RESUMO
Phylogenetic analysis based on single-nucleotide polymorphism (SNP)-based through whole-genome sequencing is recognized as the standard method for probing nosocomial transmission. However, the application of WGS is constrained by the high cost of equipment and the need for diverse analysis tools, which limits its widespread use in clinical laboratory settings. In Japan, the prevalent use of PCR-based open reading frame typing (POT) for tracing methicillin-resistant Staphylococcus aureus (MRSA) transmission routes is attributed to its simplicity and ease of use. Although POT's discriminatory power is considered insufficient for nosocomial transmission analysis, conclusive data supporting this notion is lacking. This study assessed the discriminatory capabilities of SNP analysis and POT across 64 clinical MRSA strains. All 21 MRSA strains of ST5/SCCmec IIa, having more than 16 SNPs, demonstrated distinct clones. Conversely, two strains shared the same POT number and were identified as group A. Among the 12 MRSA strains of ST8/SCCmec IVl with over nine SNPs, five fell into POT group B, and five into POT group C. All four MRSA strains of ST8/SCCmec IVa were classified into POT group D, although they included strains with more than 30 SNPs. Among the 27 MRSA strains of ST1/SCCmec IVa, 14 were classified into POT group E. However, except for two clusters (each comprising two or three strains), all had SNP counts >10 (Fig. 1-D). SNP analysis of MRSA in CC1/SCCmec IV showed that several strains had the same number of SNPs in POT number (106-183-37), even among bacteria with >100 SNPs, indicating POT's limited use in detailed nosocomial transmission analysis.
Assuntos
Infecção Hospitalar , Staphylococcus aureus Resistente à Meticilina , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Infecções Estafilocócicas , Sequenciamento Completo do Genoma , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Polimorfismo de Nucleotídeo Único/genética , Humanos , Infecção Hospitalar/transmissão , Infecção Hospitalar/microbiologia , Infecções Estafilocócicas/transmissão , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/epidemiologia , Sequenciamento Completo do Genoma/métodos , Reação em Cadeia da Polimerase/métodos , Fases de Leitura Aberta/genética , Filogenia , Japão , Genoma Bacteriano/genéticaRESUMO
The worldwide chicken gene pool encompasses a remarkable, but shrinking, number of divergently selected breeds of diverse origin. This study was a large-scale genome-wide analysis of the landscape of the complex molecular architecture, genetic variability, and detailed structure among 49 populations. These populations represent a significant sample of the world's chicken breeds from Europe (Russia, Czech Republic, France, Spain, UK, etc.), Asia (China), North America (USA), and Oceania (Australia). Based on the results of breed genotyping using the Illumina 60K single nucleotide polymorphism (SNP) chip, a bioinformatic analysis was carried out. This included the calculation of heterozygosity/homozygosity statistics, inbreeding coefficients, and effective population size. It also included assessment of linkage disequilibrium and construction of phylogenetic trees. Using multidimensional scaling, principal component analysis, and ADMIXTURE-assisted global ancestry analysis, we explored the genetic structure of populations and subpopulations in each breed. An overall 49-population phylogeny analysis was also performed, and a refined evolutionary model of chicken breed formation was proposed, which included egg, meat, dual-purpose types, and ambiguous breeds. Such a large-scale survey of genetic resources in poultry farming using modern genomic methods is of great interest both from the viewpoint of a general understanding of the genetics of the domestic chicken and for the further development of genomic technologies and approaches in poultry breeding. In general, whole genome SNP genotyping of promising chicken breeds from the worldwide gene pool will promote the further development of modern genomic science as applied to poultry.
Assuntos
Galinhas , Genoma , Animais , Filogenia , Galinhas/genética , Genômica/métodos , Demografia , Polimorfismo de Nucleotídeo Único , Variação GenéticaRESUMO
Diphtheria toxin-producing Corynebacterium ulcerans is a zoonotic pathogen that causes human diphtheria-like symptoms. After performing whole-genome analysis of the five isolates from sheltered cats in Osaka, Japan, we compared them with genome sequences of 25 strains of C. ulcerans from a public database. The five isolates from cats harbored 14 genes encoding possible virulence factors in diphtheria-toxin-producing C. ulcerans. These isolates also had diphtheria toxin gene-encoding prophage in their chromosome, although differences were found in other prophages possession. Whole-genome single-nucleotide polymorphism analysis showed that cats' isolates belonged to ST337 branch, as were strains from Japanese human patients, with 41 or more single-nucleotide polymorphisms variations. High-resolution single-nucleotide polymorphism analysis of C. ulcerans was sufficient to distinguish cats' isolates clearly as not different by conventional genotyping methods.
Assuntos
Toxina Diftérica , Difteria , Humanos , Animais , Toxina Diftérica/genética , Difteria/veterinária , Japão/epidemiologia , Corynebacterium/genéticaRESUMO
In the last decade, Amaranthus tuberculatus has evolved resistance to 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-hydroxyphenylpyruvate dioxygenase inhibitors in multiple states across the midwestern United States. Two populations resistant to both mode-of-action groups, one from Nebraska (NEB) and one from Illinois (CHR), were studied using an RNA-seq approach on F2 mapping populations to identify the genes responsible for resistance. Using both an A. tuberculatus transcriptome assembly and a high-quality grain amaranth (A. hypochondriacus) genome as references, differential transcript and gene expression analyses were conducted to identify genes that were significantly over- or underexpressed in resistant plants. When these differentially expressed genes (DEGs) were mapped on the A. hypochondriacus genome, physical clustering of the DEGs was apparent along several of the 16 A. hypochondriacus scaffolds. Furthermore, single-nucleotide polymorphism calling to look for resistant-specific (R) variants, and subsequent mapping of these variants, also found similar patterns of clustering. Specifically, regions biased toward R alleles overlapped with the DEG clusters. Within one of these clusters, allele-specific expression of cytochrome P450 81E8 was observed for 2,4-D resistance in both the CHR and NEB populations, and phylogenetic analysis indicated a common evolutionary origin of this R allele in the two populations.