Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34819377

RESUMO

The problems of identifying the slow component (e.g., for weather forecast initialization) and of characterizing slow-fast interactions are central to geophysical fluid dynamics. In this study, the related rectification problem of slow manifold closures is addressed when breakdown of slow-to-fast scales deterministic parameterizations occurs due to explosive emergence of fast oscillations on the slow, geostrophic motion. For such regimes, it is shown on the Lorenz 80 model that if 1) the underlying manifold provides a good approximation of the optimal nonlinear parameterization that averages out the fast variables and 2) the residual dynamics off this manifold is mainly orthogonal to it, then no memory terms are required in the Mori-Zwanzig full closure. Instead, the noise term is key to resolve, and is shown to be, in this case, well modeled by a state-independent noise, obtained by means of networks of stochastic nonlinear oscillators. This stochastic parameterization allows, in turn, for rectifying the momentum-balanced slow manifold, and for accurate recovery of the multiscale dynamics. The approach is promising to be further applied to the closure of other more complex slow-fast systems, in strongly coupled regimes.

2.
Theor Popul Biol ; 135: 32-48, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32791081

RESUMO

Resistance to insecticide is considered nowadays one of the major threats to insect control, as its occurrence reduces drastically the efficiency of chemical control campaigns, and may also perturb the application of other control methods, like biological and genetic control. In order to account for the emergence and spread of such phenomenon as an effect of exposition to larvicide and/or adulticide, we develop in this paper a general time-continuous population model with two life phases, subsequently simplified through slow manifold theory. The derived models present density-dependent recruitment and mortality rates in a non-conventional way. We show that in absence of selection, they evolve in compliance with Hardy-Weinberg law; while in presence of selection and in the dominant or codominant cases, convergence to the fittest genotype occurs. The proposed mathematical models should allow for the study of several issues of importance related to the use of insecticides and other adaptive phenomena.


Assuntos
Resistência a Inseticidas , Inseticidas , Resistência a Inseticidas/genética
3.
J Theor Biol ; 477: 84-95, 2019 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-31202791

RESUMO

Genetic systems with multiple loci can have complex dynamics. For example, mean fitness need not always increase and stable cycling is possible. Here, we study the dynamics of a genetic system inspired by the molecular biology of recognition-dependent double strand breaks and repair as it happens in recombination hotspots. The model shows slow-fast dynamics in which the system converges to the quasi-linkage equilibrium (QLE) manifold. On this manifold, sustained cycling is possible as the dynamics approach a heteroclinic cycle, in which allele frequencies alternate between near extinction and near fixation. We find a closed-form approximation for the QLE manifold and use it to simplify the model. For the simplified model, we can analytically calculate the stability of the heteroclinic cycle. In the discrete-time model the cycle is always stable; in a continuous-time approximation, the cycle is always unstable. This demonstrates that complex dynamics are possible under quasi-linkage equilibrium.


Assuntos
Epistasia Genética , Conversão Gênica , Desequilíbrio de Ligação , Modelos Genéticos , Seleção Genética
4.
Bull Math Biol ; 80(12): 3154-3183, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30288641

RESUMO

As a case study, we consider a coupled (or auxiliary) enzyme assay of two reactions obeying the Michaelis-Menten mechanism. The coupled reaction consists of a single-substrate, single-enzyme non-observable reaction followed by another single-substrate, single-enzyme observable reaction (indicator reaction). In this assay, the product of the non-observable reaction is the substrate of the indicator reaction. A mathematical analysis of the reaction kinetics is performed, and it is found that after an initial fast transient, the coupled reaction is described by a pair of interacting Michaelis-Menten equations. Moreover, we show that when the indicator reaction is fast, the quasi-steady-state dynamics are governed by three fast variables and one slow variable. Timescales that approximate the respective lengths of the indicator and non-observable reactions, as well as conditions for the validity of the Michaelis-Menten equations, are derived. The theory can be extended to deal with more complex sequences of enzyme-catalyzed reactions.


Assuntos
Enzimas/metabolismo , Modelos Biológicos , Biocatálise , Biologia Computacional , Simulação por Computador , Cinética , Conceitos Matemáticos
5.
Theor Popul Biol ; 112: 14-21, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27497738

RESUMO

Underdominant mutations have fixed between divergent species, yet classical models suggest that rare underdominant alleles are purged quickly except in small or subdivided populations. We predict that underdominant alleles that also influence mate choice, such as those affecting coloration patterns visible to mates and predators alike, can fix more readily. We analyze a mechanistic model of positive assortative mating in which individuals have n chances to sample compatible mates. This one-parameter model naturally spans random mating (n=1) and complete assortment (n→∞), yet it produces sexual selection whose strength depends non-monotonically on n. This sexual selection interacts with viability selection to either inhibit or facilitate fixation. As mating opportunities increase, underdominant alleles fix as frequently as neutral mutations, even though sexual selection and underdominance independently each suppress rare alleles. This mechanism allows underdominant alleles to fix in large populations and illustrates how life history can affect evolutionary change.


Assuntos
Evolução Biológica , Preferência de Acasalamento Animal , Mutação/genética , Reprodução/genética , Alelos , Animais , Humanos , Probabilidade
6.
Proc Biol Sci ; 281(1780): 20133127, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24523274

RESUMO

Immigration can rescue local populations from extinction, helping to stabilize a metapopulation. Local population dynamics is important for determining the strength of this rescue effect, but the mechanistic link between local demographic parameters and the rescue effect at the metapopulation level has received very little attention by modellers. We develop an analytical framework that allows us to describe the emergence of the rescue effect from interacting local stochastic dynamics. We show this framework to be applicable to a wide range of spatial scales, providing a powerful and convenient alternative to individual-based models for making predictions concerning the fate of metapopulations. We show that the rescue effect plays an important role in minimizing the increase in local extinction probability associated with high demographic stochasticity, but its role is more limited in the case of high local environmental stochasticity of recruitment or survival. While most models postulate the rescue effect, our framework provides an explicit mechanistic link between local dynamics and the emergence of the rescue effect, and more generally the stability of the whole metapopulation.


Assuntos
Conservação dos Recursos Naturais , Extinção Biológica , Modelos Teóricos , Ecossistema , Processos Estocásticos
7.
AIMS Math ; 6(7): 6781-6814, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34142000

RESUMO

The conditions for the validity of the standard quasi-steady-state approximation in the Michaelis-Menten mechanism in a closed reaction vessel have been well studied, but much less so the conditions for the validity of this approximation for the system with substrate inflow. We analyze quasi-steady-state scenarios for the open system attributable to singular perturbations, as well as less restrictive conditions. For both settings we obtain distinguished invariant manifolds and time scale estimates, and we highlight the special role of singular perturbation parameters in higher order approximations of slow manifolds. We close the paper with a discussion of distinguished invariant manifolds in the global phase portrait.

8.
Math Biosci ; 306: 126-135, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30261179

RESUMO

The determination of a substrate or enzyme activity by coupling one enzymatic reaction with another easily detectable (indicator) reaction is a common practice in the biochemical sciences. Usually, the kinetics of enzyme reactions is simplified with singular perturbation analysis to derive rate or time course expressions valid under the quasi-steady-state and reactant stationary state assumptions. In this paper, the dynamical behavior of coupled enzyme catalyzed reaction mechanisms is studied by analysis of the phase-plane. We analyze two types of time-dependent slow manifolds - Sisyphus and Laelaps manifolds - that occur in the asymptotically autonomous vector fields that arise from enzyme coupled reactions. Projection onto slow manifolds yields various reduced models, and we present a geometric interpretation of the slow/fast dynamics that occur in the phase-planes of these reactions.


Assuntos
Ensaios Enzimáticos/estatística & dados numéricos , Biocatálise , Fenômenos Bioquímicos , Ativação Enzimática , Precursores Enzimáticos/metabolismo , Enzimas/metabolismo , Cinética , Conceitos Matemáticos , Modelos Biológicos , Modelos Químicos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa