Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36719112

RESUMO

Recently, extracting inherent biological system information (e.g. cellular networks) from genome-wide expression profiles for developing personalized diagnostic and therapeutic strategies has become increasingly important. However, accurately constructing single-sample networks (SINs) to capture individual characteristics and heterogeneity in disease remains challenging. Here, we propose a sample-specific-weighted correlation network (SWEET) method to model SINs by integrating the genome-wide sample-to-sample correlation (i.e. sample weights) with the differential network between perturbed and aggregate networks. For a group of samples, the genome-wide sample weights can be assessed without prior knowledge of intrinsic subpopulations to address the network edge number bias caused by sample size differences. Compared with the state-of-the-art SIN inference methods, the SWEET SINs in 16 cancers more likely fit the scale-free property, display higher overlap with the human interactomes and perform better in identifying three types of cancer-related genes. Moreover, integrating SWEET SINs with a network proximity measure facilitates characterizing individual features and therapy in diseases, such as somatic mutation, mut-driver and essential genes. Biological experiments further validated two candidate repurposable drugs, albendazole for head and neck squamous cell carcinoma (HNSCC) and lung adenocarcinoma (LUAD) and encorafenib for HNSCC. By applying SWEET, we also identified two possible LUAD subtypes that exhibit distinct clinical features and molecular mechanisms. Overall, the SWEET method complements current SIN inference and analysis methods and presents a view of biological systems at the network level to offer numerous clues for further investigation and clinical translation in network medicine and precision medicine.


Assuntos
Redes Reguladoras de Genes , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Oncogenes , Neoplasias de Cabeça e Pescoço/genética
2.
J Transl Med ; 22(1): 140, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38321494

RESUMO

Building Single Sample Predictors (SSPs) from gene expression profiles presents challenges, notably due to the lack of calibration across diverse gene expression measurement technologies. However, recent research indicates the viability of classifying phenotypes based on the order of expression of multiple genes. Existing SSP methods often rely on Top Scoring Pairs (TSP), which are platform-independent and easy to interpret through the concept of "relative expression reversals". Nevertheless, TSP methods face limitations in classifying complex patterns involving comparisons of more than two gene expressions. To overcome these constraints, we introduce a novel approach that extends TSP rules by constructing rank-based trees capable of encompassing extensive gene-gene comparisons. This method is bolstered by incorporating two ensemble strategies, boosting and random forest, to mitigate the risk of overfitting. Our implementation of ensemble rank-based trees employs boosting with LogitBoost cost and random forests, addressing both binary and multi-class classification problems. In a comparative analysis across 12 cancer gene expression datasets, our proposed methods demonstrate superior performance over both the k-TSP classifier and nearest template prediction methods. We have further refined our approach to facilitate variable selection and the generation of clear, precise decision rules from rank-based trees, enhancing interpretability. The cumulative evidence from our research underscores the significant potential of ensemble rank-based trees in advancing disease classification via gene expression data, offering a robust, interpretable, and scalable solution. Our software is available at https://CRAN.R-project.org/package=ranktreeEnsemble .


Assuntos
Neoplasias , Transcriptoma , Humanos , Software , Neoplasias/genética , Oncogenes , Algoritmos
3.
J Med Virol ; 96(3): e29497, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38436142

RESUMO

This study aimed at using single-sample gene set enrichment analysis scores to cluster naso/pharyngeal swab specimen samples from coronavirus disease 2019 (COVID-19) patients into two clusters. One cluster with higher fractions of immune cells and more active inflammatory-related pathways was called the Immunity-High (Immunity-H) group, and the other one was called the Immunity-Low group. We explored impacts of the method on COVID-19 treatment. First, given that the Immunity-H group was mainly enriched in inflammatory-related pathways and had higher fractions of inflammatory cells, the Immunity-H group may obtain more curative effects from anti-inflammatory treatment. Second, we searched some hot genes from the PubMed platform that had been studied by researchers and found these genes upregulated in the Immunity-H group, so we speculated the Immunity-H group and Immunity-Low group may have different curative effects from drugs targeting these genes. Finally, we screened out hub genes for the Immunity-H group and predicted potential drugs for these hub genes by a public data set (http://dgidb.genome.wustl.edu). These hub genes are significantly upregulated in the Immunity-H group and neutrophils so that the Immunity-H group may obtain different treatment results from potential drugs compared with the Immunity-Low group. Therefore, the cluster method may provide help in drug development and administration for COVID-19 patients.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Humanos , Preparações Farmacêuticas , COVID-19/diagnóstico , COVID-19/genética , Desenvolvimento de Medicamentos , Neutrófilos
4.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33971670

RESUMO

Gene-expression profiling can be used to classify human tumors into molecular subtypes or risk groups, representing potential future clinical tools for treatment prediction and prognostication. However, it is less well-known how prognostic gene signatures derived in one malignancy perform in a pan-cancer context. In this study, a gene-rule-based single sample predictor (SSP) called classifier for lung adenocarcinoma molecular subtypes (CLAMS) associated with proliferation was tested in almost 15 000 samples from 32 cancer types to classify samples into better or worse prognosis. Of the 14 malignancies that presented both CLAMS classes in sufficient numbers, survival outcomes were significantly different for breast, brain, kidney and liver cancer. Patients with samples classified as better prognosis by CLAMS were generally of lower tumor grade and disease stage, and had improved prognosis according to other type-specific classifications (e.g. PAM50 for breast cancer). In all, 99.1% of non-lung cancer cases classified as better outcome by CLAMS were comprised within the range of proliferation scores of lung adenocarcinoma cases with a predicted better prognosis by CLAMS. This finding demonstrates the potential of tuning SSPs to identify specific levels of for instance tumor proliferation or other transcriptional programs through predictor training. Together, pan-cancer studies such as this may take us one step closer to understanding how gene-expression-based SSPs act, which gene-expression programs might be important in different malignancies, and how to derive tools useful for prognostication that are efficient across organs.


Assuntos
Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/mortalidade , Biomarcadores Tumorais , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/terapia , Bases de Dados Genéticas , Gerenciamento Clínico , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Estimativa de Kaplan-Meier , Masculino , Gradação de Tumores , Estadiamento de Neoplasias , Especificidade de Órgãos/genética , Prognóstico , Análise de Sobrevida , Transcriptoma , Resultado do Tratamento , Navegador
5.
J Transl Med ; 21(1): 257, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055772

RESUMO

BACKGROUND: Gene expression profiling is increasingly being utilised as a diagnostic, prognostic and predictive tool for managing cancer patients. Single-sample scoring approach has been developed to alleviate instability of signature scores due to variations from sample composition. However, it is a challenge to achieve comparable signature scores across different expressional platforms. METHODS: The pre-treatment biopsies from a total of 158 patients, who have received single-agent anti-PD-1 (n = 84) or anti-PD-1 + anti-CTLA-4 therapy (n = 74), were performed using NanoString PanCancer IO360 Panel. Multiple immune-related signature scores were measured from a single-sample rank-based scoring approach, singscore. We assessed the reproducibility and the performance in reporting immune profile of singscore based on NanoString assay in advance melanoma. To conduct cross-platform analyses, singscores between the immune profiles of NanoString assay and the previous orthogonal whole transcriptome sequencing (WTS) data were compared through linear regression and cross-platform prediction. RESULTS: singscore-derived signature scores reported significantly high scores in responders in multiple PD-1, MHC-1-, CD8 T-cell-, antigen presentation-, cytokine- and chemokine-related signatures. We found that singscore provided stable and reproducible signature scores among the repeats in different batches and cross-sample normalisations. The cross-platform comparisons confirmed that singscores derived via NanoString and WTS were comparable. When singscore of WTS generated by the overlapping genes to the NanoString gene set, the signatures generated highly correlated cross-platform scores (Spearman correlation interquartile range (IQR) [0.88, 0.92] and r2 IQR [0.77, 0.81]) and better prediction on cross-platform response (AUC = 86.3%). The model suggested that Tumour Inflammation Signature (TIS) and Personalised Immunotherapy Platform (PIP) PD-1 are informative signatures for predicting immunotherapy-response outcomes in advanced melanoma patients treated with anti-PD-1-based therapies. CONCLUSIONS: Overall, the outcome of this study confirms that singscore based on NanoString data is a feasible approach to produce reliable signature scores for determining patients' immune profiles and the potential clinical utility in biomarker implementation, as well as to conduct cross-platform comparisons, such as WTS.


Assuntos
Melanoma , Humanos , Reprodutibilidade dos Testes , Melanoma/terapia , Melanoma/tratamento farmacológico , Biomarcadores , Perfilação da Expressão Gênica , Imunoterapia
6.
BMC Pregnancy Childbirth ; 23(1): 377, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226082

RESUMO

BACKGROUND: Patients with polycystic ovary syndrome (PCOS) exhibit a chronic inflammatory state, which is often accompanied by immune, endocrine, and metabolic disorders. Clarification of the pathogenesis of PCOS and exploration of specific biomarkers from the perspective of immunology by evaluating the local infiltration of immune cells in the follicular microenvironment may provide critical insights into disease pathogenesis. METHODS: In this study, we evaluated immune cell subsets and gene expression in patients with PCOS using data from the Gene Expression Omnibus database and single-sample gene set enrichment analysis. RESULTS: In total, 325 differentially expressed genes were identified, among which TMEM54 and PLCG2 (area under the curve = 0.922) were identified as PCOS biomarkers. Immune cell infiltration analysis showed that central memory CD4+ T cells, central memory CD8+ T cells, effector memory CD4+ T cells, γδ T cells, and type 17 T helper cells may affect the occurrence of PCOS. In addition, PLCG2 was highly correlated with γδ T cells and central memory CD4+ T cells. CONCLUSIONS: Overall, TMEM54 and PLCG2 were identified as potential PCOS biomarkers by bioinformatics analysis. These findings established a basis for further exploration of the immunological mechanisms of PCOS and the identification of therapeutic targets.


Assuntos
Síndrome do Ovário Policístico , Feminino , Humanos , Síndrome do Ovário Policístico/genética , Linfócitos T CD8-Positivos , Biomarcadores , Biologia Computacional , Bases de Dados Factuais , Microambiente Tumoral
7.
BMC Bioinformatics ; 22(Suppl 12): 367, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35045824

RESUMO

BACKGROUND: During the pathogenesisof complex diseases, a sudden health deterioration will occur as results of the cumulative effect of various internal or external factors. The prediction of an early warning signal (pre-disease state) before such deterioration is very important in clinical practice, especially for a single sample. The single-sample landscape entropy (SLE) was proposed to tackle this issue. However, the PPI used in SLE was lack of definite biological meanings. Besides, the calculation of multiple correlations based on limited reference samples in SLE is time-consuming and suspect. RESULTS: Abnormal signals generally exert their effect through the static definite biological functions in signaling pathways across the development of diseases. Thus, it is a natural way to study the propagation of the early-warning signals based on the signaling pathways in the KEGG database. In this paper, we propose a signaling perturbation method named SSP, to study the early-warning signal in signaling pathways for single dynamic time-series data. Results in three real datasets including the influenza virus infection, lung adenocarcinoma, and acute lung injury show that the proposed SSP outperformed the SLE. Moreover, the early-warning signal can be detected by one important signaling pathway PI3K-Akt. CONCLUSIONS: These results all indicate that the static model in pathways could simplify the detection of the early-warning signals.


Assuntos
Fosfatidilinositol 3-Quinases , Transdução de Sinais , Entropia
8.
BMC Bioinformatics ; 23(1): 481, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376837

RESUMO

BACKGROUND: Single sample pathway analysis (ssPA) transforms molecular level omics data to the pathway level, enabling the discovery of patient-specific pathway signatures. Compared to conventional pathway analysis, ssPA overcomes the limitations by enabling multi-group comparisons, alongside facilitating numerous downstream analyses such as pathway-based machine learning. While in transcriptomics ssPA is a widely used technique, there is little literature evaluating its suitability for metabolomics. Here we provide a benchmark of established ssPA methods (ssGSEA, GSVA, SVD (PLAGE), and z-score) alongside the evaluation of two novel methods we propose: ssClustPA and kPCA, using semi-synthetic metabolomics data. We then demonstrate how ssPA can facilitate pathway-based interpretation of metabolomics data by performing a case-study on inflammatory bowel disease mass spectrometry data, using clustering to determine subtype-specific pathway signatures. RESULTS: While GSEA-based and z-score methods outperformed the others in terms of recall, clustering/dimensionality reduction-based methods provided higher precision at moderate-to-high effect sizes. A case study applying ssPA to inflammatory bowel disease data demonstrates how these methods yield a much richer depth of interpretation than conventional approaches, for example by clustering pathway scores to visualise a pathway-based patient subtype-specific correlation network. We also developed the sspa python package (freely available at https://pypi.org/project/sspa/ ), providing implementations of all the methods benchmarked in this study. CONCLUSION: This work underscores the value ssPA methods can add to metabolomic studies and provides a useful reference for those wishing to apply ssPA methods to metabolomics data.


Assuntos
Doenças Inflamatórias Intestinais , Metabolômica , Humanos , Metabolômica/métodos , Transcriptoma , Análise por Conglomerados , Espectrometria de Massas
9.
BMC Bioinformatics ; 23(1): 230, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705908

RESUMO

Abundant datasets generated from various big science projects on diseases have presented great challenges and opportunities, which contributed to unfolding the complexity of diseases. The discovery of disease-associated molecular networks for each individual plays an important role in personalized therapy and precision treatment of cancer-based on the reference networks. However, there are no effective ways to distinguish the consistency of different reference networks. In this study, we developed a statistical method, i.e. a sample-specific differential network (SSDN), to construct and analyze such networks based on gene expression of a single sample against a reference dataset. We proved that the SSDN is structurally consistent even with different reference datasets if the reference dataset can follow certain conditions. The SSDN also can be used to identify patient-specific disease modules or network biomarkers as well as predict the potential driver genes of a tumor sample.


Assuntos
Redes Reguladoras de Genes , Neoplasias , Biomarcadores/metabolismo , Perfilação da Expressão Gênica , Humanos , Neoplasias/genética
10.
BMC Med ; 20(1): 173, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35505341

RESUMO

BACKGROUND: Necrotising soft tissue infections (NSTIs) are rapidly progressing bacterial infections usually caused by either several pathogens in unison (polymicrobial infections) or Streptococcus pyogenes (mono-microbial infection). These infections are rare and are associated with high mortality rates. However, the underlying pathogenic mechanisms in this heterogeneous group remain elusive. METHODS: In this study, we built interactomes at both the population and individual levels consisting of host-pathogen interactions inferred from dual RNA-Seq gene transcriptomic profiles of the biopsies from NSTI patients. RESULTS: NSTI type-specific responses in the host were uncovered. The S. pyogenes mono-microbial subnetwork was enriched with host genes annotated with involved in cytokine production and regulation of response to stress. The polymicrobial network consisted of several significant associations between different species (S. pyogenes, Porphyromonas asaccharolytica and Escherichia coli) and host genes. The host genes associated with S. pyogenes in this subnetwork were characterised by cellular response to cytokines. We further found several virulence factors including hyaluronan synthase, Sic1, Isp, SagF, SagG, ScfAB-operon, Fba and genes upstream and downstream of EndoS along with bacterial housekeeping genes interacting with the human stress and immune response in various subnetworks between host and pathogen. CONCLUSIONS: At the population level, we found aetiology-dependent responses showing the potential modes of entry and immune evasion strategies employed by S. pyogenes, congruent with general cellular processes such as differentiation and proliferation. After stratifying the patients based on the subject-specific networks to study the patient-specific response, we observed different patient groups with different collagens, cytoskeleton and actin monomers in association with virulence factors, immunogenic proteins and housekeeping genes which we utilised to postulate differing modes of entry and immune evasion for different bacteria in relationship to the patients' phenotype.


Assuntos
Coinfecção , Infecções dos Tecidos Moles , Infecções Estreptocócicas , Coinfecção/genética , Humanos , Infecções dos Tecidos Moles/genética , Infecções dos Tecidos Moles/microbiologia , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/genética , Fatores de Virulência/genética
11.
Brief Bioinform ; 21(5): 1641-1662, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31711128

RESUMO

To understand tumor heterogeneity in cancer, personalized driver genes (PDGs) need to be identified for unraveling the genotype-phenotype associations corresponding to particular patients. However, most of the existing driver-focus methods mainly pay attention on the cohort information rather than on individual information. Recent developing computational approaches based on network control principles are opening a new way to discover driver genes in cancer, particularly at an individual level. To provide comprehensive perspectives of network control methods on this timely topic, we first considered the cancer progression as a network control problem, in which the expected PDGs are altered genes by oncogene activation signals that can change the individual molecular network from one health state to the other disease state. Then, we reviewed the network reconstruction methods on single samples and introduced novel network control methods on single-sample networks to identify PDGs in cancer. Particularly, we gave a performance assessment of the network structure control-based PDGs identification methods on multiple cancer datasets from TCGA, for which the data and evaluation package also are publicly available. Finally, we discussed future directions for the application of network control methods to identify PDGs in cancer and diverse biological processes.


Assuntos
Neoplasias/genética , Algoritmos , Biologia Computacional/métodos , Heterogeneidade Genética , Humanos , Mutação
12.
Brief Bioinform ; 21(2): 729-740, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-30721923

RESUMO

The development of multigene classifiers for cancer prognosis, treatment prediction, molecular subtypes or clinicopathological groups has been a cornerstone in transcriptomic analyses of human malignancies for nearly two decades. However, many reported classifiers are critically limited by different preprocessing needs like normalization and data centering. In response, a new breed of classifiers, single sample predictors (SSPs), has emerged. SSPs classify samples in an N-of-1 fashion, relying on, e.g. gene rules comparing expression values within a sample. To date, several methods have been reported, but there is a lack of head-to-head performance comparison for typical cancer classification problems, representing an unmet methodological need in cancer bioinformatics. To resolve this need, we performed an evaluation of two SSPs [k-top-scoring pair classifier (kTSP) and absolute intrinsic molecular subtyping (AIMS)] for two case examples of different magnitude of difficulty in non-small cell lung cancer: gene expression-based classification of (i) tumor histology and (ii) molecular subtype. Through the analysis of ~2000 lung cancer samples for each case example (n = 1918 and n = 2106, respectively), we compared the performance of the methods for different sample compositions, training data set sizes, gene expression platforms and gene rule selections. Three main conclusions are drawn from the comparisons: both methods are platform independent, they select largely overlapping gene rules associated with actual underlying tumor biology and, for large training data sets, they behave interchangeably performance-wise. While SSPs like AIMS and kTSP offer new possibilities to move gene expression signatures/predictors closer to a clinical context, they are still importantly limited by the difficultness of the classification problem at hand.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/classificação , Carcinoma Pulmonar de Células não Pequenas/genética , Estudos de Casos e Controles , Perfilação da Expressão Gênica/métodos , Humanos , Neoplasias Pulmonares/classificação , Neoplasias Pulmonares/genética
13.
Anal Biochem ; 654: 114794, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35777456

RESUMO

Gastric cancer seriously affects the health of modern people. The immune microenvironment of gastric cancer tissue is key to gastric cancer progression. We downloaded training and validation sets data from The Cancer Genome Atlas and Gene Expression Omnibus. Single-sample gene set enrichment analysis was used to sort patients into high, middle, and low immunity groups, of which immune infiltration in the high immunity group was substantially higher than of other two groups. Genes in high and low immunity groups expressed prominent differences. Further, the enrichment of differentially expressed genes was found mainly in immune-related pathways. Subsequently, an immune-related prognostic model was established, composed of ten prognosis-related genes identified by univariate risk regression, least absolute shrinkage and selection operator Cox, and multivariate risk regression. Survival analysis and receiver operating characteristic curves suggested good diagnostic efficacy of this model, and feature genes were linked to the degree of immune infiltration. An independent test suggested that the risk score could independently determine patient outcomes. We combined all clinical information and risk scores to establish a nomogram that could predict patient's prognosis. A prognostic model composed of 10 prognosis-related genes was generated with good diagnostic efficacy in predicting prognoses of gastric cancer patients.


Assuntos
Neoplasias Gástricas , Biomarcadores Tumorais/análise , Humanos , Nomogramas , Prognóstico , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Microambiente Tumoral/genética
14.
Neuroimmunomodulation ; 29(4): 402-413, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35354148

RESUMO

OBJECTIVE: This study aims to construct a prognostic model based on the different immune infiltration statuses of the glioma samples. METHODS: Glioma-associated dataset was assessed from The Cancer Genome Atlas database. Hierarchical cluster analysis was performed to classify the glioma samples. Single-sample gene set enrichment analysis was introduced to the glioma samples for immune infiltration analysis. Kaplan-Meier survival analysis was applied to evaluate patients' prognoses. The differentially expressed genes (DEGs) between different sample groups were screened using limma package. Univariate Cox, LASSO Cox, and multivariate Cox regression analyses were employed to construct the prognostic model. The prediction performance of the model was examined by plotting a receiver-operating characteristic (ROC) curve, and GSEA was introduced to screen the differently activated pathways between high- and low-risk groups. RESULTS: The glioma samples were classified into 3 clusters where the different immune infiltration and survival statuses were presented among the clusters. 123 immune-related DEGs were screened from the differential expression analyses, and based on these DEGs, an 8-gene prognostic model was constructed. The ROC curve exhibited an optimal performance of the prognostic model, and GSEA showed that ECM-receptor interaction, complement and coagulation cascades, cytokine receptor pathways, and viral protein interaction with cytokine were differently activated between the two risk groups. CONCLUSION: The current study screened an immune-associated gene set by classifying and differential analysis, followed by constructing an 8-gene prognostic model based on the screened genes.


Assuntos
Glioma , Humanos , Prognóstico , Glioma/genética , Citocinas , Microambiente Tumoral
15.
Int J Cancer ; 148(1): 238-251, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32745259

RESUMO

Disease recurrence in surgically treated lung adenocarcinoma (AC) remains high. New approaches for risk stratification beyond tumor stage are needed. Gene expression-based AC subtypes such as the Cancer Genome Atlas Network (TCGA) terminal-respiratory unit (TRU), proximal-inflammatory (PI) and proximal-proliferative (PP) subtypes have been associated with prognosis, but show methodological limitations for robust clinical use. We aimed to derive a platform independent single sample predictor (SSP) for molecular subtype assignment and risk stratification that could function in a clinical setting. Two-class (TRU/nonTRU=SSP2) and three-class (TRU/PP/PI=SSP3) SSPs using the AIMS algorithm were trained in 1655 ACs (n = 9659 genes) from public repositories vs TCGA centroid subtypes. Validation and survival analysis were performed in 977 patients using overall survival (OS) and distant metastasis-free survival (DMFS) as endpoints. In the validation cohort, SSP2 and SSP3 showed accuracies of 0.85 and 0.81, respectively. SSPs captured relevant biology previously associated with the TCGA subtypes and were associated with prognosis. In survival analysis, OS and DMFS for cases discordantly classified between TCGA and SSP2 favored the SSP2 classification. In resected Stage I patients, SSP2 identified TRU-cases with better OS (hazard ratio [HR] = 0.30; 95% confidence interval [CI] = 0.18-0.49) and DMFS (TRU HR = 0.52; 95% CI = 0.33-0.83) independent of age, Stage IA/IB and gender. SSP2 was transformed into a NanoString nCounter assay and tested in 44 Stage I patients using RNA from formalin-fixed tissue, providing prognostic stratification (relapse-free interval, HR = 3.2; 95% CI = 1.2-8.8). In conclusion, gene expression-based SSPs can provide molecular subtype and independent prognostic information in early-stage lung ACs. SSPs may overcome critical limitations in the applicability of gene signatures in lung cancer.


Assuntos
Adenocarcinoma de Pulmão/diagnóstico , Biomarcadores Tumorais/genética , Neoplasias Pulmonares/diagnóstico , Pulmão/patologia , Recidiva Local de Neoplasia/epidemiologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/cirurgia , Algoritmos , Conjuntos de Dados como Assunto , Intervalo Livre de Doença , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Pulmão/cirurgia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/cirurgia , Masculino , Modelos Genéticos , Recidiva Local de Neoplasia/genética , Estadiamento de Neoplasias , Valor Preditivo dos Testes , Prognóstico , Medição de Risco/métodos , Fatores de Risco
16.
BMC Cancer ; 21(1): 1303, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34872521

RESUMO

BACKGROUND: There is no unified treatment standard for patients with extranodal NK/T-cell lymphoma (ENKTL). Cancer neoantigens are the result of somatic mutations and cancer-specific. Increased number of somatic mutations are associated with anti-cancer effects. Screening out ENKTL-specific neoantigens on the surface of cancer cells relies on the understanding of ENKTL mutation patterns. Hence, it is imperative to identify ENKTL-specific genes for ENKTL diagnosis, the discovery of tumor-specific neoantigens and the development of novel therapeutic strategies. We investigated the gene signatures of ENKTL patients. METHODS: We collected the peripheral blood of a pair of twins for sequencing to identify unique variant genes. One of the twins is diagnosed with ENKTL. Seventy samples were analyzed by Robust Multi-array Analysis (RMA). Two methods (elastic net and Support Vector Machine-Recursive Feature Elimination) were used to select unique genes. Next, we performed functional enrichment analysis and pathway enrichment analysis. Then, we conducted single-sample gene set enrichment analysis of immune infiltration and validated the expression of the screened markers with limma packages. RESULTS: We screened out 126 unique variant genes. Among them, 11 unique genes were selected by the combination of elastic net and Support Vector Machine-Recursive Feature Elimination. Subsequently, GO and KEGG analysis indicated the biological function of identified unique genes. GSEA indicated five immunity-related pathways with high signature scores. In patients with ENKTL and the group with high signature scores, a proportion of functional immune cells are all of great infiltration. We finally found that CDC27, ZNF141, FCGR2C and NES were four significantly differential genes in ENKTL patients. ZNF141, FCGR2C and NES were upregulated in patients with ENKTL, while CDC27 was significantly downregulated. CONCLUSION: We identified four ENKTL markers (ZNF141, FCGR2C, NES and CDC27) in patients with extranodal NK/T-cell lymphoma.


Assuntos
Linfoma Extranodal de Células T-NK/genética , Aprendizado de Máquina/normas , Feminino , Humanos , Masculino , Gêmeos
17.
Mol Cell Proteomics ; 18(8 suppl 1): S153-S168, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31243065

RESUMO

Gene-set analysis (GSA) summarizes individual molecular measurements to more interpretable pathways or gene-sets and has become an indispensable step in the interpretation of large-scale omics data. However, GSA methods are limited to the analysis of single omics data. Here, we introduce a new computation method termed multi-omics gene-set analysis (MOGSA), a multivariate single sample gene-set analysis method that integrates multiple experimental and molecular data types measured over the same set of samples. The method learns a low dimensional representation of most variant correlated features (genes, proteins, etc.) across multiple omics data sets, transforms the features onto the same scale and calculates an integrated gene-set score from the most informative features in each data type. MOGSA does not require filtering data to the intersection of features (gene IDs), therefore, all molecular features, including those that lack annotation may be included in the analysis. Using simulated data, we demonstrate that integrating multiple diverse sources of molecular data increases the power to discover subtle changes in gene-sets and may reduce the impact of unreliable information in any single data type. Using real experimental data, we demonstrate three use-cases of MOGSA. First, we show how to remove a source of noise (technical or biological) in integrative MOGSA of NCI60 transcriptome and proteome data. Second, we apply MOGSA to discover similarities and differences in mRNA, protein and phosphorylation profiles of a small study of stem cell lines and assess the influence of each data type or feature on the total gene-set score. Finally, we apply MOGSA to cluster analysis and show that three molecular subtypes are robustly discovered when copy number variation and mRNA data of 308 bladder cancers from The Cancer Genome Atlas are integrated using MOGSA. MOGSA is available in the Bioconductor R package "mogsa."


Assuntos
Genômica/métodos , Análise por Conglomerados , Variações do Número de Cópias de DNA , Humanos , Espectrometria de Massas , RNA Mensageiro , RNA-Seq , Neoplasias da Bexiga Urinária/genética
18.
Am J Otolaryngol ; 42(6): 103163, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34339960

RESUMO

BACKGROUND: Ferroptosis is a form of programmed cell death that is closely associated with the development of various tumors. However, the correlation between ferroptosis and papillary thyroid carcinoma (PTC) is unclear. This study was performed to investigate the expression and prognostic value of ferroptosis-related genes (FRG) in PTC. METHODS: mRNA expression profiles and corresponding clinical data of patients with PTC were analyzed to identify factors affecting prognosis. Independent risk factors were used to establish a predictive receiver operating characteristic model. Single-sample gene set enrichment analysis (ssGSEA) was used to evaluate the correlation between ferroptosis and immune cells. RESULTS: Most genes related to FRG (78.8%) were differentially expressed between the tumor and adjacent normal tissues. In univariate Cox regression analysis, 12 differentially expressed genes were associated with prognostic survival. We constructed a prognostic model of eight FRG, including DPP4, GPX4, GSS, ISCU, MIOX, PGD, TF, and TFRC, and divided patients into two groups: high and low risk. The high-risk group exhibited a significantly reduced overall survival rate. In multivariate Cox regression analysis, the risk score was used as an independent prognostic factor. ssGSEA showed that immune cell types and their expression in the high- and low-risk groups were significant. CONCLUSION: This study constructed a prognostic model of ferroptosis-related genes and determined its usefulness as an independent prognostic factor, providing a reference for the treatment and prognosis of patients with PTC.


Assuntos
Ferroptose/genética , Modelos Genéticos , Câncer Papilífero da Tireoide/mortalidade , Câncer Papilífero da Tireoide/fisiopatologia , Neoplasias da Glândula Tireoide/mortalidade , Neoplasias da Glândula Tireoide/fisiopatologia , Idoso , Dipeptidil Peptidase 4/genética , Feminino , Ferroptose/imunologia , Previsões , Expressão Gênica/genética , Humanos , Inositol Oxigenase/genética , Proteínas Ferro-Enxofre/genética , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Curva ROC , Fatores de Risco , Taxa de Sobrevida
19.
Sensors (Basel) ; 21(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494516

RESUMO

Single-Sample Face Recognition (SSFR) is a computer vision challenge. In this scenario, there is only one example from each individual on which to train the system, making it difficult to identify persons in unconstrained environments, mainly when dealing with changes in facial expression, posture, lighting, and occlusion. This paper discusses the relevance of an original method for SSFR, called Multi-Block Color-Binarized Statistical Image Features (MB-C-BSIF), which exploits several kinds of features, namely, local, regional, global, and textured-color characteristics. First, the MB-C-BSIF method decomposes a facial image into three channels (e.g., red, green, and blue), then it divides each channel into equal non-overlapping blocks to select the local facial characteristics that are consequently employed in the classification phase. Finally, the identity is determined by calculating the similarities among the characteristic vectors adopting a distance measurement of the K-nearest neighbors (K-NN) classifier. Extensive experiments on several subsets of the unconstrained Alex and Robert (AR) and Labeled Faces in the Wild (LFW) databases show that the MB-C-BSIF achieves superior and competitive results in unconstrained situations when compared to current state-of-the-art methods, especially when dealing with changes in facial expression, lighting, and occlusion. The average classification accuracies are 96.17% and 99% for the AR database with two specific protocols (i.e., Protocols I and II, respectively), and 38.01% for the challenging LFW database. These performances are clearly superior to those obtained by state-of-the-art methods. Furthermore, the proposed method uses algorithms based only on simple and elementary image processing operations that do not imply higher computational costs as in holistic, sparse or deep learning methods, making it ideal for real-time identification.


Assuntos
Reconhecimento Facial , Reconhecimento Automatizado de Padrão , Algoritmos , Face , Humanos , Processamento de Imagem Assistida por Computador
20.
BMC Genomics ; 21(1): 87, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992202

RESUMO

BACKGROUND: Developing effective strategies for signaling the pre-disease state of complex diseases, a state with high susceptibility before the disease onset or deterioration, is urgently needed because such state usually followed by a catastrophic transition into a worse stage of disease. However, it is a challenging task to identify such pre-disease state or tipping point in clinics, where only one single sample is available and thus results in the failure of most statistic approaches. METHODS: In this study, we presented a single-sample-based computational method to detect the early-warning signal of critical transition during the progression of complex diseases. Specifically, given a set of reference samples which were regarded as background, a novel index called single-sample Kullback-Leibler divergence (sKLD), was proposed to explore and quantify the disturbance on the background caused by a case sample. The pre-disease state is then signaled by the significant change of sKLD. RESULTS: The novel algorithm was developed and applied to both numerical simulation and real datasets, including lung squamous cell carcinoma, lung adenocarcinoma, stomach adenocarcinoma, thyroid carcinoma, colon adenocarcinoma, and acute lung injury. The successful identification of pre-disease states and the corresponding dynamical network biomarkers for all six datasets validated the effectiveness and accuracy of our method. CONCLUSIONS: The proposed method effectively explores and quantifies the disturbance on the background caused by a case sample, and thus characterizes the criticality of a biological system. Our method not only identifies the critical state or tipping point at a single sample level, but also provides the sKLD-signaling markers for further practical application. It is therefore of great potential in personalized pre-disease diagnosis.


Assuntos
Biologia Computacional/métodos , Progressão da Doença , Suscetibilidade a Doenças , Biomarcadores , Ontologia Genética , Humanos , Reprodutibilidade dos Testes , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa