Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.447
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(33): e2306322120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549256

RESUMO

Plants produce various pigments that not only appear as attractive colors but also provide valuable resources in applications in daily life and scientific research. Biosynthesis pathways for these natural plant pigments are well studied, and most have multiple enzymes that vary among plant species. However, adapting these pathways to animals remains a challenge. Here, we describe successful biosynthesis of betalains, water-soluble pigments found only in a single plant order, Caryophyllales, in transgenic silkworms by coexpressing three betalain synthesis genes, cytochrome P450 enzyme CYP76AD1, DOPA 4,5-dioxygenase, and betanidin 5-O-glucosyltransferase. Betalains can be synthesized in various tissues under the control of the ubiquitous IE1 promoter but accumulate mainly in the hemolymph with yields as high as 274 µg/ml. Additionally, transformed larvae and pupae show a strong red color easily distinguishable from wild-type animals. In experiments in which expression is controlled by the promoter of silk gland-specific gene, fibroin heavy-chain, betalains are found predominantly in the silk glands and can be secreted into cocoons through spinning. Betalains in transformed cocoons are easily recovered from cocoon shells in water with average yields reaching 14.4 µg/mg. These data provide evidence that insects can synthesize natural plant pigments through a complex, multiple enzyme-mediated synthesis pathway. Such pigments also can serve as dominant visible markers in insect transgenesis applications. This study provides an approach to producing valuable plant-derived compounds by using genetically engineered silkworms as a bioreactor.


Assuntos
Bombyx , Engenharia Genética , Animais Geneticamente Modificados , Animais , Pigmentos Biológicos/biossíntese , Betalaínas/biossíntese , Betalaínas/química , Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Cor
2.
Proc Natl Acad Sci U S A ; 120(33): e2305704120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549277

RESUMO

Biocompatible and morphable hydrogels capable of multimode reprogrammable, and adaptive shape changes are potentially useful for diverse biomedical applications. However, existing morphable systems often rely on complicated structural designs involving cumbersome and energy-intensive fabrication processes. Here, we report a simple electric-field-activated protein network migration strategy to reversibly program silk-protein hydrogels with controllable and reprogrammable complex shape transformations. The application of a low electric field enables the convergence of net negatively charged protein cross-linking networks toward the anode (isoelectric point plane) due to the pH gradient generated in the process, facilitating the formation of a gradient network structure and systems suitable for three-dimensional shape change. These tunable protein networks can be reprogrammed or permanently fixed by control of the polymorphic transitions. We show that these morphing hydrogels are capable of conformally interfacing with biological tissues by programming the shape changes and a bimorph structure consisting of aligned carbon nanotube multilayers and the silk hydrogels was assembled to illustrate utility as an implantable bioelectronic device for localized low-voltage electrical stimulation of the sciatic nerve in a rabbit.


Assuntos
Hidrogéis , Seda , Animais , Coelhos , Seda/química , Hidrogéis/química , Ponto Isoelétrico , Materiais Biocompatíveis/química
3.
Proc Natl Acad Sci U S A ; 120(18): e2221528120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094147

RESUMO

Arthropod silk is vital to the evolutionary success of hundreds of thousands of species. The primary proteins in silks are often encoded by long, repetitive gene sequences. Until recently, sequencing and assembling these complex gene sequences has proven intractable given their repetitive structure. Here, using high-quality long-read sequencing, we show that there is extensive variation-both in terms of length and repeat motif order-between alleles of silk genes within individual arthropods. Further, this variation exists across two deep, independent origins of silk which diverged more than 500 Mya: the insect clade containing caddisflies and butterflies and spiders. This remarkable convergence in previously overlooked patterns of allelic variation across multiple origins of silk suggests common mechanisms for the generation and maintenance of structural protein-coding genes. Future genomic efforts to connect genotypes to phenotypes should account for such allelic variation.


Assuntos
Borboletas , Fibroínas , Aranhas , Animais , Seda/química , Sequência de Aminoácidos , Fibroínas/química , Alelos , Insetos/genética , Borboletas/genética , Variação Genética , Aranhas/genética , Proteínas de Insetos/genética , Filogenia
4.
Proc Natl Acad Sci U S A ; 119(40): e2205942119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36122198

RESUMO

Spiders, the most specious taxon of predators, have evolved an astounding range of predatory strategies, including group hunting, specialized silk traps, pheromone-loaded bolas, and aggressive mimicry. Spiders that hunt prey defended with behavioral, mechanical, or chemical means are under additional selection pressure to avoid injury and death. Ants are considered dangerous because they can harm or kill their predators, but some groups of spiders, such as the Theridiidae, have a very high diversification of ant-hunting species and strategies [J. Liu et al., Mol. Phylogenet. Evol. 94, 658-675 (2016)]. Here, we provide detailed behavioral analyses of the highly acrobatic Australian ant-slayer spider, Euryopis umbilicata (Theridiidae), that captures much larger and defended Camponotus ants on vertical tree trunks. The hunting sequence consists of ritualized steps performed within split seconds, resulting in an exceptionally high prey capture success rate.


Assuntos
Formigas , Comportamento Predatório , Aranhas , Animais , Austrália , Feromônios , Comportamento Predatório/fisiologia , Seda , Aranhas/fisiologia , Árvores
5.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35074913

RESUMO

The exceptional elastic resilience of some protein materials underlies essential biomechanical functions with broad interest in biomedical fields. However, molecular design of elastic resilience is restricted to amino acid sequences of a handful of naturally occurring resilient proteins such as resilin and elastin. Here, we exploit non-resilin/elastin sequences that adopt kinetically stabilized, random coil-dominated conformations to achieve near-perfect resilience comparable with that of resilin and elastin. We also show a direct correlation between resilience and Raman-characterized protein conformations. Furthermore, we demonstrate that metastable conformation of proteins enables the construction of mechanically graded protein materials that exhibit spatially controlled conformations and resilience. These results offer insights into molecular mechanisms of protein elastomers and outline a general conformation-driven strategy for developing resilient and functional protein materials.


Assuntos
Modelos Moleculares , Conformação Proteica , Proteínas/química , Sequência de Aminoácidos , Fibroínas/química , Análise Espectral , Relação Estrutura-Atividade
6.
Proc Natl Acad Sci U S A ; 119(21): e2112724119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35576464

RESUMO

SignificanceIncense has been linked to ceremonies, religions, medicines, and cosmetics worldwide for thousands of years. While Chinese texts in the Tang dynasty (618 to 907 CE) indicate that numerous exotic aromatic substances were already being introduced into China through the land and maritime Silk Road, this has been rarely demonstrated archaeologically. This study identifies three types of incense associated with the sacred sarira of Sakyamuni Budda from the underground palace of Famen Royal Temple in central China, providing direct evidence of aromatics including elemi, agarwood, and frankincense as well as their composite product, namely Hexiang (blending of aromatics), in Buddhist activities, which may have promoted the spread of incense and the development of aromatic knowledge systems in medieval China.

7.
Proc Natl Acad Sci U S A ; 119(47): e2209311119, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36375050

RESUMO

The complex interplay between genetics, culture, and environment forms an individual's biology, influencing their behavior, choices, and health. However, to what extent information derived from this intertwined network could be quantitatively summarized to provide a glance at an individual's lifestyle is difficult to say. Here, we focused on dietary preferences as cultural proxies and genome-wide data of 543 individuals from six historical Silk Road countries: Georgia, Armenia, Azerbaijan, Uzbekistan, Kazakhstan, and Tajikistan. These lands favored the dispersal of innovations, foods, and DNA halfway across Eurasia, thus representing an ideal subject to explore interactions of cultural factors and genetic ancestry. We used discriminant analysis of principal components to infer cultural clusters, where mixed memberships are allowed. Five different clusters emerged. Of these, clusters 1 and 3, driven by aversion to pork and alcoholic beverages, mirrored genetic admixture patterns with the exception of Azerbaijan, which shares preferences supported by Islamic culture with Eastern countries. Cluster 3 was driven by protein-rich foods, whose preference was significantly related to steppe pastoralist ancestry. Sex and age were secondary clustering factors, with clusters formed by male and young individuals being related to alcohol preference and a reduced liking for vegetables. The soft clustering approach enabled us to model and summarize the individual's dietary information in short and informative vectors, which show meaningful interaction with other nondietary attributes of the studied individuals. Encoding other cultural variables would help summarize an individual's culture quantitatively, thus ultimately supporting its inclusion as a covariate in future association studies.


Assuntos
Preferências Alimentares , Humanos , Masculino , Alimentos , Estruturas Genéticas , República da Geórgia , Feminino
8.
Nano Lett ; 24(2): 566-575, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37962055

RESUMO

Optical biosensors based on micro/nanofibers are highly valuable for probing and monitoring liquid environments and bioactivity. Most current optical biosensors, however, are still based on glass, semiconductors, or metallic materials, which might not be fully suitable for biologically relevant environments. Here, we introduce biocompatible and flexible microfibers from lotus silk as microenvironmental monitors that exhibit waveguiding of intrinsic fluorescence as well as of coupled light. These features make single-filament monitors excellent building blocks for a variety of sensing functions, including pH probing and detection of bacterial activity. These results pave the way for the development of new and entirely eco-friendly, potentially multiplexed biosensing platforms.


Assuntos
Técnicas Biossensoriais , Nanofibras , Técnicas Biossensoriais/métodos , Seda , Semicondutores , Bactérias
9.
Small ; : e2405049, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101301

RESUMO

In the therapy of early-stage osteoarthritis, to accomplish full infiltration of subchondral bone and cartilage, and to target osteoclast and chondrocyte simultaneously remain challenges in biomaterials design. Herein, a novel hierarchical drug delivery system is introduced, with micrometer-scale outer layer spheres composed of regenerated silk fibroin, characterized by connected porous structure through the n-butanol and regenerated silk fibroin combined emulsion route and freezing method. The design effectively resists clearance from the joint cavity, ensuring stable delivery and prolonged residence time within the joint space. Additionally, the system incorporates phenylboronic acid-enriched silk fibroin nanoparticles, stabilized through chemical cross-linking, which encapsulate isoliquiritin derived from Glycyrrhiza uralensis. These nanoparticles facilitate complete penetration of the cartilage extracellular matrix, exhibit pH-responsive behavior, neutralize reactive oxygen species, and enable controlled drug release, thereby enhancing therapeutic efficacy. The in vitro and in vivo experiments both demonstrate that the composite micro/nanospheres not only inhibit osteoclastogenesis with bone loss in subchondral bone and osteophyte formation, but also mitigate chondrocytes apoptosis, reduce oxidative stress associated with cartilage degeneration, and ameliorate neuropathic hyperalgesia, with the underlying mechanisms being elucidated. The study indicates that such an injectable strategy combining organic biomaterials with Chinese medicine holds substantial promise for the treatment of early osteoarthritis.

10.
Small ; : e2403376, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39221643

RESUMO

Proteins are classified as biopolymers which share similar structural features with semi-crystalline polymers. Although their unique biocompatibility facilitates the universal applications of protein-based hydrogels in the biomedical field, the mechanical performances of protein-based hydrogels fall short of practical requirements. Conventional strategies for enhancing mechanical properties focus on forming regularly folded secondary structures as analogs of crystalline regions. This concept is based on proteins as the analogy of semi-crystalline polymers, in which crystalline regions profoundly contribute to the mechanical performances. Even though the contribution of the amorphous region is equally weighted for semi-crystalline polymers, their capacity to improve the mechanical performances of protein-based structures is still undervalued. Herein, the potential of promoting the mechanical performances is explored by controlling the state of amorphous regions in protein-based hydrogels. A fibril protein is chosen, regenerated silk fibroin (RSF), as a model molecule for its similar viscoelasticity with a semi-crystalline polymer. The amorphous regions in the RSF hydrogels are transformed from extended to entangled states through a double-crosslinking method. The formation of entanglement integrates new physically crosslinked points for remarkable improvement in mechanical performances. A robust hydrogel is not only developed but also intended to provide new insights into the structural-property relationship of protein-based hydrogels.

11.
Small ; 20(15): e2306912, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009480

RESUMO

The integration of magnetic resonance imaging (MRI), cGAS-STING, and anti-CTLA-4 (aCTLA-4) based immunotherapy offers new opportunities for tumor precision therapy. However, the precise delivery of aCTLA-4 and manganese (Mn), an activator of cGAS, to tumors remains a major challenge for enhanced MRI and active immunotherapy. Herein, a theragnostic nanosphere Mn-CREKA-aCTLA-4-SS (MCCS) is prepared by covalently assembling Mn2+, silk sericin (SS), pentapeptide CREKA, and aCTLA-4. MCCS are stable with an average size of 160 nm and is almost negatively charged or neutral at pH 5.5/7.4. T1-weighted images showed MCCS actively targeted tumors to improve the relaxation rate r1 and contrast time of MRI. This studies demonstrated MCCS raises reactive oxygen species levels, activates the cGAS-STING pathway, stimulates effectors CD8+ and CD80+ T cells, reduces regulatory T cell numbers, and increases IFN-γ and granzyme secretion, thereby inducing tumor cells autophagy and apoptosis in vitro and in vivo. Also, MCCS are biocompatible and biosafe. These studies show the great potential of Mn-/SS-based integrative material MCCS for precision and personalized tumor nanotheragnostics.


Assuntos
Neoplasias , Sericinas , Humanos , Manganês , Imunoterapia , Imageamento por Ressonância Magnética , Nucleotidiltransferases , Neoplasias/diagnóstico por imagem , Neoplasias/terapia
12.
Small ; 20(24): e2307628, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38191883

RESUMO

Injectable bioadhesives are attractive for managing gastric ulcers through minimally invasive procedures. However, the formidable challenge is to develop bioadhesives that exhibit high injectability, rapidly adhere to lesion tissues with fast gelation, provide reliable protection in the harsh gastric environment, and simultaneously ensure stringent standards of biocompatibility. Here, a natural bioadhesive with tunable cohesion is developed based on the facile and controllable gelation between silk fibroin and tannic acid. By incorporating a hydrogen bond disruptor (urea or guanidine hydrochloride), the inherent network within the bioadhesive is disturbed, inducing a transition to a fluidic state for smooth injection (injection force <5 N). Upon injection, the fluidic bioadhesive thoroughly wets tissues, while the rapid diffusion of the disruptor triggers instantaneous in situ gelation. This orchestrated process fosters the formed bioadhesive with durable wet tissue affinity and mechanical properties that harmonize with gastric tissues, thereby bestowing long-lasting protection for ulcer healing, as evidenced through in vitro and in vivo verification. Moreover, it can be conveniently stored (≥3 m) postdehydration. This work presents a promising strategy for designing highly injectable bioadhesives utilizing natural feedstocks, avoiding any safety risks associated with synthetic materials or nonphysiological gelation conditions, and offering the potential for minimally invasive application.


Assuntos
Ligação de Hidrogênio , Úlcera Gástrica , Animais , Úlcera Gástrica/tratamento farmacológico , Injeções , Adesivos Teciduais/química , Adesivos/química , Fibroínas/química , Taninos/química , Ratos Sprague-Dawley
13.
Small ; 20(25): e2309364, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38225691

RESUMO

Development of stimulus-responsive materials is crucial for novel soft actuators. Among these actuators, the moisture-responsive actuators are known for their accessibility, eco-friendliness, and robust regenerative attributes. A major challenge of moisture-responsive soft actuators (MRSAs) is achieving significant bending curvature within short response times. Many plants naturally perform large deformation through a layered hierarchical structure in response to moisture stimuli. Drawing inspiration from the bionic structure of Delosperma nakurense (D. nakurense) seed capsule, here the fabrication of an ultrafast bi-directional bending MRSAs is reported. Combining a superfine silk fibroin rod (SFR) modified graphene oxide (GO) moisture-responsive layer with a moisture-inert layer of reduced graphene oxide (RGO), this actuator demonstrated large bi-directional bending deformation (-4.06 ± 0.09 to 10.44 ± 0.00 cm-1) and ultrafast bending rates (7.06 cm-1 s-1). The high deformation rate is achieved by incorporating the SFR into the moisture-responsive layers, facilitating rapid water transmission within the interlayer structure. The complex yet predictable deformations of this actuator are demonstrated that can be utilized in smart switch, robotic arms, and walking device. The proposed SFR modification method is simple and versatile, enhancing the functionality of hierarchical layered actuators. It holds the potential to advance intelligent soft robots for application in confined environments.

14.
Small ; : e2403169, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973079

RESUMO

Nanopatterning on biomaterials has attracted significant attention as it can lead to the development of biomedical devices capable of performing diagnostic and therapeutic functions while being biocompatible. Among various nanopatterning techniques, electron-beam lithography (EBL) enables precise and versatile nanopatterning in desired shapes. Various biomaterials are successfully nanopatterned as bioresists by using EBL. However, the use of high-energy electron beams (e-beams) for high-resolutive patterning has incorporated functional materials and has caused adverse effects on biomaterials. Moreover, the scattering of electrons not absorbed by the bioresist leads to proximity effects, thus deteriorating pattern quality. Herein, EBL-based nanopatterning is reported by inducing molecular degradation of amorphous silk fibroin, followed by selectively inducing secondary structures. High-resolution EBL nanopatterning is achievable, even at low-energy e-beam (5 keV) and low doses, as it minimizes the proximity effect and enables precise 2.5D nanopatterning via grayscale lithography. Additionally, integrating nanophotonic structures into fluorescent material-containing silk allows for fluorescence amplification. Furthermore, this post-exposure cross-linking way indicates that the silk bioresist can maintain nanopatterned information stored in silk molecules in the amorphous state, utilizing for the secure storage of nanopatterned information as a security patch. Based on the fabrication technique, versatile biomaterial-based nanodevices for biomedical applications can be envisioned.

15.
Small ; 20(32): e2312261, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38733225

RESUMO

Myocardial infarction (MI) is a significant cardiovascular disease that restricts blood flow, resulting in massive cell death and leading to stiff and noncontractile fibrotic scar tissue formation. Recently, sustained oxygen release in the MI area has shown regeneration ability; however, improving its therapeutic efficiency for regenerative medicine remains challenging. Here, a combinatorial strategy for cardiac repair by developing cardioprotective and oxygenating hybrid hydrogels that locally sustain the release of stromal cell-derived factor-1 alpha (SDF) and oxygen for simultaneous activation of neovascularization at the infarct area is presented. A sustained release of oxygen and SDF from injectable, mechanically robust, and tissue-adhesive silk-based hybrid hydrogels is achieved. Enhanced endothelialization under normoxia and anoxia is observed. Furthermore, there is a marked improvement in vascularization that leads to an increment in cardiomyocyte survival by ≈30% and a reduction of the fibrotic scar formation in an MI animal rodent model. Improved left ventricular systolic and diastolic functions by ≈10% and 20%, respectively, with a ≈25% higher ejection fraction on day 7 are also observed. Therefore, local delivery of therapeutic oxygenating and cardioprotective hydrogels demonstrates beneficial effects on cardiac functional recovery for reparative therapy.


Assuntos
Hidrogéis , Infarto do Miocárdio , Oxigênio , Seda , Animais , Infarto do Miocárdio/patologia , Infarto do Miocárdio/tratamento farmacológico , Seda/química , Hidrogéis/química , Oxigênio/química , Adesivos Teciduais/química , Adesivos Teciduais/farmacologia , Injeções , Cardiotônicos/farmacologia , Cardiotônicos/administração & dosagem , Cardiotônicos/química , Quimiocina CXCL12/administração & dosagem , Quimiocina CXCL12/farmacologia , Quimiocina CXCL12/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Ratos
16.
Small ; 20(18): e2308833, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38185768

RESUMO

Topical hemostatic agents are preferred for application to sensitive bleeding sites because of their immediate locoregional effects with less tissue damage. However, the majority of commercial hemostatic agents fail to provide stable tissue adhesion to bleeding wounds or act as physical barriers against contaminants. Hence, it has become necessary to investigate biologically favorable materials that can be applied and left within the body post-surgery. In this study, a dual-sided nanofibrous dressing for topical hemostasis is electrospun using a combination of two protein materials: bioengineered mussel adhesive protein (MAP) and silk fibroin (SF). The wound-adhesive inner layer is fabricated using dihydroxyphenylalanine (DOPA)-containing MAP, which promotes blood clotting by aggregation of hemocytes and activation of platelets. The anti-adhesive outer layer is composed of alcohol-treated hydrophobic SF, which has excellent spinnability and mechanical strength for fabrication. Because both proteins are fully biodegradable in vivo and biocompatible, the dressing would be suitable to be left in the body. Through in vivo evaluation using a rat liver damage model, significantly reduced clotting time and blood loss are confirmed, successfully demonstrating that the proposed dual-sided nanofibrous dressing has the right properties and characteristics as a topical hemostatic agent having dual functionality of hemostasis and physical protection.


Assuntos
Antibacterianos , Bandagens , Hemostasia , Hemostáticos , Nanofibras , Animais , Nanofibras/química , Hemostasia/efeitos dos fármacos , Hemostáticos/química , Hemostáticos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Ratos , Fibroínas/química , Fibroínas/farmacologia , Bivalves/química , Proteínas/química , Seda/química , Ratos Sprague-Dawley
17.
Small ; 20(34): e2400565, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38602450

RESUMO

Inherent dendrite growth and side reactions of zinc anode caused by its unstable interface in aqueous electrolytes severely limit the practical applications of zinc-ion batteries (ZIBs). To overcome these challenges, a protective layer for Zn anode inspired by cytomembrane structure is developed with PVA as framework and silk fibroin gel suspension (SFs) as modifier. This PVA/SFs gel-like layer exerts similar to the solid electrolyte interphase, optimizing the anode-electrolyte interface and Zn2+ solvation structure. Through interface improvement, controlled Zn2+ migration/diffusion, and desolvation, this buffer layer effectively inhibits dendrite growth and side reactions. The additional SFs provide functional improvement and better interaction with PVA by abundant functional groups, achieving a robust and durable Zn anode with high reversibility. Thus, the PVA/SFs@Zn symmetric cell exhibits an ultra-long lifespan of 3150 h compared to bare Zn (182 h) at 1.0 mAh cm-2-1.0 mAh cm-2, and excellent reversibility with an average Coulombic efficiency of 99.04% under a large plating capacity for 800 cycles. Moreover, the PVA/SFs@Zn||PANI/CC full cells maintain over 20 000 cycles with over 80% capacity retention under harsh conditions at 5 and 10 A g-1. This SF-modified protective layer for Zn anode suggests a promising strategy for reliable and high-performance ZIBs.

18.
Proc Biol Sci ; 291(2026): 20240514, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38955232

RESUMO

Caddisflies (Trichoptera) are among the most diverse groups of freshwater animals with more than 16 000 described species. They play a fundamental role in freshwater ecology and environmental engineering in streams, rivers and lakes. Because of this, they are frequently used as indicator organisms in biomonitoring programmes. Despite their importance, key questions concerning the evolutionary history of caddisflies, such as the timing and origin of larval case making, remain unanswered owing to the lack of a well-resolved phylogeny. Here, we estimated a phylogenetic tree using a combination of transcriptomes and targeted enrichment data for 207 species, representing 48 of 52 extant families and 174 genera. We calibrated and dated the tree with 33 carefully selected fossils. The first caddisflies originated approximately 295 million years ago in the Permian, and major suborders began to diversify in the Triassic. Furthermore, we show that portable case making evolved in three separate lineages, and shifts in diversification occurred in concert with key evolutionary innovations beyond case making.


Assuntos
Insetos , Filogenia , Insetos/classificação , Insetos/genética , Insetos/fisiologia , Água Doce , Transcriptoma , Biodiversidade , Fósseis , Evolução Biológica , Animais
19.
Proc Biol Sci ; 291(2020): 20232340, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38593845

RESUMO

Studies of adaptive radiations have played a central role in our understanding of reproductive isolation. Yet the focus has been on human-biased visual and auditory signals, leaving gaps in our knowledge of other modalities. To date, studies on chemical signals in adaptive radiations have focused on systems with multimodal signalling, making it difficult to isolate the role chemicals play in reproductive isolation. In this study we examine the use of chemical signals in the species recognition and adaptive radiation of Hawaiian Tetragnatha spiders by focusing on entire communities of co-occurring species, and conducting behavioural assays in conjunction with chemical analysis of their silks using gas chromatography-mass spectrometry. Male spiders significantly preferred the silk extracts of conspecific mates over those of sympatric heterospecifics. The compounds found in the silk extracts, long chain alkyl methyl ethers, were remarkably species-specific in the combination and quantity. The differences in the profile were greatest between co-occurring species and between closely related sibling species. Lastly, there were significant differences in the chemical profile between two populations of a particular species. These findings provide key insights into the role chemical signals play in the attainment and maintenance of reproductive barriers between closely related co-occurring species.


Assuntos
Aranhas , Animais , Humanos , Masculino , Havaí , Especificidade da Espécie , Isolamento Reprodutivo , Seda
20.
Insect Mol Biol ; 33(1): 1-16, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37676698

RESUMO

Silk gland size in silkworms (Bombyx mori) affects silk output. However, the molecular mechanisms by which genes regulate silk gland size remain unclear. In this study, silk glands from three pure silkworm strains (A798, A306 and XH) with different silk gland weight phenotypes were compared using transcriptomics and proteomics to identify differentially expressed genes (DEGs) and proteins (DEPs). When comparing A798 to A306 and A798 to XH, 830 and 469 DEGs were up-regulated, respectively. These genes were related to the gene ontology terms, metabolic process, transport activity and biosynthesis process. In addition, 372 and 302 up-regulated differentially expressed proteins were detected in A798 to A306 and A798 to XH, respectively, related to the gene ontology terms, ribosome and protein export, ribosome and polypeptide biosynthesis processes. Moreover, combined transcriptomics, proteomics and weighted correlation network analyses showed that five genes (BGIBMGA002524, BGIBMGA002629, BGIBMGA005659, BGIBMGA005711 and BGIBMGA010889) were significantly associated with the silk gland weight. Reverse Transcription-quantitative real-time Polymerase Chain Reaction (RT-qPCR) and Enzyme linked immunosorbent assay (ELISA) were used to verify the mRNA and protein expression of five genes in the silk glands and tissues of 18 silkworm strains. The results showed that four genes have higher expression levels in heavier silk glands. These genes are associated with glycogen metabolism, fatty acid synthesis and branched chain amino acid metabolism, thus potentially promoting growth and silk protein synthesis. These findings provide valuable insights into the molecular mechanisms underlying the relationship between silk gland weight and silk yield in silkworms.


Assuntos
Bombyx , Animais , Bombyx/metabolismo , Multiômica , Seda/genética , Perfilação da Expressão Gênica/métodos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa