reproduced the carbon(C)-N-P cycles and vegetation dynamics observed in the MB bog, and their responses to fertilization. Our simulations showed that fertilization increased shrub biomass by reducing the C allocation to ERM fungi, subsequently suppressing the growth of underlying Sphagnum mosses, and decreasing the peatland C sequestration. Our species removal simulation further demonstrated that ERM fungi were key to maintaining the shrub-moss coexistence and C sink function of bogs. Our results suggest that ERM fungi play a significant role in the biogeochemical cycles in ombrotrophic peatlands and should be considered in future modeling efforts.
Assuntos
Micorrizas , Áreas Alagadas , Fungos , Plantas/metabolismo , Biomassa , Fertilização , SoloRESUMO
Shrub encroachment is a common ecological state transition in global drylands and has myriad adverse effects on grasslands and the services they provide. This physiognomic shift is often ascribed to changes in climate (e.g. precipitation) and disturbance regimes (e.g. grazing and fire), but this remains debated. Aeolian processes are known to impact resource distribution in drylands, but their potential role in grassland-to-shrubland state changes has received little attention. We quantified the effects of 'sandblasting' (abrasive damage by wind-blown soil) on the ecophysiology of dryland grass vs shrub functional types using a portable wind tunnel to test the hypothesis that grasses would be more susceptible to sandblasting than shrubs and, thus, reinforce transitions to shrub dominance in wind-erodible grasslands when climate- or disturbance-induced reductions in ground cover occur. Grasses and shrubs responded differently to sandblasting, wherein water-use efficiency declined substantially in grasses, but only slightly in shrubs, owing to grasses having greater increases in day/nighttime leaf conductance and transpiration. The differential ecophysiological response to sandblasting exhibited by grass and shrub functional types could consequently alter the vegetation dynamics in dryland grasslands in favour of the xerophytic shrubs. Sandblasting could thus be an overlooked driver of shrub encroachment in wind-erodible grasslands.
Assuntos
Ecossistema , Pradaria , Clima Desértico , Poaceae/fisiologia , SoloRESUMO
Current global change is inducing heterogeneous warming trends worldwide, with faster rates at higher latitudes in the Northern Hemisphere. Consequently, tundra vegetation is experiencing an increase in growth rate and uneven but expanding distribution. Yet, the drivers of this heterogeneity in woody species responses are still unclear. Here, applying a retrospective approach and focusing on long-term responses, we aim to get insight into growth trends and climate sensitivity of long-lived woody species belonging to different functional types with contrasting growth forms and leaf habits (shrub vs. tree and deciduous vs. evergreen). A total of 530 samples from 7 species (common juniper, dwarf birch, woolly willow, Norway spruce, lodgepole pine, rowan, and downy birch) were collected in 10 sites across Iceland. We modelled growth trends and contrasted yearly ring-width measurements, filtering in high- and low-frequency components, with precipitation, land- and sea-surface temperature records (1967-2018). Shrubs and trees showed divergent growth trends, with shrubs closely tracking the recent warming, whereas trees, especially broadleaved, showed strong fluctuations but no long-term growth trends. Secondary growth, particularly the high-frequency component, was positively correlated with summer temperatures for most of the species. On the contrary, growth responses to sea surface temperature, especially in the low frequency, were highly diverging between growth forms, with a strong positive association for shrubs and a negative for trees. Within comparable vegetation assemblage, long-lived woody species could show contrasting responses to similar climatic conditions. Given the predominant role of oceanic masses in shaping climate patterns in the Arctic and Low Arctic, further investigations are needed to deepen the knowledge on the complex interplay between coastal tundra ecosystems and land-sea surface temperature dynamics.
Assuntos
Ecossistema , Madeira , Estudos Retrospectivos , Regiões Árticas , Tundra , Árvores , Folhas de Planta , Mudança ClimáticaRESUMO
BACKGROUND AND AIMS: Whole-plant performance in water-stressed and disturbance-prone environments depends on a suitable supply of water from the roots to the leaves, storage of reserves during periods of shortage, and a morphological arrangement that guarantees the maintenance of the plants anchored to the soil. All these functions are performed by the secondary xylem of roots. Here, we investigate whether different growth forms of Fabaceae species from the seasonally dry Neotropical environment have distinct strategies for water transport, mechanical support and non-structural carbon and water storage in the root secondary xylem. METHODS: We evaluated cross-sections of root secondary xylem from species of trees, shrubs and subshrubs. We applied linear models to verify the variability in secondary xylem anatomical traits among growth forms. KEY RESULTS: Secondary xylem with larger vessels and lower vessel density was observed in tree species. Vessel wall thickness, vessel grouping index, potential hydraulic conductivity and cell fractions (vessels, fibres, rays and axial parenchyma) were not statistically different between growth forms, owing to the high interspecific variation within the groups studied. CONCLUSION: Our results showed that the variability in anatomical traits of the secondary xylem of the root is species specific. In summary, the cellular complexity of the secondary xylem ensures multiple functional strategies in species with distinct growth forms, a key trait for resource use in an environment with strong water seasonality.
Assuntos
Fabaceae , Xilema/anatomia & histologia , Árvores/anatomia & histologia , Folhas de Planta/anatomia & histologia , ÁguaRESUMO
BACKGROUND AND AIMS: The evolution of mating systems from outcrossing to self-fertilization is a common transition in flowering plants. This shift is often associated with the 'selfing syndrome', which is characterized by less visible flowers with functional changes to control outcrossing. In most cases, the evolutionary history and demographic dynamics underlying the evolution of the selfing syndrome remain poorly understood. METHODS: Here, we characterize differences in the demographic genetic consequences and associated floral-specific traits between two distinct geographical groups of a wild shrub, Daphne kiusiana, endemic to East Asia; plants in the eastern region (southeastern Korea and Kyushu, Japan) exhibit smaller and fewer flowers compared to those of plants in the western region (southwestern Korea). Genetic analyses were conducted using nuclear microsatellites and chloroplast DNA (multiplexed phylogenetic marker sequencing) datasets. KEY RESULTS: A high selfing rate with significantly increased homozygosity characterized the eastern lineage, associated with lower levels of visibility and herkogamy in the floral traits. The two lineages harboured independent phylogeographical histories. In contrast to the western lineage, the eastern lineage showed a gradual reduction in the effective population size with no signs of a severe bottleneck despite its extreme range contraction during the last glacial period. CONCLUSIONS: Our results suggest that the selfing-associated morphological changes in D. kiusiana are of relatively old origin (at least 100 000 years ago) and were driven by directional selection for efficient self-pollination. We provide evidence that the evolution of the selfing syndrome in D. kiusiana is not strongly associated with a severe population bottleneck.
Assuntos
Daphne , Filogenia , Reprodução , Polinização , Autofertilização/genética , Demografia , Flores/genética , Flores/anatomia & histologia , Evolução BiológicaRESUMO
â Flowering is a key process in the life cycle of a plant. Climate change is shifting flowering phenologies in the Northern Hemisphere, but studies with long data series at community level are scarce, and even more so those regarding the consequences of phenological changes for emerging ecological interactions. In the Mediterranean region, the effects of climate change are stronger than the global average and there is an urgent need to understand how biodiversity will be affected in this area. â In this study we investigated how the entire flowering phenology of a community comprising 51 perennial species from the south of the Iberian Peninsula changed from the decade of the 1980s to the 2020s. Furthermore, we have analysed the consequences of these changes for flowering order and co-flowering patterns. â We have found that the flowering phenology of the community has advanced by about 20 days, and was coherent with the increasing temperatures related to climate change. Individual species have generally advanced their entire flowering phenology (start and end) and increased their flowering duration. The early flowering has resulted in a re-organisation of the flowering order of the community and generated a new co-flowering assemblages of species, with a slight trend towards an increase of shared flowering time among species. â The advanced flowering phenology and changes on flower duration reported here were of unprecedented magnitude, showcasing the extreme effects of climate change on Mediterranean ecosystems. Furthermore, the effects were not similar among species, which could be attributed to differences in sensitivities of environmental cues for flowering. One consequence of these changes in flowering times is the ecological mismatches indicated by the changes in flower order and co-flowering between decades. The novel scenario may lead to new competition or facilitation interactions and to the loss or gain of pollinators.
RESUMO
Inferences about the mechanisms of distributional change are often made from simple assessments of variation in the geographical positions of populations. However, direct assessments of species' responses to local habitat change may be necessary for proper understanding of the drivers of distributional dynamics. Amplified climate warming is inducing cascading impacts in boreal-tundra regions including the expansion of conifers and deciduous shrubs (shrubs). In Denali National Park (Denali), Alaska, passerine birds are exhibiting rapid upslope shifts in distribution but the relative roles of conifer and shrub (woody vegetation) expansion in driving these shifts are unknown. Without directly assessing passerine-vegetation dynamics, the assumption has been that the observed upslope shifts are indicative of shrub-adapted passerines tracking the upslope expansion of shrubs. Here, we jointly investigate the processes of conifer and shrub expansion and their relationship to changes in passerine abundance in Denali. We used a remotely sensed vegetation cover timeseries (1985-2020) to assess the topographic and edaphic correlates of conifer and shrub expansion. We then assessed the impacts of changes in shrub and conifer cover on the relative abundance of 12 passerine species (1995-2020). Shrub and conifer colonization rates were highest at intermediate elevations near treeline. However, forest- and shrub-adapted passerines differed in terms of the location in which their response was concentrated relative to treeline. The population growth rates of forest-adapted passerines exhibited stronger effects of woody vegetation expansion at sites that were initially above treeline (IAT). In contrast, the population growth rates of shrub-adapted passerines exhibited the negative effects of conifer expansion together with the positive effects of shrub expansion at initially below treeline sites. However, they showed a weak response to woody vegetation expansion at sites that were IAT. Below treeline conifer infilling appears to be pushing the elevational distributions of shrub-adapted passerines upslope rather than these species following the pull of modest shrub expansion above treeline, as previously assumed. Overall, our findings illustrate the need for explicitly accommodating heterogeneity in habitat change at small spatial scales to properly view the distributional response, particularly when habitat change is concentrated at ecotones.