Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Bacteriol ; 206(8): e0013324, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39012109

RESUMO

The peptidoglycan hydrolases responsible for the cell separation of Bacillus subtilis cells are collectively referred to as autolysins. However, the role of each autolysin in the cell separation of B. subtilis is not fully understood. In this study, we constructed a series of cell separation-associated autolysin deficient strains and strains overexpressing the transcription factors SlrR and SinR, and the morphological changes of these strains in liquid culture were observed. The results showed that the absence of D,L-endopeptidases CwlS and LytF only increased the cell chain length in the early exponential phase. The absence of D,L-endopeptidase LytE or N-acetylmuramyl-L-alanine amidase LytC can cause cells to form chains throughout the growth of B. subtilis, although the cell chain length was significantly shortened during the stationary phase. However, the absence of peptidoglycan N-acetylglucosaminidase LytD only caused minor defect in cell separation. Therefore, we concluded that LytE and LytC were the major autolysins that ensure the timely separation of B. subtilis daughter cells, whereas CwlS, LytF, and LytD were the minor autolysins. In addition, overexpression of the transcription factors SinR and SlrR in the cwlS lytF lytC lytE mutant enabled B. subtilis cells to form ultra-long chains in the vegetative phase, and its biomass level was basically the same as that of the wild type. This led to the conclusion that besides inhibiting the expression of lytC and lytF, the SinR-SlrR complex also has other potential mechanisms to inhibit cell separation.IMPORTANCEIn this study, the effects of CwlS, LytC, LytD, LytF, LytE, and SinR-SlrR complex on the cell separation of Bacillus subtilis at different growth phases were studied, and an ultra-long-chained B. subtilis strain was constructed. In microbial fermentation, due to its large cell size, this ultra-long-chained B. subtilis strain may be more likely to be precipitated or intercepted during the removal of bacterial process with centrifugation and membrane filtration as the main methods, which is crucial to improve the purity of the product.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , N-Acetil-Muramil-L-Alanina Amidase , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/citologia , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Divisão Celular , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
2.
Sensors (Basel) ; 23(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37430814

RESUMO

Developing radio access technologies that enable reliable and low-latency vehicular communications have become of the utmost importance with the rise of interest in autonomous vehicles. The Third Generation Partnership Project (3GPP) has developed Vehicle to Everything (V2X) specifications based on the 5G New Radio Air Interface (NR-V2X) to support connected and automated driving use cases, with strict requirements to fulfill the constantly evolving vehicular applications, communication, and service demands of connected vehicles, such as ultra-low latency and ultra-high reliability. This paper presents an analytical model for evaluating the performance of NR-V2X communications, with particular reference to the sensing-based semi-persistent scheduling operation defined in the NR-V2X Mode 2, in comparison with legacy sidelink V2X over LTE, specified as LTE-V2X Mode 4. We consider a vehicle platooning scenario and evaluate the impact of multiple access interference on the packet success probability, by varying the available resources, the number of interfering vehicles, and their relative positions. The average packet success probability is determined analytically for LTE-V2X and NR-V2X, taking into account the different physical layer specifications, and the Moment Matching Approximation (MMA) is used to approximate the statistics of the signal-to-interference-plus-noise ratio (SINR) under the assumption of a Nakagami-lognormal composite channel model. The analytical approximation is validated against extensive Matlab simulations that a show good accuracy. The results confirm a boost in performance with NR-V2X against LTE-V2X, particularly for high inter-vehicle distance and a large number of vehicles, providing a concise yet accurate modeling rationale for planning and adaptation of the configuration and parameter setup of vehicle platoons, without having to resort to extensive computer simulation or experimental measurements.

3.
Sensors (Basel) ; 22(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36502031

RESUMO

Recent advancements in vehicle-to-everything (V2X) communications have greatly increased the flexibility of the physical (PHY) and medium access control (MAC) layers. This increases the complexity when investigating the system from a network perspective to evaluate the performance of the supported applications. Such flexibility, in fact, needs to be taken into account through a cross-layer approach, which might lead to challenging evaluation processes. As an accurate simulation of the signals appears unfeasible, a typical solution is to rely on simple models for incorporating the PHY layer of the supported technologies based on off-line measurements or accurate link-level simulations. Such data are, however, limited to a subset of possible configurations, and extending them to others is costly when not even impossible. The goal of this paper is to develop a new approach for modeling the PHY layer of V2X communications that can be extended to a wide range of configurations without leading to extensive measurement or simulation campaigns at the link layer. In particular, given a scenario and starting from results in terms of the packet error rate (PER) vs. signal-to-interference-plus-noise ratio (SINR) related to a subset of possible configurations, we first approximated the curves with step functions characterized by a given SINR threshold, and we then derived one parameter, called implementation loss, that was used to obtain the SINR threshold and evaluate the network performance under any configuration in the same scenario. The proposed methodology, leading to a good trade-off among the complexity, generality, and accuracy of the performance evaluation process, was validated through extensive simulations with both IEEE 802.11p and LTE-V2X sidelink technologies in various scenarios. The results first show that the curves can be effectively approximated by using an SINR threshold, with a value corresponding to 0.5 PER, and then demonstrate that the network-level outputs derived from the proposed approach are very close to those obtained with complete curves, despite not being restricted to a few possible configurations.


Assuntos
Comunicação , Tecnologia da Informação , Simulação por Computador , Razão Sinal-Ruído , Tecnologia
4.
Entropy (Basel) ; 24(12)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36554246

RESUMO

Owing to cognitive radar breaking the open-loop receiving-transmitting mode of traditional radar, adaptive waveform design for cognitive radar has become a central issue in radar system research. In this paper, the method of radar transmitted waveform design in the presence of clutter is studied. Since exact characterizations of the target and clutter spectra are uncommon in practice, a single-robust transmitted waveform design method is introduced to solve the problem of the imprecise target spectrum or the imprecise clutter spectrum. Furthermore, considering that radar cannot simultaneously obtain precise target and clutter spectra, a novel double-robust transmitted waveform design method is proposed. In this method, the signal-to-interference-plus-noise ratio and mutual information are used as the objective functions, and the optimization models for the double-robust waveform are established under the transmitted energy constraint. The Lagrange multiplier method was used to solve the optimal double-robust transmitted waveform. The simulation results show that the double-robust transmitted waveform can maximize SINR and MI in the worst case; the performance of SINR and MI will degrade if other transmitted waveforms are employed in the radar system.

5.
Microb Cell Fact ; 20(1): 113, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34098969

RESUMO

BACKGROUND: Menaquinone (MK-7) is a highly valuable vitamin K2 produced by Bacillus subtilis. Common static metabolic engineering approaches for promoting the production of MK-7 have been studied previously. However, these approaches caused an accumulation of toxic substances and reduced product yield. Hence, dynamic regulation by the quorum sensing (QS) system is a promising method for achieving a balance between product synthesis and cell growth. RESULTS: In this study, the QS transcriptional regulator SinR, which plays a significant role in biofilm formation and MK production simultaneously, was selected, and its site-directed mutants were constructed. Among these mutants, sinR knock out strain (KO-SinR) increased the biofilm biomass by 2.8-fold compared to the wild-type. SinRquad maximized the yield of MK-7 (102.56 ± 2.84 mg/L). To decipher the mechanism of how this mutant regulates MK-7 synthesis and to find additional potential regulators that enhance MK-7 synthesis, RNA-seq was used to analyze expression changes in the QS system, biofilm formation, and MK-7 synthesis pathway. The results showed that the expressions of tapA, tasA and epsE were up-regulated 9.79-, 0.95-, and 4.42-fold, respectively. Therefore, SinRquad formed more wrinkly and smoother biofilms than BS168. The upregulated expressions of glpF, glpk, and glpD in this biofilm morphology facilitated the flow of glycerol through the biofilm. In addition, NADH dehydrogenases especially sdhA, sdhB, sdhC and glpD, increased 1.01-, 3.93-, 1.87-, and 1.11-fold, respectively. The increased expression levels of NADH dehydrogenases indicated that more electrons were produced for the electron transport system. Electrical hyperpolarization stimulated the synthesis of the electron transport chain components, such as cytochrome c and MK, to ensure the efficiency of electron transfer. Wrinkly and smooth biofilms formed a network of interconnected channels with a low resistance to liquid flow, which was beneficial for the uptake of glycerol, and facilitated the metabolic flux of four modules of the MK-7 synthesis pathway. CONCLUSIONS: In this study, we report for the first time that SinRquad has significant effects on MK-7 synthesis by forming wrinkly and smooth biofilms, upregulating the expression level of most NADH dehydrogenases, and providing higher membrane potential to stimulate the accumulation of the components in the electron transport system.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vitamina K 2/metabolismo , Bacillus subtilis/química , Proteínas de Bactérias/química , Biofilmes/crescimento & desenvolvimento , Reatores Biológicos , Vias Biossintéticas , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes/métodos , Potenciais da Membrana , Engenharia Metabólica , Modelos Moleculares , Mutagênese Sítio-Dirigida , NAD/metabolismo , Conformação Proteica , Percepção de Quorum , RNA Bacteriano , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Sensors (Basel) ; 21(19)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34640928

RESUMO

The 5G cellular network is no longer hype. Mobile network operators (MNO) around the world (e.g., Verizon and AT&T in the USA) started deploying 5G networks in mid-frequency bands (i.e., 3-6 GHz) with existing 4G cellular networks. The mid-frequency band can significantly boost the existing network performance additional spectrum (i.e., 50 MHz-100 MHz). However, the high-frequency bands (i.e., 24 GHz-100 GHz) can offer a wider spectrum (i.e., 400~800 MHz), which is needed to meet the ever-growing capacity demands, highest bitrates (~20 Gb/s), and lowest latencies. As we move to the higher frequency bands, the free space propagation loss increases significantly, which will limit the individual cell site radius to 100 m for the high-frequency band compared to several kilometers in 4G. Therefore, the MNOs will need to deploy hundreds of new small cells (e.g., 100 m cell radius) compared to one large cell site (e.g., Macrocell with several km in radius) to ensure 100% network coverage for the same area. It will be a big challenge for the MNOs to accurately plan and acquire these massive numbers of new cell site locations to provide uniform 5G coverage. This paper first describes the 5G coverage planning with a traditional three-sector cell. It then proposes an updated cell architecture with six sectors and an advanced antenna system that provides better 5G coverage. Finally, it describes the potential challenges of 5G network deployment with future research directions.

7.
Sensors (Basel) ; 21(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199907

RESUMO

In this paper, we aim at the problem that MIMO radar's target detection performance is greatly reduced in the complex multi-signal-dependent interferences environment. We propose a joint design method based on semidefinite relaxation (SDR), fractional programming and randomization technique (JD-SFR) and a joint design method based on coordinate descent (JD-CD) to solve the actual transmit waveform and receive filter bank directly to reduce the loss of strong interference to the output signal-to-interference-plus-noise ratio (SINR) of the radar system. Therefore, the maximization of output SINR is taken as the criterion of the optimization problem. The designed waveforms take into account the radar transmitter's hardware requirements for constant envelope waveforms and impose similarity constraints on the waveforms. JD-SFR uses SDR, fractional programming and randomization technique to deal with the non-convex optimization problems encountered in the solution process. JD-CD transforms the optimization problem into a function of the phase of the waveform and then solves the transmit waveform based on CD. Compared with other methods, the proposed method has lower output SINR loss under strong power interference and forms deep nulls on the direction beampattern of multiple interference sources, which indicates that it has better anti-interference performance.


Assuntos
Radar
8.
World J Microbiol Biotechnol ; 36(11): 165, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33000364

RESUMO

YmdB, which can regulate biofilm formation independently, has been reported to exist in Bacillus subtilis. The B. cereus 0-9 genome also encodes a YmdB-like protein, which has measureable phosphodiesterase activity, and 72.35% sequence identity to YmdB protein of B. subtilis 168. In this work, we studied the function of YmdB protein and its encoding gene, ymdB, in B. cereus 0-9. Our results indicated that YmdB protein is critical for the biofilm formation of B. cereus 0-9. In ΔymdB mutant, the transcriptional levels of sinR and hag were up-regulated, and those of genes closely related to biofilm formation, such as sipW, tasA and calY, were down-regulated. Deletion of ymdB gene stimulates the swarming motility of B. cereus 0-9, and enhances it to travel outward, but reduces its ability to form complex spatial structures on the solid surface of MSgg plates. Hence, it is considered that YmdB plays a key role in biofilm formation, and this effect is likely achieved through the function of repressor SinR in B. cereus 0-9. Furthermore, by comparing the amino acid sequences of YmdB by Basic Local Alignment Search Tool (BLAST) in Genebank, we found that YmdB homologues are present in a variety of bacteria (Including Gram-negative bacteria) except B. subtilis and B. cereus. All these bacteria come at different evolutionary distances and belong to different genera. Therefore, we believe that YmdB exists in many types of bacteria and plays an important role in the stress-resistance of bacteria to adapt to the environment. These results can help us to further understand the biocontrol characteristics of B. cereus 0-9.


Assuntos
Bacillus cereus/genética , Bacillus cereus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Sequência de Aminoácidos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Deleção de Genes
9.
Entropy (Basel) ; 22(10)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33286950

RESUMO

This study investigates the information-theoretic waveform design problem to improve radar performance in the presence of signal-dependent clutter environments. The goal was to study the waveform energy allocation strategies and provide guidance for radar waveform design through the trade-off relationship between the information theory criterion and the signal-to-interference-plus-noise ratio (SINR) criterion. To this end, a model of the constraint relationship among the mutual information (MI), the Kullback-Leibler divergence (KLD), and the SINR is established in the frequency domain. The effects of the SINR value range on maximizing the MI and KLD under the energy constraint are derived. Under the constraints of energy and the SINR, the optimal radar waveform method based on maximizing the MI is proposed for radar estimation, with another method based on maximizing the KLD proposed for radar detection. The maximum MI value range is bounded by SINR and the maximum KLD value range is between 0 and the Jenson-Shannon divergence (J-divergence) value. Simulation results show that under the SINR constraint, the MI-based optimal signal waveform can make full use of the transmitted energy to target information extraction and put the signal energy in the frequency bin where the target spectrum is larger than the clutter spectrum. The KLD-based optimal signal waveform can therefore make full use of the transmitted energy to detect the target and put the signal energy in the frequency bin with the maximum target spectrum.

10.
Anaerobe ; 59: 1-7, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31077800

RESUMO

Clostridioides difficile is a Gram-positive, anaerobic bacterium. It is known that C. difficile is one of the major causes of antibiotic associated diarrhea. The enhanced antibiotic resistance observed in C. difficile is the result of highly resistant spores produced by the bacterium. In Bacillus subtilis, the sin operon is involved in sporulation inhibition. Two proteins coded within this operon, SinR and SinI, have an antagonistic relationship; SinR acts as an inhibitor to sporulation whereas SinI represses the activity of SinR, thus allowing the bacterium to sporulate. In a previous study, we examined the sin locus in C. difficile and named the two genes associated with this operon sinR and sinR', analogous to sinR and sinI in B. subtilis, respectively. We have shown that SinR and SinR' have pleiotropic roles in pathogenesis pathways and interact antagonistically with each other. Unlike B. subtilis SinI, SinR' in C. difficile carries two domains: the HTH domain and the Multimerization Domain (MD). In this study, we first performed a GST Pull-down experiment to determine the domain within SinR' that interacts with SinR. Second, the effect of these two domains on three phenotypes; sporulation, motility, and toxin production was examined. The findings of this study confirmed the prediction that the Multimerization Domain (MD) of SinR' is responsible for the interaction between SinR and SinR'. It was also discovered that SinR' regulates sporulation, toxin production and motility primarily by inhibiting SinR activity through the Multimerization Domain (MD).


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/biossíntese , Clostridioides difficile/crescimento & desenvolvimento , Clostridioides difficile/metabolismo , Regulação Bacteriana da Expressão Gênica , Locomoção , Esporos Bacterianos/crescimento & desenvolvimento , Ligação Proteica , Mapeamento de Interação de Proteínas
11.
Sensors (Basel) ; 19(17)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443468

RESUMO

The demand for extensive data rates in dense-traffic wireless networks has expanded and needs proper controlling schemes. The fifth generation of mobile communications (5G) will accommodate these massive communications, such as massive Machine Type Communications (mMTC), which is considered to be one of its top services. To achieve optimal throughput, which is considered a mandatory quality of service (QoS) metric, the carrier sense multiple access (CSMA) transmission attempt rate needs optimization. As the gradient descent algorithms consume a long time to converge, an approximation technique that distributes a dense global network into local neighborhoods that are less complex than the global ones is presented in this paper. Newton's method of optimization was used to achieve fast convergence rates, thus, obtaining optimal throughput. The convergence rate depended only on the size of the local networks instead of global dense ones. Additionally, polynomial interpolation was used to estimate the average throughput of the network as a function of the number of nodes and target service rates. Three-dimensional planes of the average throughput were presented to give a profound description to network's performance. The fast convergence time of the proposed model and its lower complexity are more practical than the previous gradient descent algorithm.

12.
Sensors (Basel) ; 19(14)2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31331113

RESUMO

Device-to-device (D2D) communication is a promising technique for direct communication to enhance the performance of cellular networks. In order to improve the system throughput and utilization of spectrum resource, a resource allocation mechanism for D2D underlaid communication is proposed in this paper where D2D pairs reuse the resource blocks (RBs) of cellular uplink users, adopting a matching matrix to disclose the results of resource allocation. Details of the proposed resource allocation mechanism focused are listed as: the transmit power of D2D pairs are determined by themselves with the distributed power control method, and D2D pairs are assigned to different clusters that are the intended user sets of RBs, according to the threshold of the signal-to-interference-plus-noise ratio (SINR). The weighted efficiency interference-aware (WE-I-A) algorithm is proposed and applied subsequently to promote the system throughput by optimizing the matching of D2D pairs and RBs, where each D2D pair is weighted based on the SINR to compete for the priority of RBs fairly. Simulation results demonstrate that the proposed algorithm contributes to a good performance on the system throughput even if the uplink state is limited.

13.
Sensors (Basel) ; 19(24)2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861149

RESUMO

Multi-input multi-output (MIMO) is usually defined as a radar system in which the transmit time and receive time, space and transform domain can be separated into multiple independent signals. Given the bandwidth and power constraints of the radar system, MIMO radar can improve its performance by optimize design transmit waveforms and receive filters, so as to achieve better performance in suppressing clutter and noise. In this paper, we cyclicly optimize the transmit waveform and receive filters, so as to maximize the output signal interference and noise ratio (SINR). From fixed pulse-to-pulse waveform to pulse-to-pulse waveform variations, we discuss the joint optimization under energy constraint, then extend it to optimizations under constant-envelope constraint and similarity constraint. Compared to optimization with fixed pulse-to-pulse waveform, the generalized optimization achieves higher output SINR and lower minimum detectable velocity (MDV), further improve the suppressing performance.

14.
Sensors (Basel) ; 19(13)2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261778

RESUMO

In this paper, we estimate the uplink performance of large-scale multi-user multiple-input multiple-output (MIMO) networks. By applying minimum-mean-square-error (MMSE) detection, a novel statistical distribution of the signal-to-interference-plus-noise ratio (SINR) for any user is derived, for path loss, shadowing and Rayleigh fading. Suppose that the channel state information is perfectly known at the base station. Then, we derive the analytical expressions for the pairwise error probability (PEP) of the massive multiuser MMSE-MIMO systems, based on which we further obtain the upper bound of the bit error rate (BER). The analytical results are validated successfully through simulations for all cases.

15.
Sensors (Basel) ; 19(24)2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31835329

RESUMO

In this paper, we investigate the mode selection strategies for a new device-to-device (D2D) pair becoming active in a network with a number of existing D2D sensors or users coexisting with cellular users in a D2D-enabled heterogeneous network. Specifically, we propose two selection rules, the signal-to-interference-plus-noise-ratio (SINR)-based and the capacity-based, combined with two sets of different precoding schemes and discuss their impacts on the system under a variety of scenarios. While the cooperative block diagonalization (BD) among the cellular users combined with the zero-forcing (ZF) precoding among D2D users can eliminate interference observed at the new D2D receiving sensor, the maximum signal-to-leakage-and-noise-ratio (SLNR) precoding is often a preferred option due to low-complexity implementations and comparable performance. We note that the two selection rules, the SINR-based and the capacity-based, considered in this paper impact on the system differently, with interesting tradeoff from different perspectives. Finally, we provide insights by simulations into the best selection among the three modes depending on a variety of use cases in the network.

16.
Entropy (Basel) ; 21(1)2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33266749

RESUMO

Due to the uncertainties of radar target prior information in the actual scene, the waveform designed based on radar target prior information cannot meet the needs of detection and parameter estimation performance. In this paper, the optimal waveform design techniques under energy constraints for different tasks are considered. To improve the detection performance of radar systems, a novel waveform design method which can maximize the signal-to-interference-plus-noise ratio (SINR) for known and random extended targets is proposed. To improve the performance of parameter estimation, another waveform design method which can maximize the mutual information (MI) between the radar echo and the random-target spectrum response is also considered. Most of the previous waveform design researches assumed that the prior information of the target spectrum is completely known. However, in the actual scene, the real target spectrum cannot be accurately captured. To simulate this scenario, the real target spectrum was assumed to be within an uncertainty range where the upper and lower bounds are known. Then, the SINR- and MI-based maximin robust waveforms were designed, which could optimize the performance under the most unfavorable conditions. The simulation results show that the designed optimal waveforms based on these two criteria are different, which provides useful guidance for waveform energy allocation in different transmission tasks. However, under the constraint of limited energy, we also found that the performance improvement of SINR or MI in the worst case for single targets is less significant than that of multiple targets.

17.
BMC Evol Biol ; 18(1): 155, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30326845

RESUMO

BACKGROUND: Selection for a certain trait in microbes depends on the genetic background of the strain and the selection pressure of the environmental conditions acting on the cells. In contrast to the sessile state in the biofilm, various bacterial cells employ flagellum-dependent motility under planktonic conditions suggesting that the two phenotypes are mutually exclusive. However, flagellum dependent motility facilitates the prompt establishment of floating biofilms on the air-medium interface, called pellicles. Previously, pellicles of B. subtilis were shown to be preferably established by motile cells, causing a reduced fitness of non-motile derivatives in the presence of the wild type strain. RESULTS: Here, we show that lack of active flagella promotes the evolution of matrix overproducers that can be distinguished by the characteristic wrinkled colony morphotype. The wrinkly phenotype is associated with amino acid substitutions in the master repressor of biofilm-related genes, SinR. By analyzing one of the mutations, we show that it alters the tetramerization and DNA binding properties of SinR, allowing an increased expression of the operon responsible for exopolysaccharide production. Finally, we demonstrate that the wrinkly phenotype is advantageous when cells lack flagella, but not in the wild type background. CONCLUSIONS: Our experiments suggest that loss of function phenotypes could expose rapid evolutionary adaptation in bacterial biofilms that is otherwise not evident in the wild type strains.


Assuntos
Bacillus subtilis/fisiologia , Evolução Biológica , Bacillus subtilis/citologia , Bacillus subtilis/genética , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Movimento , Mutação/genética , Taxa de Mutação , Regiões Operadoras Genéticas/genética , Óperon , Fenótipo , Seleção Genética
18.
Sensors (Basel) ; 18(12)2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30563281

RESUMO

Cellular connectivity for UAV systems is interesting because it promises coverage in beyond visual line of sight scenarios. Inter-cell interference has been shown to be the main limiting factor at high altitudes. Using a realistic 3D simulator model, with real base station locations, this study confirms that UAVs at high altitudes suffer from significant interference, resulting in a worse coverage compared to ground users. When replacing the existing base stations by mmWave cells, our results indicate that ground coverage is decreased to only 90%, while UAVs just above rooftop level have a coverage probability of 100%. However, UAVs at higher altitude still suffer from excessive interference. Beamforming has the potential to improve mmWave link budget and to decrease interference and is for this reason a promising technology for ensuring connectivity to aerial users.

19.
Sensors (Basel) ; 18(10)2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241329

RESUMO

In this paper, a self-adaption matched filter (SMF) and bi-directional difference techniques are proposed to detect a small moving target in urban environments. Firstly, the SMF technique is proposed to improve the signal-to-interference-noise ratio (SINR) by using the power factor. The properties of the transmitting signal, the target echoes and the interference and noise are considered during the power factor generation. The amplitude coherent accumulation technique that extracts the coherent amplitude information of echoes after being processed by the SMF, is used to improve the SINR based on multiple measurements. Finally, the bi-directional difference technique is proposed to distinguish the target echoes and the interference/noise. Simulations and experiments are conducted to validate and demonstrate that small moving targets can be detected with high probability using the proposed method in urban environments, even with just one measurement.

20.
Entropy (Basel) ; 20(8)2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-33265635

RESUMO

Aiming at the limitations of the existing Limited Feedback Interference Alignment algorithms, this paper proposes a direct codeword selection scheme that maximizes the lower-bound of the user rate and reduces the sum rate loss by integrating the Bit Allocation algorithm. The target signal is decoded using the maximum signal to interference plus noise ratio (MAX-SINR) algorithm. Moreover, low complexity and global searching mechanisms are deployed to select the optimized codewords from the generated sets of codewords that approach the ideal precoder. Simulation results show that the proposed algorithm effectively improves the rate lower-bound of the system user as compared with the existing state-of-the-art algorithms.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa