Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Math Biol ; 89(1): 8, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801565

RESUMO

Decline of the dissolved oxygen in the ocean is a growing concern, as it may eventually lead to global anoxia, an elevated mortality of marine fauna and even a mass extinction. Deoxygenation of the ocean often results in the formation of oxygen minimum zones (OMZ): large domains where the abundance of oxygen is much lower than that in the surrounding ocean environment. Factors and processes resulting in the OMZ formation remain controversial. We consider a conceptual model of coupled plankton-oxygen dynamics that, apart from the plankton growth and the oxygen production by phytoplankton, also accounts for the difference in the timescales for phyto- and zooplankton (making it a "slow-fast system") and for the implicit effect of upper trophic levels resulting in density dependent (nonlinear) zooplankton mortality. The model is investigated using a combination of analytical techniques and numerical simulations. The slow-fast system is decomposed into its slow and fast subsystems. The critical manifold of the slow-fast system and its stability is then studied by analyzing the bifurcation structure of the fast subsystem. We obtain the canard cycles of the slow-fast system for a range of parameter values. However, the system does not allow for persistent relaxation oscillations; instead, the blowup of the canard cycle results in plankton extinction and oxygen depletion. For the spatially explicit model, the earlier works in this direction did not take into account the density dependent mortality rate of the zooplankton, and thus could exhibit Turing pattern. However, the inclusion of the density dependent mortality into the system can lead to stationary Turing patterns. The dynamics of the system is then studied near the Turing bifurcation threshold. We further consider the effect of the self-movement of the zooplankton along with the turbulent mixing. We show that an initial non-uniform perturbation can lead to the formation of an OMZ, which then grows in size and spreads over space. For a sufficiently large timescale separation, the spread of the OMZ can result in global anoxia.


Assuntos
Simulação por Computador , Modelos Biológicos , Oxigênio , Fitoplâncton , Zooplâncton , Animais , Oxigênio/metabolismo , Zooplâncton/metabolismo , Zooplâncton/crescimento & desenvolvimento , Zooplâncton/fisiologia , Fitoplâncton/metabolismo , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/fisiologia , Oceanos e Mares , Plâncton/metabolismo , Plâncton/crescimento & desenvolvimento , Conceitos Matemáticos , Ecossistema , Água do Mar/química , Cadeia Alimentar , Anaerobiose
2.
J Math Biol ; 87(3): 48, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640832

RESUMO

Understanding the interplay of different traits in a co-infection system with multiple strains has many applications in ecology and epidemiology. Because of high dimensionality and complex feedback between traits manifested in infection and co-infection, the study of such systems remains a challenge. In the case where strains are similar (quasi-neutrality assumption), we can model trait variation as perturbations in parameters, which simplifies analysis. Here, we apply singular perturbation theory to many strain parameters simultaneously and advance analytically to obtain their explicit collective dynamics. We consider and study such a quasi-neutral model of susceptible-infected-susceptible (SIS) dynamics among N strains, which vary in 5 fitness dimensions: transmissibility, clearance rate of single- and co-infection, transmission probability from mixed coinfection, and co-colonization vulnerability factors encompassing cooperation and competition. This quasi-neutral system is analyzed with a singular perturbation method through an appropriate slow-fast decomposition. The fast dynamics correspond to the embedded neutral system, while the slow dynamics are governed by an N-dimensional replicator equation, describing the time evolution of strain frequencies. The coefficients of this replicator system are pairwise invasion fitnesses between strains, which, in our model, are an explicit weighted sum of pairwise asymmetries along all trait dimensions. Remarkably these weights depend only on the parameters of the neutral system. Such model reduction highlights the centrality of the neutral system for dynamics at the edge of neutrality and exposes critical features for the maintenance of diversity.


Assuntos
Coinfecção , Humanos , Ecologia , Fenótipo , Fatores de Risco
3.
J Comput Neurosci ; 50(4): 537-557, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35948839

RESUMO

An important function of the brain is to predict which stimulus is likely to occur based on the perceived cues. The present research studied the branching behavior of a computational network model of populations of excitatory and inhibitory neurons, both analytically and through simulations. Results show how synaptic efficacy, retroactive inhibition and short-term synaptic depression determine the dynamics of selection between different branches predicting sequences of stimuli of different probabilities. Further results show that changes in the probability of the different predictions depend on variations of neuronal gain. Such variations allow the network to optimize the probability of its predictions to changing probabilities of the sequences without changing synaptic efficacy.


Assuntos
Modelos Neurológicos , Redes Neurais de Computação , Neurônios/fisiologia , Inibição Neural/fisiologia , Sinapses/fisiologia
4.
Biol Cybern ; 116(4): 475-499, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35718809

RESUMO

Adaptation, the reduction of neuronal responses by repetitive stimulation, is a ubiquitous feature of auditory cortex (AC). It is not clear what causes adaptation, but short-term synaptic depression (STSD) is a potential candidate for the underlying mechanism. In such a case, adaptation can be directly linked with the way AC produces context-sensitive responses such as mismatch negativity and stimulus-specific adaptation observed on the single-unit level. We examined this hypothesis via a computational model based on AC anatomy, which includes serially connected core, belt, and parabelt areas. The model replicates the event-related field (ERF) of the magnetoencephalogram as well as ERF adaptation. The model dynamics are described by excitatory and inhibitory state variables of cell populations, with the excitatory connections modulated by STSD. We analysed the system dynamics by linearising the firing rates and solving the STSD equation using time-scale separation. This allows for characterisation of AC dynamics as a superposition of damped harmonic oscillators, so-called normal modes. We show that repetition suppression of the N1m is due to a mixture of causes, with stimulus repetition modifying both the amplitudes and the frequencies of the normal modes. In this view, adaptation results from a complete reorganisation of AC dynamics rather than a reduction of activity in discrete sources. Further, both the network structure and the balance between excitation and inhibition contribute significantly to the rate with which AC recovers from adaptation. This lifetime of adaptation is longer in the belt and parabelt than in the core area, despite the time constants of STSD being spatially homogeneous. Finally, we critically evaluate the use of a single exponential function to describe recovery from adaptation.


Assuntos
Córtex Auditivo , Estimulação Acústica , Adaptação Fisiológica/fisiologia , Córtex Auditivo/fisiologia , Neurônios/fisiologia
5.
Adv Exp Med Biol ; 1359: 105-121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35471537

RESUMO

Synaptic transmission is transiently adjusted on a spike-by-spike basis, with the adjustments persisting from hundreds of milliseconds up to seconds. Such a short-term plasticity has been suggested to significantly augment the computational capabilities of neuronal networks by enhancing their dynamical repertoire. In this chapter, after reviewing the basic physiology of chemical synaptic transmission, we present a general framework-inspired by the quantal model-to build simple, yet quantitatively accurate models of repetitive synaptic transmission. We also discuss different methods to obtain estimates of the model's parameters from experimental recordings. Next, we show that, indeed, new dynamical regimes appear in the presence of short-term synaptic plasticity. In particular, model neuronal networks exhibit the co-existence of a stable fixed point and a stable limit cycle in the presence of short-term synaptic facilitation. It has been suggested that this dynamical regime is especially relevant in working memory processes. We provide, then, a short summary of the synaptic theory of working memory and discuss some of its specific predictions in the context of experiments. We conclude the chapter with a short outlook.


Assuntos
Modelos Neurológicos , Plasticidade Neuronal , Memória de Curto Prazo , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia
6.
Bull Math Biol ; 82(11): 142, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33119836

RESUMO

Multi-type infection processes are ubiquitous in ecology, epidemiology and social systems, but remain hard to analyze and to understand on a fundamental level. Here, we study a multi-strain susceptible-infected-susceptible model with coinfection. A host already colonized by one strain can become more or less vulnerable to co-colonization by a second strain, as a result of facilitating or competitive interactions between the two. Fitness differences between N strains are mediated through [Formula: see text] altered susceptibilities to secondary infection that depend on colonizer-cocolonizer identities ([Formula: see text]). By assuming strain similarity in such pairwise traits, we derive a model reduction for the endemic system using separation of timescales. This 'quasi-neutrality' in trait space sets a fast timescale where all strains interact neutrally, and a slow timescale where selective dynamics unfold. We find that these slow dynamics are governed by the replicator equation for N strains. Our framework allows to build the community dynamics bottom-up from only pairwise invasion fitnesses between members. We highlight that mean fitness of the multi-strain network, changes with their individual dynamics, acts equally upon each type, and is a key indicator of system resistance to invasion. By uncovering the link between N-strain epidemiological coexistence and the replicator equation, we show that the ecology of co-colonization relates to Fisher's fundamental theorem and to Lotka-Volterra systems. Besides efficient computation and complexity reduction for any system size, these results open new perspectives into high-dimensional community ecology, detection of species interactions, and evolution of biodiversity.


Assuntos
Ecologia , Ecossistema , Epidemiologia , Modelos Biológicos , Biodiversidade , Ecologia/métodos , Conceitos Matemáticos , Fenótipo
7.
Biol Cybern ; 112(5): 445-463, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29995240

RESUMO

We analyze the effect of weak-noise-induced transitions on the dynamics of the FitzHugh-Nagumo neuron model in a bistable state consisting of a stable fixed point and a stable unforced limit cycle. Bifurcation and slow-fast analysis give conditions on the parameter space for the establishment of this bi-stability. In the parametric zone of bi-stability, weak-noise amplitudes may strongly inhibit the neuron's spiking activity. Surprisingly, increasing the noise strength leads to a minimum in the spiking activity, after which the activity starts to increase monotonically with an increase in noise strength. We investigate this inhibition and modulation of neural oscillations by weak-noise amplitudes by looking at the variation of the mean number of spikes per unit time with the noise intensity. We show that this phenomenon always occurs when the initial conditions lie in the basin of attraction of the stable limit cycle. For initial conditions in the basin of attraction of the stable fixed point, the phenomenon, however, disappears, unless the timescale separation parameter of the model is bounded within some interval. We provide a theoretical explanation of this phenomenon in terms of the stochastic sensitivity functions of the attractors and their minimum Mahalanobis distances from the separatrix isolating the basins of attraction.


Assuntos
Potenciais de Ação/fisiologia , Relógios Biológicos/fisiologia , Modelos Neurológicos , Inibição Neural/fisiologia , Neurônios/fisiologia , Ruído , Animais , Humanos , Fatores de Tempo
8.
Front Comput Neurosci ; 16: 889235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769530

RESUMO

The brain produces rhythms in a variety of frequency bands. Some are likely by-products of neuronal processes; others are thought to be top-down. Produced entirely naturally, these rhythms have clearly recognizable beats, but they are very far from periodic in the sense of mathematics. The signals are broad-band, episodic, wandering in amplitude and frequency; the rhythm comes and goes, degrading and regenerating. Gamma rhythms, in particular, have been studied by many authors in computational neuroscience, using reduced models as well as networks of hundreds to thousands of integrate-and-fire neurons. All of these models captured successfully the oscillatory nature of gamma rhythms, but the irregular character of gamma in reduced models has not been investigated thoroughly. In this article, we tackle the mathematical question of whether signals with the properties of brain rhythms can be generated from low dimensional dynamical systems. We found that while adding white noise to single periodic cycles can to some degree simulate gamma dynamics, such models tend to be limited in their ability to capture the range of behaviors observed. Using an ODE with two variables inspired by the FitzHugh-Nagumo and Leslie-Gower models, with stochastically varying coefficients designed to control independently amplitude, frequency, and degree of degeneracy, we were able to replicate the qualitative characteristics of natural brain rhythms. To demonstrate model versatility, we simulate the power spectral densities of gamma rhythms in various brain states recorded in experiments.

9.
Econ Disaster Clim Chang ; 5(3): 415-430, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34462729

RESUMO

The COVID19 pandemic has created a massive shock, unexpectedly increasing mortality levels and generating economic recessions all around the world. In recent years, several efforts have been made to develop models that link the environment, population and the economy which may be used to estimate potential longer term effects of the pandemic. Unfortunately, many of the parameters used in these models lack appropriate empirical identification. In this study, first I estimate the parameters of "Wonderland", a system dynamics model of the population-economy-environment nexus, and posteriorly, add external GDP and mortality shocks to the model. The estimated parameters are able to closely match world data, while future simulations point, on average and regardless of the COVID19 pandemic, to a world reaching dangerous environmental levels in the following decades, in line with consensus forecasts. On the other hand, the effects of the pandemic on the economy are highly uncertain and may last for several decades.

10.
J Biol Dyn ; 13(1): 269-300, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31046607

RESUMO

Understanding mosquitoes life cycle is of great interest presently because of the increasing impact of vector borne diseases in several countries. There is evidence of oscillations in mosquito populations independent of seasonality, still unexplained, based on observations both in laboratories and in nature. We propose a simple mathematical model of egg hatching enhancement by larvae which produces such oscillations that conveys a possible explanation. We propose both a theoretical analysis, based on slow-fast dynamics and Hopf bifurcation, and numerical investigations in order to shed some light on the mechanisms at work in this model.


Assuntos
Culicidae/fisiologia , Retroalimentação , Modelos Biológicos , Óvulo/fisiologia , Animais , Feminino , Larva/fisiologia , Masculino , Dinâmica não Linear , Dinâmica Populacional
11.
Proc Math Phys Eng Sci ; 474(2213): 20180206, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29887754

RESUMO

The nonlinear response of a reduced model of an orthotropic single-layered plate with thermomechanical coupling is investigated in the presence of thermal excitations, in addition to mechanical ones. Different issues are addressed via accurate and extended local and global analyses. (i) Assessing the possible occurrence, disappearance or modification of mechanical buckling as a result of thermal aspects; (ii) exploiting global dynamics to unveil the effects of coupling; (iii) highlighting the crucial role played by the slow thermal transient evolution in modifying the fast steady mechanical response; (iv) framing the influence of coupling and underlining the need to use a thermomechanical model to grasp the actual plate dynamics; and (v) getting hints of technical interest as to the outcome robustness with respect to variations in the external/internal thermal parameters.

12.
Methods Mol Biol ; 1702: 95-123, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29119504

RESUMO

In this report, we aim at presenting a viable strategy for the study of Epithelial-Mesenchymal Transition (EMT) and its opposite Mesenchymal-Epithelial Transition (MET) by means of a Systems Biology approach combined with a suitable Mathematical Modeling analysis. Precisely, it is shown how the presence of a metastable state, that is identified at a mesoscopic level of description, is crucial for making possible the appearance of a phase transition mechanism in the framework of fast-slow dynamics for Ordinary Differential Equations (ODEs).


Assuntos
Transição Epitelial-Mesenquimal , Modelos Biológicos , Biologia de Sistemas/métodos , Animais , Regulação da Expressão Gênica , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa