Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 826
Filtrar
1.
Genes Dev ; 33(21-22): 1506-1524, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31582430

RESUMO

TGF-ß receptors phosphorylate SMAD2 and SMAD3 transcription factors, which then form heterotrimeric complexes with SMAD4 and cooperate with context-specific transcription factors to activate target genes. Here we provide biochemical and structural evidence showing that binding of SMAD2 to DNA depends on the conformation of the E3 insert, a structural element unique to SMAD2 and previously thought to render SMAD2 unable to bind DNA. Based on this finding, we further delineate TGF-ß signal transduction by defining distinct roles for SMAD2 and SMAD3 with the forkhead pioneer factor FOXH1 as a partner in the regulation of differentiation genes in mouse mesendoderm precursors. FOXH1 is prebound to target sites in these loci and recruits SMAD3 independently of TGF-ß signals, whereas SMAD2 remains predominantly cytoplasmic in the basal state and set to bind SMAD4 and join SMAD3:FOXH1 at target promoters in response to Nodal TGF-ß signals. The results support a model in which signal-independent binding of SMAD3 and FOXH1 prime mesendoderm differentiation gene promoters for activation, and signal-driven SMAD2:SMAD4 binds to promoters that are preloaded with SMAD3:FOXH1 to activate transcription.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Modelos Moleculares , Transdução de Sinais , Proteína Smad2 , Proteína Smad3 , Fator de Crescimento Transformador beta/metabolismo , Animais , Embrião de Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Estrutura Terciária de Proteína , Proteína Smad2/química , Proteína Smad2/metabolismo , Proteína Smad3/química , Proteína Smad3/metabolismo
2.
Gastroenterology ; 166(1): 139-154, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37739089

RESUMO

BACKGROUND & AIMS: The dismal prognosis of pancreatic ductal adenocarcinoma (PDAC) is linked to the presence of pancreatic cancer stem-like cells (CSCs) that respond poorly to current chemotherapy regimens. The epigenetic mechanisms regulating CSCs are currently insufficiently understood, which hampers the development of novel strategies for eliminating CSCs. METHODS: By small molecule compound screening targeting 142 epigenetic enzymes, we identified that bromodomain-containing protein BRD9, a component of the BAF histone remodeling complex, is a key chromatin regulator to orchestrate the stemness of pancreatic CSCs via cooperating with the TGFß/Activin-SMAD2/3 signaling pathway. RESULTS: Inhibition and genetic ablation of BRD9 block the self-renewal, cell cycle entry into G0 phase and invasiveness of CSCs, and improve the sensitivity of CSCs to gemcitabine treatment. In addition, pharmacological inhibition of BRD9 significantly reduced the tumorigenesis in patient-derived xenografts mouse models and eliminated CSCs in tumors from pancreatic cancer patients. Mechanistically, inhibition of BRD9 disrupts enhancer-promoter looping and transcription of stemness genes in CSCs. CONCLUSIONS: Collectively, the data suggest BRD9 as a novel therapeutic target for PDAC treatment via modulation of CSC stemness.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Proteínas que Contêm Bromodomínio , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/patologia , Gencitabina , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteína Smad2/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
FASEB J ; 38(11): e23729, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38847786

RESUMO

Diabetic nephropathy (DN) is one of the common microvascular complications in diabetic patients. Marrow mesenchymal stem cells (MSCs) have attracted attention in DN therapy but the underlying mechanism remains unclear. Here, we show that MSC administration alleviates high glucose (HG)-induced human kidney tubular epithelial cell (HK-2 cell) injury and ameliorates renal injury in DN mice. We identify that Smad2/3 is responsible for MSCs-regulated DN progression. The activity of Smad2/3 was predominantly upregulated in HG-induced HK-2 cell and DN mice and suppressed with MSC administration. Activation of Smad2/3 via transforming growth factor-ß1 (TGF-ß1) administration abrogates the protective effect of MSCs on HG-induced HK-2 cell injury and renal injury of DN mice. Smad2/3 has been reported to interact with methyltransferase of N6-methyladenosine (m6A) complex and we found a methyltransferase, Wilms' tumor 1-associating protein (WTAP), is involved in MSCs-Smad2/3-regulated DN development. Moreover, WTAP overexpression abrogates the improvement of MSCs on HG-induced HK-2 cell injury and renal injury of DN mice. Subsequently, α-enolase (ENO1) is the downstream target of WTAP-mediated m6A modification and contributes to the MSCs-mediated regulation. Collectively, these findings reveal a molecular mechanism in DN progression and indicate that Smad2/3/WTAP/ENO1 may present a target for MSCs-mediated DN therapy.


Assuntos
Nefropatias Diabéticas , Células-Tronco Mesenquimais , Proteína Smad2 , Proteína Smad3 , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Animais , Células-Tronco Mesenquimais/metabolismo , Proteína Smad2/metabolismo , Camundongos , Humanos , Proteína Smad3/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Adenosina/metabolismo , Adenosina/análogos & derivados , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Transdução de Sinais , Metiltransferases/metabolismo , Metiltransferases/genética , Transplante de Células-Tronco Mesenquimais/métodos , Fator de Crescimento Transformador beta1/metabolismo , Linhagem Celular
4.
J Cell Mol Med ; 28(13): e18527, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38984969

RESUMO

Infected bone defects (IBDs) are the common condition in the clinical practice of orthopaedics. Although surgery and anti-infective medicine are the firstly chosen treatments, in many cases, patients experience a prolonged bone union process after anti-infective treatment. Epimedium-Curculigo herb pair (ECP) has been proved to be effective for bone repair. However, the mechanisms of ECP in IBDs are insufficiency. In this study, Effect of ECP in IBDs was verified by micro-CT and histological examination. Qualitative and quantitative analysis of the main components in ECP containing medicated serum (ECP-CS) were performed. The network pharmacological approaches were then applied to predict potential pathways for ECP associated with bone repair. In addition, the mechanism of ECP regulating LncRNA MALAT1/miRNA-34a-5p/SMAD2 signalling axis was evaluated by molecular biology experiments. In vivo experiments indicated that ECP could significantly promote bone repair. The results of the chemical components analysis and the pathway identification revealed that TGF-ß signalling pathway was related to ECP. The results of in vitro experiments indicated that ECP-CS could reverse the damage caused by LPS through inhibiting the expressions of LncRNA MALAT1 and SMAD2, and improving the expressions of miR-34a-5p, ALP, RUNX2 and Collagen type І in osteoblasts significantly. This research showed that ECP could regulate the TGF-ß/SMADs signalling pathway to promote bone repair. Meanwhile, ECP could alleviate LPS-induced bone loss by modulating the signalling axis of LncRNA MALAT1/miRNA-34a-5p/ SMAD2 in IBDs.


Assuntos
Epimedium , MicroRNAs , Osteoblastos , RNA Longo não Codificante , Transdução de Sinais , Proteína Smad2 , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Proteína Smad2/metabolismo , Proteína Smad2/genética , Camundongos , Epimedium/química , Transdução de Sinais/efeitos dos fármacos , Masculino , Regeneração Óssea/efeitos dos fármacos , Humanos , Regulação da Expressão Gênica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/genética
5.
J Biol Chem ; 299(10): 105244, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37690680

RESUMO

Endothelial-mesenchymal transition (EndoMT) is a complex biological process in which endothelial cells are transformed into mesenchymal cells, and dysregulated EndoMT causes a variety of pathological processes. Transforming growth factor beta (TGF-ß) signaling effectively induces the EndoMT process in endothelial cells, and Smad2 is the critical protein of the TGF-ß signaling pathway. However, whether small ubiquitin-like modifier modification (SUMOylation) is involved in EndoMT remains unclear. Here, we show that Smad2 is predominantly modified by SUMO1 at two major SUMOylation sites with PIAS2α as the primary E3 ligase, whereas SENP1 (sentrin/SUMO-specific protease 1) mediates the deSUMOylation of Smad2. In addition, we identified that SUMOylation significantly enhances the transcriptional activity and protein stability of Smad2, regulating the expression of downstream target genes. SUMOylation increases the phosphorylation of Smad2 and the formation of the Smad2-Smad4 complex, thus promoting the nuclear translocation of Smad2. Ultimately, the wildtype, but not SUMOylation site mutant Smad2 facilitated the EndoMT process. More importantly, TGF-ß enhances the nuclear translocation of Smad2 by enhancing its SUMOylation and promoting the EndoMT process. These results demonstrate that SUMOylation of Smad2 plays a critical role in the TGF-ß-mediated EndoMT process, providing a new theoretical basis for the treatment and potential drug targets of EndoMT-related clinical diseases.

6.
J Cell Physiol ; 239(1): 166-179, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37991438

RESUMO

Abnormal function and fibrosis of endometrium caused by cows' endometritis pose difficult implantation of embryos and uterine cavity adhesions. 17ß-Estradiol (E2) serves as the most effective aromatized estrogen, and its synthetase and receptors have been detected in the endometrium. Studies have demonstrated the positive role of estrogen in combating pathological fibrosis in diverse diseases. However, it is still unknown whether E2 regulates endometrium fibrosis in bovine endometritis. Herein, we evaluated the expression patterns of transforming growth factor-ß1 (TGF-ß1), epithelial-mesenchymal transformation (EMT)-related proteins (α-SMA, vimentin N-cadherin and E-cadherin), cytochrome P450 19A1 (CYP19A1), and G protein-coupled estrogen receptor (GPER) in bovine healthy endometrium and Inflammatory endometrium. Our data showed that the inflamed endometrium presented low CYP19A1 and GPER expression, and significantly higher EMT process versus the normal tissue. Moreover, we established a TGF-ß1-induced fibrosis model in BEND cells, and found that E2 inhibited the EMT process of BEND cells in a dose-dependent manner. The anti-fibrotic effect of E2 was blocked by the GPER inhibitor G15, but not the estrogen nuclear receptors (ERs) inhibitor ICI182780. Moreover, the GPER agonist G1 inhibited fibrosis and Smad2/3 phosphorylation but increased the expression of TGFBR3 in BEND cells. Transfection with TGFBR3 small interfering RNA blocked the effect of G1 on fibrosis of BEND cells and upregulated the expression of P-Smad2/3. Our in vivo data also showed that E2 and G1 affected uterus fibrosis in mice endometritis model caused by LPS, which was associated with the inhibition of TGFBR3/Smad2/3 signaling. In conclusion, our data implied that E2 alleviates the fibrosis of TGF-ß1-induced BEND cells, which is associated with the GPER mediation of TGFBR3/Smad2/3 signaling.


Assuntos
Endometrite , Estradiol , Proteoglicanas , Receptores de Fatores de Crescimento Transformadores beta , Fator de Crescimento Transformador beta1 , Animais , Bovinos , Feminino , Camundongos , Endometrite/metabolismo , Endométrio/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Estradiol/farmacologia , Estrogênios/metabolismo , Fibrose , Receptores Acoplados a Proteínas G/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Smad/metabolismo
7.
J Cell Physiol ; 239(1): 112-123, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38149778

RESUMO

Lipid biosynthesis is recently studied its functions in a range of cellular physiology including differentiation and regeneration. However, it still remains to be elucidated in its precise function. To reveal this, we evaluated the roles of lysophosphatidic acid (LPA) signaling in alveolar bone formation using the LPA type 2 receptor (LPAR2) antagonist AMG-35 (Amgen Compound 35) using tooth loss without periodontal disease model which would be caused by trauma and usually requires a dental implant to restore masticatory function. In this study, in vitro cell culture experiments in osteoblasts and periodontal ligament fibroblasts revealed cell type-specific responses, with AMG-35 modulating osteogenic differentiation in osteoblasts in vitro. To confirm the in vivo results, we employed a mouse model of tooth loss without periodontal disease. Five to 10 days after tooth extraction, AMG-35 facilitated bone formation in the tooth root socket as measured by immunohistochemistry for differentiation markers KI67, Osteocalcin, Periostin, RUNX2, transforming growth factor beta 1 (TGF-ß1) and SMAD2/3. The increased expression and the localization of these proteins suggest that AMG-35 elicits osteoblast differentiation through TGF-ß1 and SMAD2/3 signaling. These results indicate that LPAR2/TGF-ß1/SMAD2/3 represents a new signaling pathway in alveolar bone formation and that local application of AMG-35 in traumatic tooth loss can be used to facilitate bone regeneration and healing for further clinical treatment.


Assuntos
Lisofosfolipídeos , Osteogênese , Receptores de Lisofosfolipídeos , Perda de Dente , Animais , Camundongos , Diferenciação Celular/fisiologia , Lisofosfolipídeos/metabolismo , Osteoblastos/metabolismo , Ligamento Periodontal/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Receptores de Lisofosfolipídeos/metabolismo
8.
Mol Med ; 30(1): 32, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424494

RESUMO

BACKGROUND: Endothelial-to-Mesenchymal Transformation (EndMT) plays key roles in endothelial dysfunction during the pathological progression of atherosclerosis; however, its detailed mechanism remains unclear. Herein, we explored the biological function and mechanisms of upstream stimulating factor 1 (USF1) in EndMT during atherosclerosis. METHODS: The in vivo and in vitro atherosclerotic models were established in high fat diet-fed ApoE-/- mice and ox-LDL-exposed human umbilical vein endothelial cells (HUVECs). The plaque formation, collagen and lipid deposition, and morphological changes in the aortic tissues were evaluated by hematoxylin and eosin (HE), Masson, Oil red O and Verhoeff-Van Gieson (EVG) staining, respectively. EndMT was determined by expression levels of EndMT-related proteins. Target molecule expression was detected by RT-qPCR and Western blotting. The release of pro-inflammatory cytokines was measured by ELISA. Migration of HUVECs was detected by transwell and scratch assays. Molecular mechanism was investigated by dual-luciferase reporter assay, ChIP, and Co-IP assays. RESULTS: USF1 was up-regulated in atherosclerosis patients. USF1 knockdown inhibited EndMT by up-regulating CD31 and VE-Cadherin, while down-regulating α-SMA and vimentin, thereby repressing inflammation, and migration in ox-LDL-exposed HUVECs. In addition, USF1 transcriptionally activated ubiquitin-specific protease 14 (USP14), which promoted de-ubiquitination and up-regulation of NLR Family CARD Domain Containing 5 (NLRC5) and subsequent Smad2/3 pathway activation. The inhibitory effect of sh-USF1 or sh-USP14 on EndMT was partly reversed by USP14 or NLRC5 overexpression. Finally, USF1 knockdown delayed atherosclerosis progression via inhibiting EndMT in mice. CONCLUSION: Our findings indicate the contribution of the USF1/USP14/NLRC5 axis to atherosclerosis development via promoting EndMT, which provide effective therapeutic targets.


Assuntos
Aterosclerose , Transição Endotélio-Mesênquima , Humanos , Camundongos , Animais , Transdução de Sinais , Aterosclerose/metabolismo , Células Endoteliais da Veia Umbilical Humana , Regulação para Cima , Fatores Estimuladores Upstream/metabolismo , Fatores Estimuladores Upstream/farmacologia , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
9.
Development ; 148(3)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33462116

RESUMO

SMAD2 is a transcription factor, the activity of which is regulated by members of the transforming growth factor ß (TGFß) superfamily. Although activation of SMAD2 and SMAD3 downstream of TGFß or myostatin signaling is known to inhibit myogenesis, we found that SMAD2 in the absence of TGFß signaling promotes terminal myogenic differentiation. We found that, during myogenic differentiation, SMAD2 expression is induced. Knockout of SMAD2 expression in primary myoblasts did not affect the efficiency of myogenic differentiation but produced smaller myotubes with reduced expression of the terminal differentiation marker myogenin. Conversely, overexpression of SMAD2 stimulated myogenin expression, and enhanced both differentiation and fusion, and these effects were independent of classical activation by the TGFß receptor complex. Loss of Smad2 in muscle satellite cells in vivo resulted in decreased muscle fiber caliber and impaired regeneration after acute injury. Taken together, we demonstrate that SMAD2 is an important positive regulator of myogenic differentiation, in part through the regulation of Myog.


Assuntos
Diferenciação Celular/fisiologia , Desenvolvimento Muscular/fisiologia , Miogenina/metabolismo , Proteína Smad2/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Camundongos , Camundongos Knockout , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Miogenina/genética , Miostatina , Transdução de Sinais , Proteína Smad2/genética , Proteína Smad3 , Fator de Crescimento Transformador beta/metabolismo
10.
Biol Reprod ; 110(5): 1012-1024, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38320204

RESUMO

Cyclophosphamide (CP) is a widely used chemotherapeutic drug and immunosuppressant in the clinic, and the hypoandrogenism caused by CP is receiving more attention. Some studies found that ferroptosis is a new mechanism of cell death closely related to chemotherapeutic drugs and plays a key role in regulating reproductive injuries. The purpose of this study is to explore ferroptosis' role in testicular Leydig cell dysfunction and molecular mechanisms relating to it. In this study, the level of ferroptosis in the mouse model of testicular Leydig cell dysfunction induced by CP was significantly increased and further affected testosterone synthesis. The ferroptosis inhibitors ferrostatin-1 (Fer-1) and iron chelator deferoxamine (DFO) can improve injury induced by CP. The results of immunohistochemistry showed that Fer-1 and DFO could improve the structural disorder of seminiferous tubules and the decrease of the number of Leydig cells in testicular tissue induced by CP. Immunofluorescence and western blot confirmed that Fer-1 and DFO could improve the expression of key enzymes in testosterone synthesis. The activation of SMAD family member 2 (Smad2)/cyclin-dependent kinase inhibitor 1A (Cdkn1a) pathway can improve the ferroptosis of Leydig cells induced by CP and protect the function of Leydig cells. By inhibiting the Smad2/Cdkn1a signal pathway, CP can regulate ferroptosis, resulting in testicular Leydig cell dysfunction. In this study, CP-induced hypoandrogenism is explained theoretically and a potential therapeutic strategy is provided.


Assuntos
Ciclofosfamida , Ferroptose , Células Intersticiais do Testículo , Proteína Smad2 , Animais , Masculino , Camundongos , Cicloexilaminas/farmacologia , Ciclofosfamida/toxicidade , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Fenilenodiaminas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia
11.
Mol Carcinog ; 63(5): 803-816, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38411267

RESUMO

Ovarian cancer is a major cause of death among cancer patients. Recent research has shown that the transmembrane emp24 domain (TMED) protein family plays a role in the progression of various types of cancer. In this study, we investigated the expression of TMED3 in ovarian cancer tumors compared to nontumor tissues using immunohistochemical staining. We found that TMED3 was overexpressed in ovarian cancer tumors, and its high expression was associated with poor disease-free and overall survival. To understand the functional implications of TMED3 overexpression in ovarian cancer, we conducted experiments to knockdown TMED3 using short hairpin RNA (shRNA). We observed that TMED3 knockdown resulted in reduced cell viability and migration, as well as increased cell apoptosis. Additionally, in subcutaneous xenograft models in BALB-c nude mice, TMED3 knockdown inhibited tumor growth. Further investigation revealed that SMAD family member 2 (SMAD2) was a downstream target of TMED3, driving ovarian cancer progression. TMED3 stabilized SMAD2 by inhibiting the E3 ligase NEDD4-mediated ubiquitination of SMAD2. To confirm the importance of SMAD2 in TMED3-mediated ovarian cancer, we performed functional rescue experiments and found that SMAD2 played a critical role in this process. Moreover, we discovered that the PI3K-AKT pathway was involved in the promoting effects of TMED3 overexpression on ovarian cancer cells. Overall, our study identifies TMED3 as a prognostic indicator and tumor promoter in ovarian cancer. Its function is likely mediated through the regulation of the SMAD2 and PI3K-AKT signaling pathway. These findings contribute to our understanding of the molecular mechanisms underlying ovarian cancer progression and provide potential targets for therapeutic intervention.


Assuntos
Neoplasias Ovarianas , Proteínas de Transporte Vesicular , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Camundongos Nus , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/metabolismo , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad2/farmacologia , Ubiquitinação , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo
12.
Cancer Cell Int ; 24(1): 176, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38769521

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) represents one of the most significant causes of mortality due to cancer-related deaths. It has been previously reported that the TGF-ß signaling pathway may be associated with tumor progression. However, the relationship between TGF-ß signaling pathway and HCC remains to be further elucidated. The objective of our research was to investigate the impact of TGF-ß signaling pathway on HCC progression as well as the potential regulatory mechanism involved. METHODS: We conducted a series of bioinformatics analyses to screen and filter the most relevant hub genes associated with HCC. E. coli was utilized to express recombinant protein, and the Ni-NTA column was employed for purification of the target protein. Liquid liquid phase separation (LLPS) of protein in vitro, and fluorescent recovery after photobleaching (FRAP) were utilized to verify whether the target proteins had the ability to drive force LLPS. Western blot and quantitative real-time polymerase chain reaction (qPCR) were utilized to assess gene expression levels. Transcription factor binding sites of DNA were identified by chromatin immunoprecipitation (CHIP) qPCR. Flow cytometry was employed to examine cell apoptosis. Knockdown of target genes was achieved through shRNA. Cell Counting Kit-8 (CCK-8), colony formation assays, and nude mice tumor transplantation were utilized to test cell proliferation ability in vitro and in vivo. RESULTS: We found that Smad2/3/4 complex could regulate tyrosine aminotransferase (TAT) expression, and this regulation could relate to LLPS. CHIP qPCR results showed that the key targeted DNA binding site of Smad2/3/4 complex in TAT promoter region is -1032 to -1182. In addition. CCK-8, colony formation, and nude mice tumor transplantation assays showed that Smad2/3/4 complex could repress cell proliferation through TAT. Flow cytometry assay results showed that Smad2/3/4 complex could increase the apoptosis of hepatoma cells. Western blot results showed that Smad2/3/4 complex would active caspase-9 through TAT, which uncovered the mechanism of Smad2/3/4 complex inducing hepatoma cell apoptosis. CONCLUSION: This study proved that Smad2/3/4 complex could undergo LLPS to active TAT transcription, then active caspase-9 to induce hepatoma cell apoptosis in inhibiting HCC progress. The research further elucidate the relationship between TGF-ß signaling pathway and HCC, which contributes to discover the mechanism of HCC development.

13.
Arch Biochem Biophys ; 751: 109827, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000494

RESUMO

Osteoarthritis (OA) is a common aging-related disease affecting entire joint structures, encompassing articular cartilage and subchondral bone. Although senescence and dysfunction of chondrocytes are considered crucial factors in the occurrence of OA, the exact pathogenesis remains to be investigated. In our study, chondrocytes were incubated with a conditioned medium obtained from osteoclasts at different differentiation stages, suggesting that osteoclasts and osteoclast precursors suppressed anabolism and promoted the catabolism of chondrocytes in vitro. In contrast, the function of osteoclasts was more significant than osteoclast precursors. Further blocking of osteoclast exosome secretion by using GW4869 abolished the effect of osteoclasts on chondrocytes. Functionally, exosomal transfer of osteoclast-derived miR-212-3p inhibited Smad2 to mediate chondrocyte dysfunction, thus accelerating cartilage matrix degradation in OA via TGF-ß1/Smad2 signaling. The mechanism was also confirmed within the articular cartilage in OA patients and surgery-induced OA mice. Our study provides new information on intercellular interactions in the bone microenvironment within articular cartilage and subchondral bone during OA progression. The miR-212-3p/Smad2 axis is a potential target for the prevention and therapy of OA.


Assuntos
Cartilagem Articular , MicroRNAs , Osteoartrite , Animais , Humanos , Camundongos , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoartrite/metabolismo , Osteoclastos/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
14.
BMC Cancer ; 24(1): 122, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267923

RESUMO

BACKGROUND: Ovarian cancer is one of the most common gynecological malignancies due to the lack of early symptoms, early diagnosis and limited screening. Therefore, it is necessary to understand the molecular mechanism underlying the occurrence and progression of ovarian cancer and to identify a basic biomarker for the early diagnosis and clinical treatment of ovarian cancer. METHODS: The association between FBXO28 and ovarian cancer prognosis was analyzed using Kaplan‒Meier survival analysis. The difference in FBXO28 mRNA expression between normal ovarian tissues and ovarian tumor tissues was obtained from The Cancer Genome Atlas (TCGA), and Genotype-Tissue Expression (GTEx) cohorts. The expression levels of the FBXO28 protein in ovarian cancer tissues and normal ovarian tissues were measured via immunohistochemical staining. Western blotting was used to determine the level of FBXO28 expression in ovarian cancer cells. The CCK-8, the colony formation, Transwell migration and invasion assays were performed to evaluate cell proliferation and motility. RESULTS: We found that a higher expression level of FBXO28 was associated with poor prognosis in ovarian cancer patients. Analysis of the TCGA and GTEx cohorts showed that the FBXO28 mRNA level was lower in normal ovarian tissue samples than in ovarian cancer tissue samples. Compared with that in normal ovarian tissues or cell lines, the expression of FBXO28 was greater in ovarian tumor tissues or tumor cells. The upregulation of FBXO28 promoted the viability, proliferation, migration and invasion of ovarian cancer cells. Finally, we demonstrated that FBXO28 activated the TGF-beta1/Smad2/3 signaling pathway in ovarian cancer. CONCLUSIONS: In conclusion, FBXO28 enhanced oncogenic function via upregulation of the TGF-beta1/Smad2/3 signaling pathway in ovarian cancer.


Assuntos
Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/genética , Regulação para Cima , Fator de Crescimento Transformador beta1/genética , Processos Neoplásicos , Transdução de Sinais , Proliferação de Células/genética , RNA Mensageiro , Proteína Smad2/genética , Proteínas Ligases SKP Culina F-Box
15.
Cell Biol Int ; 48(2): 216-228, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081783

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer (BC) compared to other BC subtypes in clinical settings. Currently, there are no effective therapeutic strategies for TNBC treatment. Therefore, there is an urgent need to identify suitable biomarkers or therapeutic targets for TNBC patients. Thrombomodulin (TM) plays a role in cancer progression and metastasis in many different cancers. However, the role of TM in TNBC is not yet fully understood. First, silenced-TM in MDA-MB-231 cells caused an increase in proliferative and metastatic activity. In contrast, overexpression of TM in Hs578T cells caused a reduction in proliferation, invasion, and migration rate. Using RNA-seq analysis, we found that Integrin beta 3 (ITGB3) expression may be a downstream target of TM. Furthermore, we found an increase in ITGB3 levels in TM-KD cells by QPCR and western blot analysis but a decrease in ITGB3 levels in TM-overexpressing cells. We found phospho-smad2/3 levels were increased in TM-KD cells but decreased in TM-overexpressing cells. This implies that TM negatively regulates ITGB3 levels through the activation of the smad2/3 pathway. Silencing ITGB3 in TM-KD cells caused a decrease in proliferation and migration. Finally, we found that higher ITGB3 levels were correlated with poor overall survival and relapse-free survival in patients with TNBC. Our results indicated a novel regulatory relationship between TM and ITGB3 in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Western Blotting , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Integrina beta3/genética , Trombomodulina/genética , Neoplasias de Mama Triplo Negativas/metabolismo
16.
J Pharmacol Sci ; 154(3): 192-202, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395520

RESUMO

Salidroside (SAL) is a glucoside of tyrosol commonly existing in the roots of Rhodiola rosea. This study unveils the protective effect of SAL on skin inflammation in imiquimod (IMQ)-induced psoriasis. The mouse model of psoriasis was established by local application of IMQ, and SAL efficacy was evaluated through PASI scoring, H&E staining, and skin tissue pathology observation. The HaCaT cell model was established by interferon (IFN)-γ induction, followed by MTT assay detection of cell viability, detection of ROS, SOD, MDA, and CAT levels in skin tissues and cells using reagent kits, ELISA detection of inflammatory factors (TNF-α, IL-6, IL-1ß), and qRT-PCR detection of psoriasis-related genes (S100a9, Cxcl1, Cxcl2) as well as miR-369-3p and SMAD2 expressions. The binding relationship between miR-369-3p and SMAD2 was validated using dual-luciferase reporter assay. SAL treatment reduced PASI scores and alleviated psoriasis symptoms of IMQ-induced mice, and also augmented the viability and subsided the oxidative stress and inflammation of IFN-γ-treated HaCaT cells. SAL treatment restrained miR-369-3p expression but elevated SMAD2 expression. Mechanistically, miR-369-3p targeted SMAD2 expression. miR-369-3p overexpression or SMAD2 inhibition partially offset the alleviating effect of SAL on psoriasis skin inflammation. In conclusion, SAL alleviates skin inflammation in IMQ-induced psoriasis mice via the miR-369-3p/SMAD2 axis.


Assuntos
MicroRNAs , Fenóis , Psoríase , Camundongos , Animais , Imiquimode/efeitos adversos , Imiquimode/metabolismo , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/genética , Pele , Glucosídeos/efeitos adversos , Inflamação/metabolismo , MicroRNAs/metabolismo , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
17.
Future Oncol ; : 1-15, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38861304

RESUMO

Aim: The present study aimed to figure out the potential role of exosomal microRNAs, and their targeted genes in HNC detection/diagnosis. Methods: In the present study, exosomes were extracted from the serum samples of 400 HNC patients and 400 healthy controls. Exosomes were characterized using TEM, NTA, TEM-immunogold labeling and ELISA. Quantitative PCR was used to measure the expression level of exosomal miRNA-19a, miRNA-19b and targeted genes SMAD2 and SMAD4 in HNC patients and controls. Results: The deregulation of miR-19a (p < 0.01), miR-19b (p < 0.03), SMAD2 (p < 0.04) and SMAD4 (p < 0.04) was observed in HNC patients vs controls. Conclusion: ROC curve and Kaplan-Meier analysis showed the good diagnostic/prognostic value of selected exosomal microRNAs and related genes in HNC patients.


[Box: see text].

18.
Exp Cell Res ; 423(1): 113458, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36608837

RESUMO

Cervical cancer is the second most common malignancy of the female reproductive tract worldwide. Although cervical cancer is caused by human papillomavirus (HPV) infection, its underlying pathogenesis requires further investigation. The present study investigated the role of kinetochore associated protein 1 (KNTC1) in cervical cancer and its association with the key virus oncoprotein, HPV E7. A series of bioinformatic analyses revealed that KNTC1 might be involved in the tumorigenesis of multiple human malignancies, including cervical cancer. Tissue microarray analysis showed that in vivo KNTC1 expression was higher in high-grade squamous intraepithelial lesions (HSILs) than in normal cervix and even higher in cervical cancer. In vitro silencing of KNTC1 increased the proliferation, invasion and migration of cervical cancer cell lines. Although not affecting apoptosis, KNTC1 silencing significantly promoted G1/S phase transition of the cell cycle. High-throughput analysis of mRNA expression showed that KNTC1 could regulate its downstream target protein Smad2 at the transcriptional level. Moreover, as the key oncoprotein of the virus, HPV E7 could inhibit the expression of KNTC1 protein, and decrease Smad2 protein expression with or without the aid of KNTC1. These results indicated that KNTC1 is a novel tumor suppressor that can impede the initiation and progression of cervical carcinoma, providing insight into the molecular mechanism by which HPV induces cervical cancer.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Infecções por Papillomavirus/genética , Proteínas E7 de Papillomavirus/genética , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Carcinogênese/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Ciclo Celular/metabolismo
19.
Exp Cell Res ; 431(1): 113739, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567436

RESUMO

Oral cancer is a common malignant tumor of the oral cavity that affects many countries with a prevalent distribution in the Indian subcontinent, with poor prognosis rate on account of locoregional metastases. Gain-of-function mutations in p53 and overexpression of its related transcription factor, p63 are both widely reported events in oral cancers. However, targeting these alterations remains a far-achieved aim due to lack of knowledge on their downstream signaling pathways. In the present study, we characterize the isoforms of p63 and using knockdown strategy, decipher the functions and oncogenic signaling of p63 in oral cancers. Using Microarray and Chromatin Immunoprecipitation experiments, we decipher a novel transcriptional regulatory axis between p63 and Activin A and establish its functional significance in migration of oral cancer cells. Using an orally bioavailable inhibitor of the Activin A pathway to attenuate oral cancer cell migration and invasion, we further demonstrate the targetability of this signaling axis. Our study highlights the oncogenic role of ΔNp63 - Activin A - SMAD2/3 signaling and provides a basis for targeting this oncogenic pathway in oral cancers.


Assuntos
Ativinas , Neoplasias Bucais , Fatores de Transcrição , Proteínas Supressoras de Tumor , Humanos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Movimento Celular , Transdução de Sinais , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ativinas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Acta Pharmacol Sin ; 45(7): 1520-1529, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38519646

RESUMO

Parkin (PARK2) deficiency is frequently observed in various cancers and potentially promotes tumor progression. Here, we showed that Parkin expression is downregulated in liver cancer tissues, which correlates with poor patient survival. Parkin deficiency in liver cancer cells promotes migration and metastasis as well as changes in EMT and metastasis markers. A negative correlation exists between TMEFF1 and Parkin expression in liver cancer cells and tumor tissues. Parkin deficiency leads to upregulation of TMEFF1 which promotes migration and metastasis. TMEFF1 transcription is activated by Parkin-induced endogenous TGF-ß production and subsequent phosphorylation of Smad2/3 and its binding to TMEFF1 promotor. TGF-ß inhibitor and TMEFF1 knockdown can reverse shParkin-induced cell migration and changes of EMT markers. Parkin interacts with and promotes the ubiquitin-dependent degradation of HIF-1α/HIF-1ß and p53, which accounts for the suppression of TGF-ß production. Our data have revealed that Parkin deficiency in cancer leads to the activation of the TGF-ß/Smad2/3 pathway, resulting in the expression of TMEFF1 which promotes cell migration, EMT, and metastasis in liver cancer cells.


Assuntos
Movimento Celular , Neoplasias Hepáticas , Proteína Smad2 , Proteína Smad3 , Fator de Crescimento Transformador beta , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Ativação Transcricional , Animais , Transição Epitelial-Mesenquimal , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Metástase Neoplásica , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Camundongos Nus , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa