RESUMO
Adolescence represents a critical period of neurodevelopment, defined by structural and synaptic pruning within the prefrontal cortex. While characteristic of typical development, this structural instability may open a window of vulnerability to developing neuropsychiatric disorders, including depression. Thus, therapeutic interventions that support or expedite neural remodeling in adolescence may be advantageous. Here, we inhibited the neuronally-expressed cytoskeletal regulatory factor Rho-kinase (ROCK), focusing primarily on the clinically-viable ROCK inhibitor fasudil. ROCK inhibition had rapid antidepressant-like effects in adolescent mice, and its efficacy was comparable to ketamine and fluoxetine. It also modified levels of the antidepressant-related signaling factors, tropomyosin/tyrosine receptor kinase B and Akt, as well as the postsynaptic marker PSD-95, in the ventromedial prefrontal cortex (vmPFC). Meanwhile, adolescent-typical dendritic spine pruning on excitatory pyramidal neurons in the vmPFC was expedited. Further, vmPFC-specific shRNA-mediated reduction of ROCK2, the dominant ROCK isoform in the brain, had antidepressant-like consequences. We cautiously suggest that ROCK inhibitors may have therapeutic potential for adolescent-onset depression.
Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Antidepressivos/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Quinases Associadas a rho/antagonistas & inibidores , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/enzimologia , Inibidores de Proteínas Quinases/farmacologiaRESUMO
Rho-associated kinase (ROCK) has been found to be involved in the pathogenesis of a variety of autoimmune diseases, but the role of ROCK in inflammatory bowel disease (IBD) is still elusive. In this study, we demonstrated that the levels of ROCK2, but not ROCK1, activity were significantly upregulated in peripheral blood mononuclear cells (PBMC) and inflamed mucosa from IBD patients using a ROCK activity assay, and that ROCK2 activity in intestinal mucosa was positively correlated with disease severity. Stimulation with TNF markedly upregulated ROCK2 activity in IBD CD4+ T cells through NF-κB signaling. Blockade of ROCK2 activity using Slx-2119 significantly suppressed proinflammatory cytokines in inflamed mucosa from IBD patients including IFX-unresponsive CD patients, and inhibited IBD CD4+ T cells to differentiate into Th1 and Th17 cells through downregulating phosphorylated Stat1 and Stat3, but promoted Treg cell differentiation through upregulating phosphorylated Stat5. Furthermore, oral administration of Slx-2119 markedly ameliorated intestinal mucosal inflammation in TNBS-induced colitis in mice and decreased proinflammatory cytokines productions in inflamed colon. Our data indicate that ROCK2 plays a critical role in inducing mucosal T cell activation and inflammatory responses in IBD and that inhibition of ROCK2 activity might serve as a novel therapeutic approach in the management of IBD.
Assuntos
Colite/imunologia , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/imunologia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Células Th17/imunologia , Quinases Associadas a rho/metabolismo , Adulto , Animais , Diferenciação Celular , Células Cultivadas , Colite/induzido quimicamente , Modelos Animais de Doenças , Feminino , Humanos , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Transdução de Sinais , Adulto JovemRESUMO
Belumosudil (BLM) is a ROCK inhibitor that has been firstly developed by Surface Logix, later acquired by Kadmon Pharmaceuticals for the treatment of chronic graft-versus-host disease (cGVHD), Psoriasis Vulgaris (PV), idiopathic pulmonary fibrosis (IPF), hepatic impairment (HI), diffuse cutaneous systemic sclerosis (dcSSc). BLM received a breakthrough therapy designation and priority review from the FDA, which reviewed the NDA under the real-time oncology review (RTOR) pilot programme and approved it six weeks ahead of the PDUFA deadline of August 30, 2021. On July 16th, 2021, The USFDA authorized BLM under the brand name REZUROCKTM for the treatment of cGVHD in adults and pediatric patients aged ≥ 12 years after the failure of at least two prior lines of systemic therapy. It has been granted orphan drug status by the FDA on August 9, 2020, for the treatment of systemic sclerosis. The European Union (EU) granted Quality Regulatory Clinical Ireland Limited, Ireland, orphan drug status for BLM (KD025) for the treatment of cGVHD on October 17, 2019. BLM is under regulatory assessment by Therapeutic Good Administration (TGA) Australia, Health Canada, MHRA (UK), and The Swiss Agency for Therapeutic Products (Swissmedic), Switzerland for cGVHD. A clinical trial is ongoing in the United States for cutaneous systemic sclerosis. This review article summarizes the milestones in the development of BLM chemistry, Chemical synthesis and development, mechanism of action, pharmacokinetics (PK), pharmacodynamics (PD), adverse effects, regulatory status, and ongoing clinical trials (CT) of BLM.
Assuntos
Doença Enxerto-Hospedeiro , Escleroderma Sistêmico , Acetamidas/efeitos adversos , Adulto , Criança , Doença Enxerto-Hospedeiro/tratamento farmacológico , Humanos , Estados Unidos/epidemiologia , United States Food and Drug AdministrationRESUMO
Rho-associated protein kinases (ROCKs) have various cellular functions, which include actin cytoskeleton remodeling and vesicular trafficking, and there are two major mammalian ROCK isotypes, namely, ROCK1 (ROKß) and ROCK2 (ROKα). The ROCK2-specific inhibitor KD025 (SLx-2119) is currently undergoing phase II clinical trials, but its cellular functions have not been fully explored. In this study, we investigated the functions of KD025 at the genomics level by bioinformatics analysis using the GSE8686 microarray dataset from the NCBI GEO database, in three different primary human cell lines. An initial microarray analysis conducted by Boerma et al. focused on the effects of KD025 on cell adhesion and blood coagulation, but did not provide comprehensive information on the functions of KD025. Our analysis of differentially expressed genes (DEGs) showed ~70% coincidence with Boerma et al.'s findings, and newly identified that CCND1, CXCL2, NT5E, and SMOX were differentially expressed by KD025. However, due to low numbers of co-regulated DEGs, we were unable to extract the functions of KD025 with significance. To overcome this limitation, we used gene set enrichment analysis (GSEA) and the heatmap hierarchical clustering method. We confirmed KD025 regulated inflammation and adipogenesis pathways, as previously reported experimentally. In addition, we found KD025 has novel regulatory functions on various pathways, including oxidative phosphorylation, WNT signaling, angiogenesis, and KRAS signaling. Further studies are required to systematically characterize these newly identified functions of KD025.
Assuntos
Biologia Computacional , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Expressão Gênica , Humanos , Análise de Sequência com Séries de OligonucleotídeosRESUMO
Rho-associated kinases (ROCKs) have been reported to antagonize adipocyte differentiation, and inhibition of ROCKs by small molecules promotes adipogenesis. Surprisingly, our recent study revealed that the ROCK2-specific inhibitor KD025 (SLx-2119), suppresses differentiation at the intermediate stage in 3T3-L1 preadipocytes. To address whether the anti-adipogenic activity of KD025 is a generalizable property, we examined the effect of KD025 in human adipose-derived stem cells (hADSCs). KD025 significantly suppressed the adipocyte differentiation of hADSCs with downregulation of the protein and mRNA expression of various adipogenic and lipogenic markers, including PPARγ, C/EBPα, SREBP-1c, Glut4 and FABP4. Notably, we observed that adipocyte differentiation is effectively suppressed by exposure to KD025 during the mid-to-late period of adipogenesis but not at the earlier stages, showing stage-specificity. Contrary to expectations, KD025 upregulated the insulin signaling, as confirmed by the increased phosphorylation levels of Akt and GSK-3α/ß, and the differentiation-promoting activity of insulin signaling was observed to be overwhelmed by the inhibitory activity. In addition, we observed that other ROCK inhibitors (Y-27632, fasudil, and H-1152P) did not suppress but promoted adipocyte differentiation. These results indicate that KD025 suppresses adipocyte differentiation by modulation of key factors activated at the intermediate stage of differentiation, and not by inhibition of ROCK2.