RESUMO
Ubiquitin C-terminal hydrolase L1 (UCHL1) plays vital roles in cell proliferation, angiogenesis, inflammation and oxidative stress. Nevertheless, it is unclear whether UCHL1 could regulate the biologic behaviour of cells and ultimately influences wound healing. We aim to illustrate the roles and the underlying mechanism of UCHL1 in cutaneous wound healing. Murine full-thickness excisional wound model was utilised to study the effects of UCHL1 on wound healing through topical administration of the UCHL1 inhibitor LDN57444, followed by assessment of wound areas and histological alterations. Subsequently, ethynyldeoxyuridine, scratch and transwell assays were performed to examine fibroblast migration and proliferation. The extracellular matrix (ECM)-related genes expression and transforming growth factor-ß (TGF-ß)/Smad signalling pathways activation were investigated by immuno-fluorescent staining, Western blots and quantitative reverse transcription polymerase chain reaction. We identified elevated UCHL1 expression in non-healing wound tissues. The UCHL1 expression displayed a dynamic change and reached a peak on Day-7 post-wounding during the healing process in mice. Cutaneous administration of LDN57444 promoted wound healing by facilitating collagen deposition, myofibroblast activation and angiogenesis. In vitro experiments demonstrated that UCHL1 concentration dependently inhibited migration, ECM synthesis and activation of human dermal fibroblasts, which was mechanistically related to downregulation of TGF-ß/Smad signalling. Furthermore, these effects could be reversed by TGF-ß inhibitor SB431542. Our findings reveal that UCHL1 is a negative regulator of cutaneous wound healing and considered as a novel prospective therapeutic target for effective wound healing.
Assuntos
Movimento Celular , Fibroblastos , Transdução de Sinais , Proteínas Smad , Fator de Crescimento Transformador beta , Ubiquitina Tiolesterase , Cicatrização , Animais , Humanos , Masculino , Camundongos , Benzamidas/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dioxóis/farmacologia , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores , Cicatrização/efeitos dos fármacosRESUMO
INTRODUCTION: Hyperglycaemia induces the production of a large quantity of reactive oxygen species (ROS) and activates the transforming growth factor ß1 (TGF-ß1)/Smad signalling pathway, which is the main initiating factor in the formation of diabetic nephropathy. Indoxyl sulphate (IS) is a protein-binding gut-derived uraemic toxin that localizes to podocytes, induces oxidative stress, and inflames podocytes. The involvement of podocyte damage in diabetic nephropathy through the TGF-ß1 signalling pathway is still unclear. METHODS: In this study, we cultured differentiated rat podocytes in vitro and measured the expression levels of nephrin, synaptopodin, CD2AP, SRGAP2a, and α-SMA by quantitative real-time PCR (qRT-PCR) and Western blotting after siRNA-mediated TGF-ß1 silencing, TGF-ß1 overexpression, and the presence of the ROS inhibitor acetylcysteine. We detected the expression levels of nephrin, synaptopodin, CD2AP, SRGAP2a, small mother against decapentaplegic (Smad)2/3, phosphorylated-Smad2/3 (p-Smad2/3), Smad7, NADPH oxidase 4 (NOX4), and ROS levels under high glucose (HG) and IS conditions. RESULTS: The results indicated that nephrin, synaptopodin, CD2AP, and SRGAP2a expressions were significantly upregulated, and α-SMA expression was significantly downregulated in the presence of HG under siRNA-mediated TGF-ß1 silencing or after the addition of acetylcysteine. However, in the presence of HG, the expressions of nephrin, synaptopodin, CD2AP, and SRGAP2a were significantly downregulated, and the expression of α-SMA was significantly upregulated with the overexpression of TGF-ß1. IS supplementation under HG conditions further significantly reduced the expressions of nephrin, synaptopodin, CD2AP, and SRGAP2a; altered the expressions of Smad2/3, p-Smad2/3, Smad7, and NOX4; and increased ROS production in podocytes. CONCLUSION: This study suggests that IS may modulate the expression of nephrin, synaptopodin, CD2AP, and SRGAP2a by regulating the ROS and TGF-ß1/Smad signalling pathways, providing new theoretical support for the treatment of diabetic nephropathy.
Assuntos
Nefropatias Diabéticas , Indicã , Podócitos , Espécies Reativas de Oxigênio , Transdução de Sinais , Fator de Crescimento Transformador beta1 , Indicã/toxicidade , Indicã/farmacologia , Podócitos/metabolismo , Podócitos/patologia , Animais , Ratos , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Proteínas Smad/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas dos Microfilamentos/metabolismo , Células Cultivadas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genéticaRESUMO
Animal geneticists and breeders have the impending challenge of enhancing the resilience of Indian livestock to heat stress through better selection strategies. Climate change's impact on livestock is more intense in tropical countries like India where dairy cattle crossbreeds are more sensitive to heat stress. The main reason for this study was to find the missing relative changes in transcript levels in thermo-neutral and heat stress conditions in crossbred cattle through whole-transcriptome analysis of RNA-Seq data. Differentially expressed genes (DEGs) identified based on the minimum log twofold change value and false discovery rate 0.05 revealed 468 up-regulated genes and 2273 down-regulated significant genes. Functional annotation and pathway analysis of these significant DEGs were compared based on Gene Ontology (Biological process), Kyoto Encyclopedia of Genes and Genome (KEGG), and Reactome pathways using g: Profiler, ShinyGO v0.76, and iDEP.951 web tools. On finding network visualization, the most over-represented and correlated pathways were neuronal and sensory organ development, calcium signalling pathway, Mitogen-activated protein kinase (MAPK) and Smad signalling pathway, Ras-proximate-1, or Ras-related protein 1 (Rap 1) signalling pathway, apoptosis, and oxidative stress. Similarly, down-regulated genes were most expressed in mRNA processing, immune system, B-cell receptor signalling pathway, Nucleotide oligomerization domain (NOD)-like receptors (NLRs) signalling pathway and nonsense-mediated decay (NMD) pathway. The heat stress-responsive genes identified in this study will facilitate our understanding of the molecular basis for climate resilience and heat tolerance in Indian dairy crossbreeds.
Assuntos
Perfilação da Expressão Gênica , Resposta ao Choque Térmico , Transdução de Sinais , Regulação para Cima , Animais , Bovinos/genética , Resposta ao Choque Térmico/genética , Transdução de Sinais/genética , Proteínas Smad/genética , Proteínas Smad/metabolismo , Transcriptoma , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismoRESUMO
BACKGROUND: Pulmonary fibrosis is a major category of end-stage changes in lung diseases, characterized by lung epithelial cell damage, proliferation of fibroblasts, and accumulation of extracellular matrix. Peroxiredoxin 1 (PRDX1), a member of the peroxiredoxin protein family, participates in the regulation of the levels of reactive oxygen species in cells and various other physiological activities, as well as the occurrence and development of diseases by functioning as a chaperonin. METHODS: Experimental methods including MTT assay, morphological observation of fibrosis, wound healing assay, fluorescence microscopy, flow cytometry, ELISA, western blot, transcriptome sequencing, and histopathological analysis were used in this study. RESULTS: PRDX1 knockdown increased ROS levels in lung epithelial cells and promoted epithelial-mesenchymal transition (EMT) through the PI3K/Akt and JNK/Smad signalling pathways. PRDX1 knockout significantly increased TGF-ß secretion, ROS production, and cell migration in primary lung fibroblasts. PRDX1 deficiency also increased cell proliferation, cell cycle circulation, and fibrosis progression through the PI3K/Akt and JNK/Smad signalling pathways. BLM treatment induced more severe pulmonary fibrosis in PRDX1-knockout mice, mainly through the PI3K/Akt and JNK/Smad signalling pathways. CONCLUSIONS: Our findings strongly suggest that PRDX1 is a key molecule in BLM-induced lung fibrosis progression and acts through modulating EMT and lung fibroblast proliferation; therefore, it may be a therapeutic target for the treatment of BLM-induced lung fibrosis.
Assuntos
Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Transição Epitelial-Mesenquimal , Proteínas Proto-Oncogênicas c-akt/metabolismo , Bleomicina/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Pulmão/metabolismo , Proliferação de Células , Fibroblastos/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/efeitos adversos , Peroxirredoxinas/metabolismoRESUMO
Cancer cells are high in heterogeneity and versatility, which can easily adapt to the external stresses via both primary and secondary resistance. Targeting of tumour microenvironment (TME) is a new approach and an ideal therapeutic strategy especially for the multidrug resistant cancer. Recently, we invented AANG, a natural compound formula containing traditional Chinese medicine (TCM) derived Smad3 inhibitor Naringenin (NG) and Smad7 activator Asiatic Acid (AA), for rebalancing TGF-ß/Smad signalling in the TME, and its implication on the multidrug resistance is still unexplored. Here, we observed that an equilibrium shift of the Smad signalling in patients with hepatocellular carcinoma (HCC), which was dramatically enhanced in the recurrent cases showing p-glycoprotein overexpression. We optimized the formula ratio and dosage of AANG that effectively inhibit the proliferation of our unique human multidrug resistant subclone R-HepG2. Mechanistically, we found that AANG not only inhibits Smad3 at post-transcriptional level, but also upregulates Smad7 at transcriptional level in a synergistic manner in vitro. More importantly, AANG markedly suppressed the growth and p-glycoprotein expression of R-HepG2 xenografts in vivo. Thus, AANG may represent a novel and safe TCM-derived natural compound formula for overcoming HCC with p-glycoprotein-mediated multidrug resistance.
Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Idoso , Animais , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sinergismo Farmacológico , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Pessoa de Meia-Idade , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
INTRODUCTION: The homeodomain transcription factor sine oculis homeobox homolog 1 (Six1) plays a crucial role in embryogenesis and is not expressed in normal adult tissue but is expressed in many pathological processes, including airway remodelling in asthma. The current study aimed to reveal the effects of Six1 in regulating the airway remodelling and its possible mechanism. METHODS: A mouse model of ovalbumin-induced asthma-associated airway wall remodelling and a bronchial epithelial cell (16HBE) model of transforming growth factor ß1 (TGFß1)-induced epithelial-mesenchymal transition (EMT) were used to investigate the role of Six1. Then, 16HBE cells were transformed with Six1 expression vectors and treated with a TGFß1 pathway inhibitor to determine the role of Six1 in EMT. The effect of Six1 and its possible mechanism were assessed by immunohistochemistry, RT-PCR, and Western blot. RESULTS: Six1 expression was elevated in the lungs in an OVA mouse model of allergic asthma and in 16HBE cells treated with TGFß1. Six1 overexpression promoted an EMT-like phenotype with a decreased protein expression of E-cadherin and increased protein expression of α-smooth muscle actin (α-SMA) as well as fibronectin in 16HBE cells; these effects appeared to promote TGFß1 and phospho-Smad2 (pSmad2) production, which are the main products of the TGFß1/Smad signalling pathway, which could be reduced by a TGFß1 inhibitor. CONCLUSION: These data reveal that Six1 and TGFß1 are potentially a part of an autocrine feedback loop that induces EMT, and these factors can be reduced by blocking the TGFß1/Smad signalling pathway. As such, these factors may represent a promising novel therapeutic target for airway remodelling in asthma.
Assuntos
Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Proteínas de Homeodomínio/genética , Mucosa Respiratória/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Remodelação das Vias Aéreas , Animais , Asma/etiologia , Asma/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Fibrose , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologiaRESUMO
Idiopathic pulmonary fibrosis (IPF) induces significant morbidity and mortality, for which there are limited therapeutic options available. Here, we found that tetraethylthiuram disulphide (disulfiram, DSF), a derivative of thiuram, used in the treatment of alcohol abuse, has an inhibitory effect on bleomycin (BLM)-induced pulmonary fibrosis via the attenuation of the fibroblast-to-myofibroblast transition, migration, and proliferation of fibroblasts. Furthermore, DSF inhibited the activation of primary pulmonary fibroblasts and fibroblast cell line under transforming growth factor-ß 1 (TGF-ß1) challenge. Mechanistically, the anti-fibrotic effect of DSF on fibroblasts depends on the inhibition of TGF-ß signalling. We further determined that DSF interrupts the interaction between SMAD3 and TGF-ß receptor Ι (TBR Ι), and identified that DSF directly binds with SMAD3, in which Trp326, Thr330, and Cys332 of SMAD3 are critical binding sites for DSF. Collectively, our results reveal a powerful anti-fibrotic function of DSF in pulmonary fibrosis through the inhibition of TGF-ß/SMAD signalling in pulmonary fibroblasts, indicating that DSF is a promising therapeutic candidate for IPF.
Assuntos
Dissuasores de Álcool/uso terapêutico , Dissulfiram/uso terapêutico , Fibrose Pulmonar/tratamento farmacológico , Actinas/metabolismo , Dissuasores de Álcool/farmacologia , Animais , Bleomicina , Cadeia alfa 1 do Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I/metabolismo , Dissulfiram/farmacologia , Fibronectinas/genética , Fibronectinas/metabolismo , Células HEK293 , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismoRESUMO
Atrial fibrosis is an important factor in the initiation and maintenance of atrial fibrillation (AF); therefore, understanding the pathogenesis of atrial fibrosis may reveal promising therapeutic targets for AF. In this study, we successfully established a rapid atrial pacing canine model and found that the inducibility and duration of AF were significantly reduced by the overexpression of c-Ski, suggesting that this approach may have therapeutic effects. c-Ski was found to be down-regulated in the atrial tissues of the rapid atrial pacing canine model. We artificially up-regulated c-Ski expression with a c-Ski-overexpressing adenovirus. Haematoxylin and eosin, Masson's trichrome and picrosirius red staining showed that c-Ski overexpression alleviated atrial fibrosis. Furthermore, we found that the expression levels of collagen III and α-SMA were higher in the groups of dogs subjected to right-atrial pacing, and this increase was attenuated by c-Ski overexpression. In addition, c-Ski overexpression decreased the phosphorylation of smad2, smad3 and p38 MAPK (p38α and p38ß) as well as the expression of TGF-ß1 in atrial tissues, as shown by a comparison of the right-atrial pacing + c-Ski-overexpression group to the control group with right-atrial pacing only. These results suggest that c-Ski overexpression improves atrial remodelling in a rapid atrial pacing canine model by suppressing TGF-ß1-Smad signalling and p38 MAPK activation.
Assuntos
Remodelamento Atrial , Estimulação Cardíaca Artificial , Átrios do Coração/fisiopatologia , Proteínas Proto-Oncogênicas/metabolismo , Animais , Modelos Animais de Doenças , Cães , Fenômenos Eletrofisiológicos , Matriz Extracelular/metabolismo , Fibrose , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
Renal fibrosis compromises kidney function, and it is a risk factor for chronic kidney disease (CKD). CKD ultimately progresses to end-stage kidney disease that can be cured only by kidney transplantation. Owing to the increasing number of CKD patients, effective treatment strategies are urgently required for renal fibrosis. TGF-ß is a well-established fibrogenic factor that signals through SMAD2/3 signaling pathway. It was shown that there is a cross-talk between TGF-ß/SMAD and WNT/ß-catenin signaling pathways in renal tubular epithelial cells, and that a WNT/ß-catenin inhibitor, ICG-001, ameliorates TGF-ß1induced renal fibrosis. IC-2, a derivative of ICG-001, has been shown to potently induce hepatocyte differentiation of human mesenchymal stem cells by inhibiting WNT/ß-catenin signaling. In the present study, we examined the effect of ICG-001, IC-2, and IC-2 derivatives (IC-2-506-1, IC-2-506-2, IC-2-506-3, IC-2-Ar-Cl, IC-2-OH, IC-2-OTBS, and IC-2-F) on TGF-ß1-induced SMAD activation and fibrogenic response in immortalized human renal tubular epithelial HK-2 cells. All these compounds inhibited LiCl-induced WNT/ß-catenin reporter activation to a similar extent, whereas ICG-001, IC-2-OTBS, and IC-2-F almost completely suppressed TGF-ß1-induced SMAD reporter activation without apparent cytotoxicity. Phosphorylation of SMAD2/3 by TGF-ß1 was more potently inhibited by IC-2-OTBS and IC-2-F than by ICG-001 and IC-2. IC-2-F suppressed TGF-ß1-induced COL1A1 protein expression, whereas IC-2-506-1 and IC-2-OTBS suppressed TGF-ß1-induced epithelial-mesenchymal transition. These results demonstrated that IC-2 derivatives suppress the TGF-ß1-induced fibrogenic response of tubular epithelial cells and thus could be promising therapeutic agents for the treatment of renal fibrosis.
Assuntos
Células Epiteliais/efeitos dos fármacos , Nefropatias/prevenção & controle , Túbulos Renais/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/toxicidade , Via de Sinalização Wnt/efeitos dos fármacos , Linhagem Celular , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibrose , Humanos , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Nefropatias/patologia , Túbulos Renais/metabolismo , Túbulos Renais/patologia , FosforilaçãoRESUMO
BACKGROUND: Chronic obstructive pulmonary disease (COPD) is characterized by continuous flow limitation and the immune system including macrophages and regulatory T lymphocytes (Tregs) is involved in COPD pathogenesis. In our previous study, we investigated that TGF-ß/BAMBI pathway was associated with COPD by regulating the balance of Th17/Treg. However, the role of bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI), a pseudoreceptor of TGF-ß signalling pathway, in regulating the immune system of COPD patients has not been fully studied. Hence, we speculate that the pseudoreceptor BAMBI may play roles in the regulation of M2 macrophages to induce the differentiation of CD4+ naïve T cells into Tregs and influence the immune response in COPD. METHODS: Peripheral blood mononuclear cells (PBMCs) were isolated from healthy nonsmokers (n = 12), healthy smokers (n = 10) and COPD patients (n = 20). Naïve CD4+ T cells and monocytes-induced macrophages were used for coculture assays. The phenotypic characteristics of macrophages and Tregs were determined by flow cytometry. The expression levels of BAMBI and the TGF-ß/Smad pathway members in M2 macrophages were measured by a Western blot analysis. The monocyte-derived macrophages were stimulated with cigarette smoke extract (CSE, concentration of 0.02%) to simulate the smoking process in humans. pCMV-BAMBI was transfected into monocyte-derived M2 macrophages for subsequent co-culture assays and signalling pathway analysis. RESULTS: Our results showed that M2 macrophages could induce the differentiation of Tregs through the TGF-ß/Smad signalling pathway. In addition, monocyte-derived macrophages from COPD patients highly expressed BAMBI, and had a low capacity to induce Tregs differentiation. The expression of BAMBI and the forced expiratory volume in 1 second (FEV1%) were negatively correlated in COPD. Furthermore, overexpression of BAMBI promoted the conversion of M2 macrophages to M1 macrophages via the TGF-ß/Smad pathway. CONCLUSIONS: We demonstrated that BAMBI could promote the polarization process of M2 macrophages to M1 macrophages via the TGF-ß/Smad signalling pathway and that overexpression of BAMBI could decrease the ability of M2 macrophages to induce Treg differentiation. These findings may provide a potential mechanism by which blocking BAMBI could improve immune function to regulate COPD inflammatory conditions.
Assuntos
Macrófagos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Transdução de Sinais/genética , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/genética , Técnicas de Cocultura , Feminino , Volume Expiratório Forçado , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Fumaça/efeitos adversos , Fumar/metabolismo , NicotianaRESUMO
BACKGROUND: Approximately 30% of patients with epidermal growth factor receptor (EGFR)-activating mutations have no response to EGFR-tyrosine kinase inhibitors (TKIs) (primary resistance). However, little is known about the molecular mechanism involved in primary resistance to EGFR-TKIs in EGFR-mutant non-small cell lung cancer (NSCLC). Programmed death ligand-1 (PD-L1) plays important regulatory roles in intracellular functions and leads to acquired resistance to EGFR-TKIs in NSCLC. Here, we investigated the mechanistic role of PD-L1 in primary resistance to EGFR-TKIs in EGFR-mutant NSCLC cells. METHODS: The expression levels of PD-L1 and the sensitivity to gefitinib in H1975, HCC827 and PC-9 cells were determined by quantitative real-time PCR analysis (qRT-PCR) and Cell Counting Kit-8 (CCK-8) assays, respectively. Molecular manipulations (silencing or overexpression) were performed to assess the effect of PD-L1 on sensitivity to gefitinib, and a mouse xenograft model was used for in vivo confirmation. Western blotting and qRT-PCR were used to analyse the expression of epithelial-mesenchymal transition (EMT) markers. The effect of PD-L1 on migratory and invasive abilities was evaluated using the Transwell assay and mice tail intravenous injection. RESULTS: Higher expression of PD-L1 was related to less sensitivity to gefitinib in EGFR-mutant NSCLC cell lines. The overexpression or knockdown of PD-L1 presented diametrical sensitivity to gefitinib in vitro and in vivo. Furthermore, the overexpression of PD-L1 led to primary resistance to gefitinib through the induction of EMT, which was dependent on the upregulation of Smad3 phosphorylation. Moreover, in the mouse model, the knockdown of PD-L1 inhibited transforming growth factor (TGF)-ß1-induced cell metastasis in vivo. CONCLUSION: PD-L1 contributes to primary resistance to EGFR-TKI in EGFR-mutant NSCLC cells, which may be mediated through the induction of EMT via the activation of the TGF-ß/Smad canonical signalling pathway.
Assuntos
Antígeno B7-H1/biossíntese , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Receptores ErbB/biossíntese , Neoplasias Pulmonares/metabolismo , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antígeno B7-H1/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Feminino , Células HEK293 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação/efeitos dos fármacos , Mutação/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteínas Smad/genética , Fator de Crescimento Transformador beta/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodosRESUMO
Metastasis is the primary cause of death in prostate cancer (PCa) patients. Effective therapeutic intervention in metastatic PCa is undermined by our poor understanding of its molecular aetiology. Defining the mechanisms underlying PCa metastasis may lead to insights into how to decrease morbidity and mortality in this disease. Glyoxalase 1 (Glo1) is the detoxification enzyme of methylglyoxal (MG), a potent precursor of advanced glycation end products (AGEs). Hydroimidazolone (MG-H1) and argpyrimidine (AP) are AGEs originating from MG-mediated post-translational modification of proteins at arginine residues. AP is involved in the control of epithelial to mesenchymal transition (EMT), a crucial determinant of cancer metastasis and invasion, whose regulation mechanisms in malignant cells are still emerging. Here, we uncover a novel mechanism linking Glo1 to the maintenance of the metastatic phenotype of PCa cells by controlling EMT by engaging the tumour suppressor miR-101, MG-H1-AP and TGF-ß1/Smad signalling. Moreover, circulating levels of Glo1, miR-101, MG-H1-AP and TGF-ß1 in patients with metastatic compared with non-metastatic PCa support our in vitro results, demonstrating their clinical relevance. We suggest that Glo1, together with miR-101, might be potential therapeutic targets for metastatic PCa, possibly by metformin administration.
Assuntos
Transição Epitelial-Mesenquimal , Lactoilglutationa Liase/metabolismo , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Regiões 3' não Traduzidas/genética , Idoso , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Homoarginina/análogos & derivados , Homoarginina/sangue , Homoarginina/metabolismo , Humanos , Imidazóis/sangue , Imidazóis/metabolismo , Lactoilglutationa Liase/sangue , Masculino , Metformina/farmacologia , MicroRNAs/sangue , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Modelos Biológicos , Invasividade Neoplásica , Metástase Neoplásica , Ornitina/análogos & derivados , Ornitina/sangue , Ornitina/metabolismo , Fenótipo , Neoplasias da Próstata/sangue , Neoplasias da Próstata/genética , Pirimidinas/sangue , Pirimidinas/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Tioléster Hidrolases/metabolismo , Fator de Crescimento Transformador beta1/sangue , Fator de Crescimento Transformador beta1/metabolismoRESUMO
Acetyl-11-keto-ß-boswellic acid (AKBA), an active triterpenoid compound from the extract of Boswellia serrate, has been reported previously in our group to alleviate fibrosis in vascular remodelling. This study aimed to elucidate the in vivo and in vitro efficacy and mechanism of AKBA in renal interstitial fibrosis. The experimental renal fibrosis was produced in C57BL/6 mice via unilateral ureteral obstruction (UUO). Hypoxia-induced HK-2 cells were used to imitate the pathological process of renal fibrosis in vitro. Results showed that the treatment of AKBA significantly alleviated UUO-induced impairment of renal function and improved the renal fibrosis by decreasing the expression of TGF-ß1, α-SMA, collagen I and collagen IV in UUO kidneys. In hypoxia-induced HK-2 cells, AKBA displayed remarkable cell protective effects and anti-fibrotic properties by increasing the cell viability, decreasing the lactate dehydrogenase (LDH) release and inhibiting fibrotic factor expression. Moreover, in obstructed kidneys and HK-2 cells, AKBA markedly down-regulated the expression of TGFß-RI, TGFß-RII, phosphorylated-Smad2/3 (p-Smad2/3) and Smad4 in a dose-dependent fashion while up-regulated the expression of Klotho and Smad7 in the same manner. In addition, the effects of AKBA on the Klotho/TGF-ß/Smad signalling were reversed by transfecting with siRNA-Klotho in HK-2 cells. In conclusion, our findings provide evidence that AKBA can effectively protect kidney against interstitial fibrosis, and this renoprotective effect involves the Klotho/TGF-ß/Smad signalling pathway. Therefore, AKBA could be considered as a promising candidate drug for renal interstitial fibrosis.
Assuntos
Fibrose/tratamento farmacológico , Glucuronidase/genética , Nefropatias/tratamento farmacológico , Triterpenos/administração & dosagem , Animais , Boswellia/química , Fibrose/genética , Fibrose/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Nefropatias/genética , Nefropatias/patologia , Proteínas Klotho , Camundongos , RNA Interferente Pequeno/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Transdução de Sinais/efeitos dos fármacos , Proteína Smad4/genética , Fator de Crescimento Transformador beta1/genética , Triterpenos/química , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/genética , Obstrução Ureteral/patologiaRESUMO
Scoparone is a biologically active constituent isolated from Artemisia capillaris and possesses a variety of pharmacological activities, such as anti-inflammatory, anti-tumor, anti-allergic and anti-cardiovascular activities. However, there are no studies focusing on the effects of scoparone against cardiac fibrosis. Therefore, the aim of this study was to investigate the effects of scoparone on Angiotensin II (Ang II)-induced extracellular matrix (ECM) remodeling and its possible mechanism in cardiac fibroblasts (CFs). Our results demonstrated that scoparone effectively attenuated CFs proliferation in Ang II-stimulated CFs. Scoparone also prevented the differentiation of CFs to myofibroblasts and ECM proteins (type I collagen and fibronectin) expression in Ang II-stimulated CFs. Furthermore, scoparone prevented Ang II-induced the activation of TGF-ß1/Smad signalling in CFs. Taken together, these studies indicated that scoparone attenuated Ang II-induced ECM remodeling in CFs, at least in part, by inhibiting TGF-ß1/Smad signalling. These findings suggest that scoparone may be used a novel therapeutic agent against cardiac fibrosis.
Assuntos
Angiotensina II/efeitos adversos , Colágeno Tipo I/metabolismo , Cumarínicos/farmacologia , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Animais , Artemisia/química , Cardiomiopatias/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cumarínicos/isolamento & purificação , Cumarínicos/uso terapêutico , Fibroblastos/citologia , Fibrose , Miocárdio/citologia , Miocárdio/patologia , Miofibroblastos , Fitoterapia , Ratos , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismoRESUMO
BACKGROUND: Bone morphogenetic protein (BMP) signalling has emerged as a fundamental pathway in endothelial cell biology and deregulation of this pathway is implicated in several vascular disorders. BMP signalling output in endothelial cells is highly context- and dose-dependent. Phosphorylation of the BMP intracellular effectors, SMAD1/5/9, is routinely used to monitor BMP signalling activity. To better understand the in vivo context-dependency of BMP-SMAD signalling, we investigated differences in BMP-SMAD transcriptional activity in different vascular beds during mouse embryonic and postnatal stages. For this, we used the BRE::gfp BMP signalling reporter mouse in which the BMP response element (BRE) from the ID1-promotor, a SMAD1/5/9 target gene, drives the expression of GFP. RESULTS: A mosaic pattern of GFP was present in various angiogenic sprouting plexuses and in endocardium of cardiac cushions and trabeculae in the heart. High calibre veins seemed to be more BRE::gfp transcriptionally active than arteries, and ubiquitous activity was present in embryonic lymphatic vasculature. Postnatal lymphatic vessels showed however only discrete micro-domains of transcriptional activity. Dynamic shifts in transcriptional activity were also observed in the endocardium of the developing heart, with a general decrease in activity over time. Surprisingly, proliferative endothelial cells were almost never GFP-positive. Patches of transcriptional activity seemed to correlate with vasculature undergoing hemodynamic alterations. CONCLUSION: The BRE::gfp mouse allows to investigate selective context-dependent aspects of BMP-SMAD signalling. Our data reveals the highly dynamic nature of BMP-SMAD mediated transcriptional regulation in time and space throughout the vascular tree, supporting that BMP-SMAD signalling can be a source of phenotypic diversity in some, but not all, healthy endothelium. This knowledge can provide insight in vascular bed or organ-specific diseases and phenotypic heterogeneity within an endothelial cell population.
Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Sistema Cardiovascular/metabolismo , Embrião de Mamíferos/metabolismo , Células Endoteliais/metabolismo , Redes Reguladoras de Genes , Proteínas Smad/metabolismo , Animais , Animais Recém-Nascidos , Proteínas Morfogenéticas Ósseas/genética , Sistema Cardiovascular/embriologia , Endocárdio/crescimento & desenvolvimento , Endocárdio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Transgênicos , Fosforilação , Transdução de Sinais , Proteínas Smad/genética , Ativação TranscricionalRESUMO
Inflammation, fibrosis, and lipid disorder are essential promoters in the pathogenesis of diabetic kidney injury in diabetes mellitus type 2. Berberine (BBR) has been reported to have beneficial effects on diabetic nephropathy, but its action mechanism is still unclear. The present study was designed to elucidate the therapeutic mechanism of BBR in a type 2 diabetic nephropathy rat model induced by a high-fat diet and low-dose streptozotocin injection. The diabetic rats were treated with or without BBR by gavage for 20 weeks and examined by serology, 24-h albuminuria, histology, immunohistochemistry, and molecular analyses. Results showed that treatment with BBR significantly reduced serum levels of blood glucose and lipids, inhibited urinary excretion of albumin, and attenuated renal histological injuries in diabetic rats. Berberine treatment also inhibited renal inflammation, which was associated with inactivation of nuclear factor kappa-light-chain-enhancer of activated B-cell signalling. As a result, the upregulation of pro-inflammatory cytokines (interleukin-1ß, tumour necrosis factor-α) and chemokine (monocyte chemotactic protein-1) was blocked. In addition, BBR treatment also inactivated transforming growth factor-ß/Smad3 signalling and suppressed renal fibrosis, including expression of fibronectin, collagen I, and collagen IV. The present study reveals that BBR is a therapeutic agent for attenuating type 2 diabetic nephropathy by inhibiting nuclear factor kappa-light-chain-enhancer of activated B cell-driven renal inflammation and transforming growth factor-ß/Smad3 signalling pathway.
Assuntos
Berberina/uso terapêutico , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/prevenção & controle , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/prevenção & controle , Animais , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Ratos , Ratos WistarRESUMO
Parkinson's disease is the second most common neurodegenerative disease, and is characterised by the progressive degeneration of the nigrostriatal dopaminergic (DA) system. Current treatments are symptomatic, and do not protect against the DA neuronal loss. One of the most promising treatment approaches is the application of neurotrophic factors to rescue the remaining population of nigrostriatal DA neurons. Therefore, the identification of new neurotrophic factors for midbrain DA neurons, and the subsequent elucidation of the molecular bases of their effects, are important. Two related members of the bone morphogenetic protein (BMP) family, BMP2 and growth differentiation factor 5 (GDF5), have been shown to have neurotrophic effects on midbrain DA neurons both in vitro and in vivo. However, the molecular (signalling pathway(s)) and cellular (direct neuronal or indirect via glial cells) mechanisms of their effects remain to be elucidated. Using the SH-SH5Y human neuronal cell line, as a model of human midbrain DA neurons, we have shown that GDF5 and BMP2 induce neurite outgrowth via a direct mechanism. Furthermore, we demonstrate that these effects are dependent on BMP type I receptor activation of canonical Smad 1/5/8 signalling.
Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Fator 5 de Diferenciação de Crescimento/farmacologia , Neurogênese , Proteínas Smad/metabolismo , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Humanos , Mesencéfalo/citologia , Proteínas Recombinantes/farmacologia , Proteínas Smad/genéticaRESUMO
AIMS: Transforming growth factor ß (TGF-ß) signalling is one of the critical pathways in fibroblast activation, and several drugs targeting the TGF-ß/Smad signalling pathway in heart failure with cardiac fibrosis are being tested in clinical trials. Some caveolins and cavins, which are components of caveolae on the plasma membrane, are known for their association with the regulation of TGF-ß signalling. Cavin-2 is particularly abundant in fibroblasts; however, the detailed association between Cavin-2 and cardiac fibrosis is still unclear. We tried to clarify the involvement and role of Cavin-2 in fibroblasts and cardiac fibrosis. METHODS AND RESULTS: To clarify the role of Cavin-2 in cardiac fibrosis, we performed transverse aortic constriction (TAC) operations on four types of mice: wild-type (WT), Cavin-2 null (Cavin-2 KO), Cavin-2flox/flox , and activated fibroblast-specific Cavin-2 conditional knockout (Postn-Cre/Cavin-2flox/flox , Cavin-2 cKO) mice. We collected mouse embryonic fibroblasts (MEFs) from WT and Cavin-2 KO mice and investigated the effect of Cavin-2 in fibroblast trans-differentiation into myofibroblasts and associated TGF-ß signalling. Four weeks after TAC, cardiac fibrotic areas in both the Cavin-2 KO and the Cavin-2 cKO mice were significantly decreased compared with each control group (WT 8.04 ± 1.58% vs. Cavin-2 KO 0.40 ± 0.03%, P < 0.01; Cavin-2flox/flox , 7.19 ± 0.50% vs. Cavin-2 cKO 0.88 ± 0.44%, P < 0.01). Fibrosis-associated mRNA expression (Col1a1, Ctgf, and Col3) was significantly attenuated in the Cavin-2 KO mice after TAC. α1 type I collagen deposition and non-vascular αSMA-positive cells (WT 43.5 ± 2.4% vs. Cavin-2 KO 25.4 ± 3.2%, P < 0.01) were reduced in the heart of the Cavin-2 cKO mice after TAC operation. The levels of αSMA protein (0.36-fold, P < 0.05) and fibrosis-associated mRNA expression (Col1a1, 0.69-fold, P < 0.01; Ctgf, 0.27-fold, P < 0.01; Col3, 0.60-fold, P < 0.01) were decreased in the Cavin-2 KO MEFs compared with the WT MEFs. On the other hand, αSMA protein levels were higher in the Cavin-2 overexpressed MEFs compared with the control MEFs (2.40-fold, P < 0.01). TGF-ß1-induced Smad2 phosphorylation was attenuated in the Cavin-2 KO MEFs compared with WT MEFs (0.60-fold, P < 0.01). Heat shock protein 90 protein levels were significantly reduced in the Cavin-2 KO MEFs compared with the WT MEFs (0.69-fold, P < 0.01). CONCLUSIONS: Cavin-2 loss suppressed fibroblast trans-differentiation into myofibroblasts through the TGF-ß/Smad signalling. The loss of Cavin-2 in cardiac fibroblasts suppresses cardiac fibrosis and may maintain cardiac function.
Assuntos
Cardiomiopatias , Fibroblastos , Animais , Camundongos , Miofibroblastos/metabolismo , Fibrose , Cardiomiopatias/patologia , Fator de Crescimento Transformador beta/metabolismo , Transdiferenciação Celular , RNA Mensageiro/metabolismoRESUMO
Metastatic colorectal cancer continues to have a high fatality rate, with approximately only 14% of patients surviving more than 5 years. To improve the survival rate of these patients, the development of new therapeutic drugs is a priority. In this study, we investigated the effects of Oroxylin A on the metastasis of human colorectal cancer cells and its potential molecular mechanism. This study utilised CCK8 assay, transwell assay, flow cytometry, western blot analysis, molecular docking, HE staining, immunofluorescence staining, and xenograft models. The proliferation, migration, and invasion of colon cancer cells were effectively suppressed by Oroxylin A in a dose-dependent manner. Oroxylin A has the potential to inhibit the process of epithelialâmesenchymal transition (EMT) by upregulating the expression of E-cadherin, a marker associated with epithelial cells, while downregulating the levels of N-cadherin, Snail, vimentin, and slug, which are markers associated with mesenchymal cells. In addition, 200 mg/kg of Oroxylin A inhibited the growth of colorectal tumours. Molecular docking technology revealed that Oroxylin A can bind to TGFß and inhibit the activation of the TGFß-smad signalling pathway. The overexpression of TGFß weakened the inhibitory effect of Oroxylin A on the proliferation, migration, and invasion of human colorectal cancer cells, as well as the promoting effect on apoptosis. Oroxylin A inhibited the activation of the TGF-smad signalling pathway and the EMT process, thereby suppressing the migration and invasion of human colorectal cancer cells.
Assuntos
Movimento Celular , Proliferação de Células , Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Flavonoides , Transdução de Sinais , Proteínas Smad , Fator de Crescimento Transformador beta , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Flavonoides/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Proliferação de Células/efeitos dos fármacos , Camundongos , Movimento Celular/efeitos dos fármacos , Proteínas Smad/metabolismo , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Metástase Neoplásica , Simulação de Acoplamento Molecular , Camundongos NusRESUMO
Activin A (Act A) is a member of the TGFß (transforming growth factor ß) superfamily. It communicates via the Suppressor of Mothers against Decapentaplegic Homolog (SMAD2/3) proteins which govern processes such as cell proliferation, wound healing, apoptosis, and metabolism. Act A produces its action by attaching to activin receptor type IIA (ActRIIA) or activin receptor type IIB (ActRIIB). Increasing circulating Act A increases ActRII signalling, which on phosphorylation initiates the ALK4 (activin receptor-like kinase 4) type 1 receptor which further turns on the SMAD pathway and hinders cell functioning. Once triggered, this route leads to gene transcription, differentiation, apoptosis, and extracellular matrix (ECM) formation. Act A also governs the immunological and inflammatory responses of the body, as well as cell death. Moreover, Act A levels have been observed to elevate in several disorders like renal fibrosis, CKD, asthma, NAFLD, cardiovascular diseases, cancer, inflammatory conditions etc. Here, we provide an update on the recent studies relevant to the role of Act A in the modulation of various pathological disorders, giving an overview of the biology of Act A and its signalling pathways, and discuss the possibility of incorporating activin-A targeting as a novel therapeutic approach for the control of various disorders. Pathways such as SMAD signaling, in which SMAD moves to the nucleus by making a complex and leads to tissue fibrosis in CKD, STAT3, which drives renal fibroblast activity and the production of ECM, Kidney injury molecule (KIM-1) in the synthesis, deposition of ECM proteins, SERCA2a (sarcoplasmic reticulum Ca2+ ATPase) in cardiac dysfunction, and NF-κB (Nuclear factor kappa-light-chain-enhancer of activated B cells) in inflammation are involved in Act A signaling, have also been discussed.