Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Magn Reson Imaging ; 53(3): 905-912, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33075178

RESUMO

BACKGROUND: MRI-based finite element analysis (MRI-FEA) is the only method able to assess microstructural and whole-bone mechanical properties of the hip in vivo. PURPOSE: To examine whether MRI-FEA is capable of discriminating age-related changes in whole-bone mechanical performance and micromechanical behavior of the proximal femur, particularly considering the most common hip fracture-related sideways fall loading. STUDY TYPE: Retrospective. SUBJECTS: A total of nine younger (27 ± 3.2 years) and nine elderly (61 ± 3.9 years) healthy volunteers. FIELD STRENGTH/SEQUENCE: 3T; 3D fast field echo sequence. ASSESSMENT: The left proximal femurs were scanned and FE models created. FEA was performed to simulate sideways fall and stance loading for each femoral model. Apparent stiffness and high-risk (90th percentile) tensile and compressive strains of the proximal femur as well as the average strains within cubic regions of the femoral neck and greater trochanter were assessed. STATISTICAL TESTS: Paired and unpaired t-tests. RESULTS: Compared to the young group, the femoral stiffness of the elderly decreased by 39% and 40% (both P < 0.05) under the sideways fall and stance conditions, respectively. Accordingly, the high-risk tensile and compressive stains were elevated with aging (40% and 23% for sideways fall, 23% and 11% for stance conditions; all P < 0.05). However, the loading configuration-induced difference was only observed in the elderly group for the high-risk strains (22% for tension and 12% for compression; both P < 0.05). Additionally, compared to the stance condition, the sideways fall increased the average tensile (young: 108%, elderly: 123%; both P < 0.05) and compressive strains (young: 631%, elderly: 617%, both P < 0.05) within the greater trochanter rather than the femoral neck region. DATA CONCLUSION: In vivo MRI-FEA is capable of capturing age-related changes in both apparent-level stiffness and tissue-level micromechanical behavior of the proximal femur. However, the effect of sideways fall loading might be better reflected by tissue-level micromechanics rather than apparent stiffness. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 1.


Assuntos
Colo do Fêmur , Fêmur , Idoso , Fêmur/diagnóstico por imagem , Análise de Elementos Finitos , Humanos , Imageamento por Ressonância Magnética , Estudos Retrospectivos
2.
Biomed Eng Online ; 16(1): 116, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974207

RESUMO

BACKGROUND: Hip fracture of elderly people-suffering from osteoporosis-is a severe public health concern, which can be reduced by providing a prior assessment of hip fracture risk. Image-based finite element analysis (FEA) has been considered an effective computational tool to assess the hip fracture risk. Considering the femoral neck region is the weakest, fracture risk indicators (FRI) are evaluated for both single-legged stance and sideways fall configurations and are compared between left and right femurs of each subject. Quantitative Computed Tomography (QCT) scan datasets of thirty anonymous patients' left and right femora have been considered for the FE models, which have been simulated with an equal magnitude of load applied to the aforementioned configurations. The requirement of bilateral hip assessment in predicting the fracture risk has been explored in this study. RESULTS: Comparing the sideways fall and single-legged stance, the FRI varies by 64 to 74% at the superior aspects and by 14 to 19% at the inferior surfaces of both the femora. The results of this in vivo analysis clearly substantiate that the fracture is expected to initiate at the superior surface of femoral neck region if a patient falls from his/her standing height. The distributions of FRI between the femurs vary considerably, and the variability is significant at the superior aspects. The p value (= 0.02) obtained from paired sample t-Test yields p value ≤ 0.05, which shows the evidence of variability of the FRI distribution between left and right femurs. Moreover, the comparison of FRIs between the left and right femur of men and women shows that women are more susceptible to hip fracture than men. CONCLUSIONS: The results and statistical variation clearly signify a need for bilateral hip scanning in predicting hip fracture risk, which is clinically conducted, at present, based on one hip chosen randomly and may lead to inaccurate fracture prediction. This study, although preliminary, may play a crucial role in assessing the hip fractures of the geriatric population and thereby, reducing the cost of treatment by taking predictive measure.


Assuntos
Acidentes por Quedas , Fêmur/diagnóstico por imagem , Fêmur/lesões , Análise de Elementos Finitos , Fraturas do Quadril/diagnóstico por imagem , Fraturas do Quadril/etiologia , Tomografia Computadorizada por Raios X , Idoso , Feminino , Humanos , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Fatores de Risco
3.
J Mech Behav Biomed Mater ; 150: 106299, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38088011

RESUMO

Early assessment of hip fracture risk may play a critical role in designing preventive mechanisms to reduce the occurrence of hip fracture in geriatric people. The loading direction, clinical, and morphological variables play a vital role in hip fracture. Analyzing the effects of these variables helps predict fractures risk more accurately; thereby suggesting the critical variable that needs to be considered. Hence, this work considered the fall postures by varying the loading direction on the coronal plane (α) and on the transverse plane (ß) along with the clinical variables-age, sex, weight, and bone mineral density, and morphological variables-femoral neck axis length, femoral neck width, femoral neck angle, and true moment arm. The strain distribution obtained via finite element analysis (FEA) shows that the angle of adduction (α) during a fall increases the risk of fracture at the greater trochanter and femoral neck, whereas with an increased angle of rotation (ß) during the fall, the FRI increases by ∼1.35 folds. The statistical analysis of clinical, morphological, and loading variables (αandß) delineates that the consideration of only one variable is not enough to realistically predict the possibility of fracture as the correlation between individual variables and FRI is less than 0.1, even though they are shown to be significant (p<0.01). On the contrary, the correlation (R2=0.48) increases as all variables are considered, suggesting the need for considering different variables fork predicting FRI. However, the effect of each variable is different. While loading, clinical, and morphological variables are considered together, the loading direction on transverse plane (ß) has high significance, and the anatomical variabilities have no significance.


Assuntos
Fraturas do Quadril , Humanos , Idoso , Análise de Elementos Finitos , Fraturas do Quadril/epidemiologia , Fraturas do Quadril/etiologia , Colo do Fêmur/diagnóstico por imagem , Densidade Óssea , Fêmur/diagnóstico por imagem , Fatores de Risco
4.
J Mech Behav Biomed Mater ; 157: 106659, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39029349

RESUMO

Falls among the elderly cause a huge number of hip fractures worldwide. Energy absorbing floors (EAFs) represent a promising strategy to decrease impact force and hip fracture risk during falls. Femoral neck force is an effective predictor of hip injury. However, the biomechanical effectiveness of EAFs in terms of mitigating femoral neck force remains largely unknown. To address this, a whole-body computational model representing a small-size elderly woman with a biofidelic representation of the soft tissue near the hip region was employed in this study, to measure the attenuation in femoral neck force provided by four commercially available EAFs (Igelkott, Kradal, SmartCells, and OmniSports). The body was positioned with the highest hip force with a -10∘ trunk angle and +10∘ anterior pelvis rotation. At a pelvis impact velocity of 3 m/s, the peak force attenuation provided by four EAFs ranged from 5% to 19%. The risk of hip fractures also demonstrates a similar attenuation range. The results also exhibited that floors had more energy transferred to their internal energy demonstrated greater force attenuation during sideways falls. By comparing the biomechanical effectiveness of existing EAFs, these results can improve the floor design that offers better protection performance in high-fall-risk environments for the elderly.


Assuntos
Acidentes por Quedas , Fraturas do Quadril , Humanos , Fraturas do Quadril/prevenção & controle , Acidentes por Quedas/prevenção & controle , Feminino , Idoso , Fenômenos Biomecânicos , Fenômenos Mecânicos , Pisos e Cobertura de Pisos
5.
J Biomech ; 172: 112199, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38959821

RESUMO

This study investigates the effects of fall configurations on hip fracture risk with a focus on pelvic soft tissue shape. This was done by employing a whole-body finite element (FE) model. Soft tissue thickness around the pelvis was measured using a standing CT system, revealing a trend of increased trochanteric soft tissue thickness with higher BMI and younger age. In the lateroposterior region from the greater trochanter, the soft tissues of elderly females were thin with a concave shape. Based on the THUMS 5F model, an elderly female FE model with a low BMI was developed by morphing the soft tissue shape around the pelvis based on the CT data. FE simulation results indicated that the lateroposterior fall led to a higher femoral neck force for the elderly female model compared to the lateral fall. One reason may be related to the thin soft tissue of the pelvis in the lateroposterior region. Additionally, the effectiveness of interventions that can help mitigating hip fractures in lateroposterior falls on the thigh-hip and hip region was assessed using the elderly female model. The attenuation rate of the femoral neck force by the hip protector was close to zero in the thigh-hip fall and high in the hip fall, whereas the attenuation rate of the compliant floor was high in both falls. This study highlights age-related changes in the soft tissue shape of the pelvis in females, particularly in the lateroposterior regions, which may influence force mitigation for the hip joint during lateroposterior falls.


Assuntos
Acidentes por Quedas , Análise de Elementos Finitos , Fraturas do Quadril , Humanos , Feminino , Fraturas do Quadril/fisiopatologia , Fraturas do Quadril/etiologia , Fraturas do Quadril/diagnóstico por imagem , Fraturas do Quadril/prevenção & controle , Acidentes por Quedas/prevenção & controle , Idoso , Idoso de 80 Anos ou mais , Modelos Biológicos , Colo do Fêmur/diagnóstico por imagem , Colo do Fêmur/fisiologia , Fenômenos Biomecânicos , Pelve/diagnóstico por imagem , Pelve/fisiologia , Pelve/anatomia & histologia , Tomografia Computadorizada por Raios X
6.
J Biomech ; 142: 111262, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36027638

RESUMO

Hip fractures caused by falls are important health problems for the elderly. Many studies used finite element (FE) models of the femur and its surroundings to evaluate the hip fracture risk during the impact phase in a fall. In this study, the whole-body human FE model (THUMS) of a small female was applied from the descent to the impact phase in a fall to understand the effect of the whole body. Brosh's material model was used for the soft tissue of the hip. A low-BMI and high-BMI model were developed based on THUMS (middle-BMI). For the middle-BMI model, the torso angle and the pelvis impact velocity were 45.2° and 2.62 m/s at the time of pelvis impact. The effective mass changed with time, and was 18.3 kg when the femoral neck force was maximum. The femoral neck force was 2.11 kN for the low-BMI model. The femoral neck forces when wearing a soft and a hard hip protector, and when falling on an energy-absorbing floor were compared for the FE models of human and a hip protector testing system. Though the force attenuation of the protective devices was 32.0-44.3 % in the testing system, the force attenuation in the middle-BMI was 0.1-22.2 %. In the low-BMI model, the attenuation of the soft protector was limited (4.2 %) because the hip protector protruded from the outer surface, so the contact force was concentrated at the hip region. This research suggests the importance of including the whole body to evaluate the hip fracture risk.


Assuntos
Fraturas do Quadril , Idoso , Feminino , Fêmur , Análise de Elementos Finitos , Fraturas do Quadril/etiologia , Articulação do Quadril , Humanos , Equipamentos de Proteção/efeitos adversos
7.
J Mech Behav Biomed Mater ; 134: 105364, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35917637

RESUMO

Hip fractures following a low-impact fall are common in the elderly. Finite element (FE) models of the proximal femur can improve the prediction of fracture risk over current clinical standards. Foramina in the femoral neck may influence its fracture mechanics, albeit the majority of FE modelling approaches do not consider them. This study aimed to show how foramina affect fracture propagation and FE strain predictions in the femoral neck. µCT images were taken of 10 cadaveric proximal femora before and after fracture, following quasi-static mechanical loading representing a sideways fall. The µCT images of the fractured femora were used to determine where the bones fractured in relation to the foramina. FE models were created based on µCT and clinical CT scans of the intact femora. The superolateral side of the femoral neck was modelled with high detail including foramina. Element-specific Young's moduli were assigned and the models were solved quasi-statically. The models predicted high strains inside foramina, agreeing with experimental strain measurements. However, these high strains inside foramina were often not related to the observed fracture location. µCT images also confirmed that the foramina mostly remained intact after fracture. Using a fracture criterion based on local strain averaging improved the accuracy of the predicted fracture location as well as the correlation between the FE predicted fracture forces and the experimentally measured peak forces. To conclude, the presence of foramina can influence the fracture pattern in femoral neck fractures and inclusion of foramina in FE models improves the prediction of local strain concentrations.


Assuntos
Fraturas do Fêmur , Fraturas do Colo Femoral , Fraturas do Quadril , Idoso , Fraturas do Colo Femoral/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Análise de Elementos Finitos , Humanos
8.
J Mech Behav Biomed Mater ; 126: 105059, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34995835

RESUMO

Periprosthetic femoral fractures (PFF) around total hip replacements are one of the biggest challenges for orthopaedic surgeons. To understand the risk factors and formation of these fractures, the development of a reliable finite element (FE) model incorporating bone failure is essential. Due to the anisotropic and complex hierarchical structure of bone, the mechanical behaviour under large strains is difficult to predict. In this study, a state-of-the-art subject specific FE modelling technique for bone is utilised to generate and investigate PFF. A bilinear constitutive law is applied to bone tissue in subject specific FE models of five human femurs which are virtually implanted with a straight hip stem to numerically analyse PFF. The material parameters of the models are expressed as a function of bone ash density and mapped node wise to the FE mesh. In this way the subject specific, heterogeneous structure of bone is mimicked. For material mapping of the parameters, computed tomography (CT) images of the original fresh-frozen femurs are used. Periprosthetic fractures are generated by deleting elements on the basis of a critical plastic strain failure criterion. The models are analysed under physiological and clinically relevant conditions in two different load cases re-enacting stumbling and a sideways fall on the hip. The results of the analyses are quantified with experimental data from previous work. With regard to fracture pattern, stiffness and failure load the simulations of the load case stumbling delivered the most stable and accurate results. In general, mapping of material properties was found to be an appropriate way to reproduce PFF with finite element models.


Assuntos
Artroplastia de Quadril , Fraturas do Fêmur , Fraturas Periprotéticas , Fraturas do Fêmur/diagnóstico por imagem , Fraturas do Fêmur/cirurgia , Fêmur/diagnóstico por imagem , Fêmur/cirurgia , Análise de Elementos Finitos , Humanos , Fraturas Periprotéticas/diagnóstico por imagem
9.
Ann Biomed Eng ; 49(5): 1380-1390, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33184710

RESUMO

We hypothesize that variations of body anthropometry, conjointly with the bone strength, determine the risk of hip fracture. To test the hypothesis, we compared, in a simulated sideways fall, the hip impact energy to the energy needed to fracture the femur. Ten femurs from elderly donors were tested using a novel drop-tower protocol for replicating the hip fracture dynamics during a fall on the side. The impact energy was varied for each femur according to the donor's body weight, height and soft-tissue thickness, by adjusting the drop height and mass. The fracture pattern, force, energy, strain in the superior femoral neck, bone morphology and microarchitecture were evaluated. Fracture patterns were consistent with clinically relevant hip fractures, and the superior neck strains and timings were comparable with the literature. The hip impact energy (11 - 95 J) and the fracture energy (11 - 39 J) ranges overlapped and showed comparable variance (CV = 69 and 61%, respectively). The aBMD-based definition of osteoporosis correctly classified 7 (70%) fracture/non-fracture cases. The incorrectly classified cases presented large impact energy variations, morphology variations and large subcortical voids as seen in microcomputed tomography. In conclusion, the risk of osteoporotic hip fracture in a sideways fall depends on both body anthropometry and bone strength.


Assuntos
Acidentes por Quedas , Antropometria , Fêmur/diagnóstico por imagem , Fraturas do Quadril , Osteoporose , Idoso , Idoso de 80 Anos ou mais , Densidade Óssea , Feminino , Fêmur/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Estresse Mecânico , Microtomografia por Raio-X
10.
J Biomech ; 114: 110156, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33302183

RESUMO

While the incidence of hip fractures has declined during the last decades, the incidence of acetabular fractures resulting from low-energy sideways falls has increased, and the mechanisms responsible for this trend remain unknown. Previous studies have suggested that body configuration during the impact plays an important role in a hip fracture. Thus, the aim of this study was to investigate the effect of body configuration angles (trunk tilt angle, trunk flexion angle, femur horizontal rotation angle, and femur diaphysis angle) on low-energy acetabular fractures via a parametric analysis. A computed tomography-based (CT) finite element model of the ground-proximal femur-pelvis complex was created, and strain magnitude, time-history response, and distribution within the acetabulum were evaluated. Results showed that while the trunk tilt angle and femur diaphysis angle have the greatest effect on strain magnitude, the direction of the fall (lateral vs. posterolateral) contributes to strain distribution within the acetabulum. The results also suggest that strain level and distribution within the proximal femur and acetabulum resulting from a sideways fall are not similar and, in some cases, even opposite. Taken together, our simulations suggest that a more horizontal trunk and femoral shaft at the impact phase can increase the risk of low-energy acetabular fractures.


Assuntos
Acetábulo , Fraturas do Quadril , Acidentes por Quedas , Acetábulo/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Análise de Elementos Finitos , Humanos
11.
J Biomech ; 122: 110445, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-33933857

RESUMO

Low impact falls to the side are the main cause of hip fractures in elderly. Finite element (FE) models of the proximal femur may help in the assessment of patients at high risk for a hip fracture. However, extensive validation is essential before these models can be used in a clinical setting. This study aims to use strain measurements from bilateral digital image correlation to validate an FE model against ex vivo experimental data of proximal femora under a sideways fall loading condition. For twelve subjects, full-field strain measurements were available on the medial and lateral side of the femoral neck. In this study, subject-specific FE models were generated based on a consolidated procedure previously validated for stance loading. The material description included strain rate dependency and separate yield and fracture strain limits in tension and compression. FE predicted fracture force and experimentally measured peak forces showed a strong correlation (R2 = 0.92). The FE simulations predicted the fracture initiation within 3 mm distance of the experimental fracture line for 8/12 subjects. The predicted and measured strains correlated well on both the medial side (R2 = 0.87) and the lateral side (R2 = 0.74). The lower correlation on the lateral side is attributed to the irregularity of the cortex and presence of vessel holes in this region. The combined validation against bilateral full-field strain measurements and peak forces has opened the door for a more elaborate qualitative and quantitative validation of FE models of femora under sideways fall loading.


Assuntos
Acidentes por Quedas , Fraturas do Quadril , Idoso , Fêmur , Colo do Fêmur , Análise de Elementos Finitos , Humanos
12.
J Mech Behav Biomed Mater ; 103: 103593, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32090922

RESUMO

Sideways falls onto the hip are responsible for a great number of fractures in older adults. One of the possible ways to prevent these fractures is through early identification of people at greatest risk so that preventive measures can be properly implemented. Many numerical techniques that are designed to predict the femur fracture risk are validated through performing quasi-static (QS) mechanical tests on isolated cadaveric femurs, whereas the real hip fracture is a result of an impact (IM) incident. The goal of this study was to compare the fracture limits of the proximal femur under IM and QS conditions in the simulation of a sideways fall to identify any possible relationship between them. Eight pairs of fresh frozen cadaveric femurs were divided into two groups of QS and IM (left and right randomized). All femurs were scanned with a Hologic DXA scanner and then cut and potted in a cylindrical tube. To measure the stiffness in two conditions of the single-leg stance (SLS) and sideways fall (SWF), non-destructive tests at a QS displacement rate were performed on the two groups. For the destructive tests, the QS group was tested in SWF configuration with the rate of 0.017 mm/s using a material testing machine, and the IM group was tested in the same configuration inside a pneumatic IM device with the projectile target displacement rate of 3 m/s. One of the IM specimens was excluded due to multiple strikes. The result of this study showed that there were no significant differences in the SLS and SWF stiffnesses between the two groups (P = 0.15 and P = 0.64, respectively). The destructive test results indicated that there was a significant difference in the fracture loads of the two groups (P < 0.00001) with the impact ones being higher; however, they were moderately correlated (R2 = 0.45). Also, the comparison of the fracture location showed a qualitatively good agreement between the two groups. Using the relationship developed herein, results from another study were extrapolated with errors of less than 12%, showing that meaningful predictions for the impact scenario can be made based on the quasi-static tests. The result of this study suggests that there is a potential to replace IM tests with QS displacement rate tests, and this will provide important information that can be used for future studies evaluating clinical factors related to fracture risk.


Assuntos
Acidentes por Quedas , Fraturas do Fêmur , Idoso , Simulação por Computador , Fêmur/diagnóstico por imagem , Humanos , Teste de Materiais
13.
Hip Int ; 30(2_suppl): 86-93, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33267694

RESUMO

INTRODUCTION: The aim of this study was to investigate the mechanisms of periprosthetic fractures occurring as a result of a sideways fall in total hip arthroplasty patients, and to compare the predictions of numerical models in terms of load distribution on the implanted femur with clinical data. MATERIALS AND METHODS: 3 numerical models were built: 1 for intact femur and 2 for implanted femur with a straight stem (resembling PBF, Permedica) and with an anatomical stem (resembling ABG II, Stryker). 4 loading configurations were simulated; 1 simulates a vertical load, and 3 simulate a fall with impact on the greater trochanter in different directions. Stress state calculated in the implanted femur was compared for the 2 models with reference to the intact case. These were compared with clinical data collected at a single centre (Istituto Ortopedico Gaetano Pini, Milan, Italy) where 41 patients were investigated after periprosthetic fracture: 26 patients had a straight uncemented stem and 15 an anatomical uncemented stem. RESULTS: The maximum calculated strain in compression in the case of ABG II implanted femur was 2 times higher than in the presence of PBF stem in the vertical loading configuration. For configurations of sideways fall, in both models, there was a progressive increase of stress state in the bone with increasing angle. Simulations of sideways fall elicited results in accordance with clinical observations: due to the peculiar stem design and consequent state of stress in the bone, anatomical stems seem to induce trochanteric fractures more frequently, while for straight stems type B fractures are more likely to occur. CONCLUSIONS: Clinical findings confirmed numerical model predictions: stem design seems to highly influence distribution of stress in the bone and consequent localisation of the fracture site.


Assuntos
Artroplastia de Quadril , Fraturas do Fêmur , Fraturas Periprotéticas , Artroplastia de Quadril/efeitos adversos , Fraturas do Fêmur/etiologia , Fraturas do Fêmur/cirurgia , Fêmur/diagnóstico por imagem , Fêmur/cirurgia , Humanos , Itália , Fraturas Periprotéticas/diagnóstico por imagem , Fraturas Periprotéticas/etiologia , Fraturas Periprotéticas/cirurgia
14.
J Biomech ; 106: 109826, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32517988

RESUMO

An improved understanding of the mechanical properties of human femurs is a milestone towards a more accurate assessment of fracture risk. Digital image correlation (DIC) has recently been adopted to provide full-field strain measurements during mechanical testing of femurs. However, it has typically been used to measure strains on the anterior side of the femur, whereas in both single-leg-stance and sideways fall loading conditions, the highest deformations result on the medial and lateral sides of the femoral neck. The goal of this study was to measure full-field deformations simultaneously on the medial and lateral side of the femoral neck in a configuration resembling a fall to the side. Twelve female cadaver femurs were prepared for DIC measurements and tested in sideways fall at 5 mm/s displacement rate. Two pairs of cameras recorded the medial and lateral side of the femoral neck, and deformations were calculated using DIC. The samples exhibited a two-stage failure: first, a compressive collapse on the superolateral side of the femoral neck in conjunction with peak force, followed by complete femoral neck fracture at the force drop following the post-elastic phase. DIC measurements corroborated this observation by reporting no tensile strains above yield limit for the medial side of the neck up to peak force. DIC measurements registered onto the bone micro-architecture showed strain localizations in proximity of cortical pores due to, for instance, blood vessels. This could explain previously reported discrepancies between simulations and experiments in regions rich with large pores, like the superolateral femoral neck.


Assuntos
Fraturas do Colo Femoral , Fêmur , Acidentes por Quedas , Fenômenos Biomecânicos , Feminino , Colo do Fêmur/diagnóstico por imagem , Humanos , Fenômenos Mecânicos , Estresse Mecânico
15.
Bone ; 122: 209-217, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30851438

RESUMO

Currently, clinical determination of pathologic fracture risk in the hip is conducted using measures of defect size and shape in the stance loading condition. However, these measures often do not consider how changing lesion locations or how various loading conditions impact bone strength. The goal of this study was to determine the impact of defect location on bone strength parameters in both the sideways fall and stance-loading conditions. We recruited 20 female subjects aged 48-77 years for this study and performed MRI of the proximal femur. Using these images, we simulated 10-mm pathologic defects in greater trochanter, superior, middle, and inferior femoral head, superior, middle, and inferior femoral neck, and lateral, middle, and medial proximal diaphysis to determine the effect of defect location on change in bone strength by performing finite element analysis. We compared the effect of each osteolytic lesion on bone stiffness, strength, resilience, and toughness. For the sideways fall loading, defects in the inferior femoral head (12.21%) and in the greater trochanter (6.43%) resulted in the greatest overall reduction in bone strength. For the stance loading, defects in the mid femoral head (-7.91%) and superior femoral head (-7.82%) resulted in the greatest overall reduction in bone strength. Changes in stiffness, yield force, ultimate force, resilience, and toughness were not found to be significantly correlated between the sideways fall and stance-loading for the majority of defect locations, suggesting that calculations based on the stance-loading condition are not predictive of the change in bone strength experienced in the sideways fall condition. While stiffness was significantly related to yield force (R2 > 0.82), overall force (R2 > 0.59), and resilience (R2 > 0.55), in both, the stance-loading and sideways fall conditions for most defect locations, stiffness was not significantly related to toughness. Therefore, structure-dependent measure such as stiffness may not fully explain the post-yield measures, which depend on material failure properties. The data showed that MRI-based models have the sensitivity to determine the effect of pathologic lesions on bone strength.


Assuntos
Fêmur/diagnóstico por imagem , Fêmur/patologia , Análise de Elementos Finitos , Imageamento por Ressonância Magnética , Modelos Teóricos , Idoso , Simulação por Computador , Diáfises/diagnóstico por imagem , Diáfises/patologia , Feminino , Colo do Fêmur/diagnóstico por imagem , Colo do Fêmur/patologia , Humanos , Pessoa de Meia-Idade , Dinâmica não Linear
16.
Bone ; 120: 25-37, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30240961

RESUMO

Clinical retrospective studies have only reported limited improvements in hip fracture classification accuracy using finite element (FE) models compared to conventional areal bone mineral density (aBMD) measurements. A possible explanation is that state-of-the-art quasi-static models do not estimate patient-specific loads. A novel FE modeling technique was developed to improve the biofidelity of simulated impact loading from sideways falling. This included surrogate models of the pelvis, lower extremities, and soft tissue that were morphed based on subject anthropometrics. Hip fracture prediction models based on aBMD and FE measurements were compared in a retrospective study of 254 elderly female subjects from the AGES-Reykjavik study. Subject fragility ratio (FR) was defined as the ratio between the ultimate forces of paired biofidelic models, one with linear elastic and the other with non-linear stress-strain relationships in the proximal femur. The expected end-point value (EEV) was defined as the FR weighted by the probability of one sideways fall over five years, based on self-reported fall frequency at baseline. The change in maximum volumetric strain (ΔMVS) on the surface of the femoral neck was calculated between time of ultimate femur force and 90% post-ultimate force in order to assess the extent of tensile tissue damage present in non-linear models. After age-adjusted logistic regression, the area under the receiver-operator curve (AUC) was highest for ΔMVS (0.72), followed by FR (0.71), aBMD (0.70), and EEV (0.67), however the differences between FEA and aBMD based prediction models were not deemed statistically significant. When subjects with no history of falling were excluded from the analysis, thus artificially assuming that falls were known a priori with no uncertainty, a statistically significant difference in AUC was detected between ΔMVS (0.85), and aBMD (0.74). Multivariable linear regression suggested that the variance in maximum elastic femur force was best explained by femoral head radius, pelvis width, and soft tissue thickness (R2 = 0.79; RMSE = 0.46 kN; p < 0.005). Weighting the hip fracture prediction models based on self-reported fall frequency did not improve the models' sensitivity, however excluding non-fallers lead to significant differences between aBMD and FE based models. These findings suggest that an accurate assessment of fall probability is necessary for accurately identifying individuals predisposed to hip fracture.


Assuntos
Análise de Elementos Finitos , Fraturas do Quadril/classificação , Idoso , Idoso de 80 Anos ou mais , Densidade Óssea , Estudos de Coortes , Feminino , Fêmur/patologia , Humanos , Islândia , Masculino , Probabilidade , Curva ROC , Estudos Retrospectivos
17.
J Mech Behav Biomed Mater ; 78: 196-205, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29172124

RESUMO

Sideways falls are largely responsible for the highly prevalent osteoporotic hip fractures in today's society. These injuries are dynamic events, therefore dynamic FE models validated with dynamic ex vivo experiments provide a more realistic simulation than simple quasi-static analysis. Drop tower experiments using cadaveric specimens were used to identify the material mapping strategy that provided the most realistic mechanical response under impact loading. The present study tested the addition of compression-tension asymmetry, tensile bone damage, and cortical-specific strain rate dependency to the material mapping strategy of fifteen dynamic FE models of the proximal femur, and found improved correlations and reduced error for whole bone stiffness (R2 = 0.54, RSME = 0.87kN/mm) and absolute maximum force (R2 = 0.56, RSME =0.57kN), and a high correlation in impulse response (R2 = 0.82, RSME =12.38kg/s). Simulations using fully bonded nodes between the rigid bottom plate and PMMA cap supporting the femoral head had higher correlations and less error than simulations using a frictionless sliding at this contact surface. Strain rates over 100/s were observed in certain elements in the femoral neck and trochanter, indicating that additional research is required to better quantify the strain rate dependencies of both trabecular and cortical bone at these strain rates. These results represent the current benchmark in dynamic FE modeling of the proximal femur in sideways falls. Future work should also investigate improvements in experimental validation techniques by developing better displacement measurements and by enhancing the biofidelity of the impact loading wherever possible.


Assuntos
Acidentes por Quedas , Fêmur , Teste de Materiais , Fenômenos Mecânicos , Idoso , Fenômenos Biomecânicos , Feminino , Análise de Elementos Finitos , Humanos , Masculino
18.
Med Eng Phys ; 38(11): 1339-1347, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27641660

RESUMO

Finite element analysis (FEA) of bones scanned with Quantitative Computed Tomography (QCT) can improve early detection of osteoporosis. The accuracy of these models partially depends on the assigned material properties, but anisotropy of the trabecular bone cannot be fully captured due to insufficient resolution of QCT. The inclusion of anisotropy measured from high resolution peripheral QCT (HR-pQCT) could potentially improve QCT-based FEA of the femur, although no improvements have yet been demonstrated in previous experimental studies. This study analyzed the effects of adding anisotropy to clinical resolution femur models by constructing six sets of FE models (two isotropic and four anisotropic) for each specimen from a set of sixteen femurs that were experimentally tested in sideways fall loading with a strain gauge on the superior femoral neck. Two different modulus-density relationships were tested, both with and without anisotropy derived from mean intercept length analysis of HR-pQCT scans. Comparing iso- and anisotropic models to the experimental data resulted in nearly identical correlation and highly similar linear regressions for both whole bone stiffness and strain gauge measurements. Anisotropic models contained consistently greater principal compressive strains, approximately 14% in magnitude, in certain internal elements located in the femoral neck, greater trochanter, and femoral head. In summary, anisotropy had minimal impact on macroscopic measurements, but did alter internal strain behavior. This suggests that organ level QCT-based FE models measuring femoral stiffness have little to gain from the addition of anisotropy, but studies considering failure of internal structures should consider including anisotropy to their models.


Assuntos
Fêmur , Análise de Elementos Finitos , Idoso , Idoso de 80 Anos ou mais , Anisotropia , Módulo de Elasticidade , Feminino , Fêmur/diagnóstico por imagem , Humanos , Masculino , Estresse Mecânico , Tomografia Computadorizada por Raios X
19.
Biomed Mater Eng ; 27(1): 1-14, 2016 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-27175463

RESUMO

Image-based finite element analysis (FEA) has been considered an effective computational tool to predict hip fracture risk. The patient specific FEA gives an insight into the inclusive effect of three-dimensional (3D) complex bone geometry, and the distribution of inhomogeneous isotropic material properties in conjunction with loading conditions. The neck region of a femur is primarily the weakest in which fracture is likely to happen, when someone falls. A sideways fall results in the development of greater tensile and compressive stresses, respectively, in the inferior and superior aspects of the femoral neck, whereas the state of stress is reversed in usual gait or stance configuration. Herein, the variations of stresses have been investigated at the femoral neck region considering both single-stance and sideways fall. Finite element models of ten human femora have been generated using Quantitative Computed Tomography (QCT) scan datasets and have been simulated with an equal magnitude of load applied to the aforementioned configurations. Fracture risk indicator, defined as the ratio of the maximum compressive or tensile stress computed at the superior and inferior surfaces to the corresponding yield stress, has been used in this work to measure the variations of fracture risk between single-stance and sideways fall. The average variations of the fracture risk indicators between the fall and stance are at least 24.3% and 8% at the superior and inferior surfaces, respectively. The differences may interpret why sideways fall is more dangerous for the elderly people, causing hip fracture.


Assuntos
Acidentes por Quedas , Fêmur/diagnóstico por imagem , Análise de Elementos Finitos , Fraturas do Quadril/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Idoso , Feminino , Fêmur/patologia , Colo do Fêmur/diagnóstico por imagem , Colo do Fêmur/patologia , Fraturas do Quadril/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Estresse Mecânico
20.
J Biomech ; 48(10): 2130-43, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25843261

RESUMO

This study assessed: (i) how the magnitude and direction of principal strains vary for different sideways fall loading directions; (ii) how the principal strains for a sideways fall differ from physiological loading directions; (iii) the fracture mechanism during a sideways fall. Eleven human femurs were instrumented with 16 triaxial strain gauges each. The femurs were non-destructively subjected to: (a) six loading configurations covering the range of physiological loading directions; (b) 12 configurations simulating sideways falls. The femurs were eventually fractured in a sideways fall configuration while high-speed cameras recorded the event. When the same force magnitude was applied, strains were significantly larger in a sideways fall than for physiological loading directions (principal compressive strain was 70% larger in a sideways fall). Also the compressive-to-tensile strain ratio was different: for physiological loading the largest compressive strain was only 30% larger than the largest tensile strain; but for the sideways fall, compressive strains were twice as large as the tensile strains. Principal strains during a sideways fall were nearly perpendicular to the direction of principal strains for physiological loading. In the most critical regions (medial part of the head-neck) the direction of principal strain varied by less than 9° between the different physiological loading conditions, whereas it varied by up to 17° between the sideways fall loading conditions. This was associated with a specific fracture mechanism during sideways fall, where failure initiated on the superior-lateral side (compression) followed by later failure of the medially (tension), often exhibiting a two-peak force-displacement curve.


Assuntos
Fêmur/fisiopatologia , Acidentes por Quedas , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Feminino , Fraturas Ósseas/etiologia , Fraturas Ósseas/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa