RESUMO
Cronobacter condimenti are environmental commensals that have not been associated with any clinical infections. To date, they are the least understood and described Cronobacter species within the genus. The objective of this study was to use a draft genome sequence (DGS) of the Cronobacter condimenti strain s37 to screen for genes encoding for antibiotic resistance, virulence, response to environmental stress, and biofilm formation. The strain was isolated in Poland from commercial small radish sprouts. This is the second genome of this species available in the GenBank database. The comparative genome analysis (cgMLST) of C. condimenti s37 with other Cronobacter spp. including the pathogenic species C. sakazakii and the plant-associated closely related genera Franconibacter and Siccibacter was also performed. The assembled and annotated genome of the C. condimenti s37 genome was 4,590,991 bp in length, with a total gene number of 4384, and a GC content of 55.7%. The s 37 genome encoded for genes associated with resistance to stressful environmental conditions (metal resistance genes: zinc, copper, osmotic regulation, and desiccation stress), 17 antimicrobial resistance genes encoding resistance to various classes of antibiotics and 50 genes encoding for the virulence factors. The latter were mainly genes associated with adhesion, chemotaxis, hemolysis, and biofilm formation. Cg-MLST analysis (3991 genes) revealed a greater similarity of C. condimenti s37 to S. turicensis, F. pulveris, and C. dublinensis than to other species of the genus Cronobacter. Studies on the diversity, pathogenicity, and virulence of Cronobacter species isolated from different sources are still insufficient and should certainly be continued. Especially the analysis of rare strains such as s37 is very important because it provides new information on the evolution of these bacteria. Comparative cgMLST analysis of s37 with other Cronobacter species, as well as closely related genera Franconibacter and Siccibacter, complements the knowledge on their adaptability to specific environments such as desiccation.
Assuntos
Cronobacter , Genoma Bacteriano , Fatores de Virulência , Cronobacter/genética , Cronobacter/patogenicidade , Cronobacter/isolamento & purificação , Cronobacter/classificação , Fatores de Virulência/genética , Virulência/genética , Filogenia , Genômica/métodos , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimentoRESUMO
In the last decade, strains of the genera Franconibacter and Siccibacter have been misclassified as first Enterobacter and later Cronobacter Because Cronobacter is a serious foodborne pathogen that affects premature neonates and elderly individuals, such misidentification may not only falsify epidemiological statistics but also lead to tests of powdered infant formula or other foods giving false results. Currently, the main ways of identifying Franconibacter and Siccibacter strains are by biochemical testing or by sequencing of the fusA gene as part of Cronobacter multilocus sequence typing (MLST), but in relation to these strains the former is generally highly difficult and unreliable while the latter remains expensive. To address this, we developed a fast, simple, and most importantly, reliable method for Franconibacter and Siccibacter identification based on intact-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Our method integrates the following steps: data preprocessing using mMass software; principal-component analysis (PCA) for the selection of mass spectrum fingerprints of Franconibacter and Siccibacter strains; optimization of the Biotyper database settings for the creation of main spectrum projections (MSPs). This methodology enabled us to create an in-house MALDI MS database that extends the current MALDI Biotyper database by including Franconibacter and Siccibacter strains. Finally, we verified our approach using seven previously unclassified strains, all of which were correctly identified, thereby validating our method.IMPORTANCE We show that the majority of methods currently used for the identification of Franconibacter and Siccibacter bacteria are not able to properly distinguish these strains from those of Cronobacter While sequencing of the fusA gene as part of Cronobacter MLST remains the most reliable such method, it is highly expensive and time-consuming. Here, we demonstrate a cost-effective and reliable alternative that correctly distinguishes between Franconibacter, Siccibacter, and Cronobacter bacteria and identifies Franconibacter and Siccibacter at the species level. Using intact-cell MALDI-TOF MS, we extend the current MALDI Biotyper database with 11 Franconibacter and Siccibacter MSPs. In addition, the use of our approach is likely to lead to a more reliable identification scheme for Franconibacter and Siccibacter strains and, consequently, a more trustworthy epidemiological picture of their involvement in disease.