Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.186
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(1): 184-203.e28, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181741

RESUMO

We performed comprehensive proteogenomic characterization of small cell lung cancer (SCLC) using paired tumors and adjacent lung tissues from 112 treatment-naive patients who underwent surgical resection. Integrated multi-omics analysis illustrated cancer biology downstream of genetic aberrations and highlighted oncogenic roles of FAT1 mutation, RB1 deletion, and chromosome 5q loss. Two prognostic biomarkers, HMGB3 and CASP10, were identified. Overexpression of HMGB3 promoted SCLC cell migration via transcriptional regulation of cell junction-related genes. Immune landscape characterization revealed an association between ZFHX3 mutation and high immune infiltration and underscored a potential immunosuppressive role of elevated DNA damage response activity via inhibition of the cGAS-STING pathway. Multi-omics clustering identified four subtypes with subtype-specific therapeutic vulnerabilities. Cell line and patient-derived xenograft-based drug tests validated the specific therapeutic responses predicted by multi-omics subtyping. This study provides a valuable resource as well as insights to better understand SCLC biology and improve clinical practice.


Assuntos
Neoplasias Pulmonares , Proteogenômica , Carcinoma de Pequenas Células do Pulmão , Humanos , Linhagem Celular , Neoplasias Pulmonares/química , Neoplasias Pulmonares/genética , Carcinoma de Pequenas Células do Pulmão/química , Carcinoma de Pequenas Células do Pulmão/genética , Xenoenxertos , Biomarcadores Tumorais/análise
2.
Cell ; 183(2): 363-376.e13, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33007267

RESUMO

Although treatment of non-small cell lung cancer (NSCLC) with immune checkpoint inhibitors (ICIs) can produce remarkably durable responses, most patients develop early disease progression. Furthermore, initial response assessment by conventional imaging is often unable to identify which patients will achieve durable clinical benefit (DCB). Here, we demonstrate that pre-treatment circulating tumor DNA (ctDNA) and peripheral CD8 T cell levels are independently associated with DCB. We further show that ctDNA dynamics after a single infusion can aid in identification of patients who will achieve DCB. Integrating these determinants, we developed and validated an entirely noninvasive multiparameter assay (DIREct-On, Durable Immunotherapy Response Estimation by immune profiling and ctDNA-On-treatment) that robustly predicts which patients will achieve DCB with higher accuracy than any individual feature. Taken together, these results demonstrate that integrated ctDNA and circulating immune cell profiling can provide accurate, noninvasive, and early forecasting of ultimate outcomes for NSCLC patients receiving ICIs.


Assuntos
Biomarcadores Farmacológicos/sangue , DNA Tumoral Circulante/análise , Inibidores de Checkpoint Imunológico/uso terapêutico , Adulto , Antineoplásicos Imunológicos/farmacologia , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/genética , Linfócitos T CD8-Positivos/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , DNA Tumoral Circulante/genética , Feminino , Humanos , Inibidores de Checkpoint Imunológico/imunologia , Inibidores de Checkpoint Imunológico/metabolismo , Imunoterapia/métodos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/metabolismo
3.
Cell ; 174(6): 1586-1598.e12, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30100188

RESUMO

Cancer immunotherapies have shown substantial clinical activity for a subset of patients with epithelial cancers. Still, technological platforms to study cancer T-cell interactions for individual patients and understand determinants of responsiveness are presently lacking. Here, we establish and validate a platform to induce and analyze tumor-specific T cell responses to epithelial cancers in a personalized manner. We demonstrate that co-cultures of autologous tumor organoids and peripheral blood lymphocytes can be used to enrich tumor-reactive T cells from peripheral blood of patients with mismatch repair-deficient colorectal cancer and non-small-cell lung cancer. Furthermore, we demonstrate that these T cells can be used to assess the efficiency of killing of matched tumor organoids. This platform provides an unbiased strategy for the isolation of tumor-reactive T cells and provides a means by which to assess the sensitivity of tumor cells to T cell-mediated attack at the level of the individual patient.


Assuntos
Leucócitos Mononucleares/citologia , Linfócitos T/imunologia , Idoso , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Técnicas de Cultura de Células , Técnicas de Cocultura , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Humanos , Técnicas In Vitro , Interferon gama/farmacologia , Leucócitos Mononucleares/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Ativação Linfocitária/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Células Tumorais Cultivadas
4.
Immunity ; 56(1): 93-106.e6, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36574773

RESUMO

Improved identification of anti-tumor T cells is needed to advance cancer immunotherapies. CD39 expression is a promising surrogate of tumor-reactive CD8+ T cells. Here, we comprehensively profiled CD39 expression in human lung cancer. CD39 expression enriched for CD8+ T cells with features of exhaustion, tumor reactivity, and clonal expansion. Flow cytometry of 440 lung cancer biospecimens revealed weak association between CD39+ CD8+ T cells and tumoral features, such as programmed death-ligand 1 (PD-L1), tumor mutation burden, and driver mutations. Immune checkpoint blockade (ICB), but not cytotoxic chemotherapy, increased intratumoral CD39+ CD8+ T cells. Higher baseline frequency of CD39+ CD8+ T cells conferred improved clinical outcomes from ICB therapy. Furthermore, a gene signature of CD39+ CD8+ T cells predicted benefit from ICB, but not chemotherapy, in a phase III clinical trial of non-small cell lung cancer. These findings highlight CD39 as a proxy of tumor-reactive CD8+ T cells in human lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Linfócitos T CD8-Positivos , Imunoterapia
5.
Immunity ; 56(2): 386-405.e10, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36736322

RESUMO

Local environmental factors influence CD8+ T cell priming in lymph nodes (LNs). Here, we sought to understand how factors unique to the tumor-draining mediastinal LN (mLN) impact CD8+ T cell responses toward lung cancer. Type 1 conventional dendritic cells (DC1s) showed a mLN-specific failure to induce robust cytotoxic T cells responses. Using regulatory T (Treg) cell depletion strategies, we found that Treg cells suppressed DC1s in a spatially coordinated manner within tissue-specific microniches within the mLN. Treg cell suppression required MHC II-dependent contact between DC1s and Treg cells. Elevated levels of IFN-γ drove differentiation Treg cells into Th1-like effector Treg cells in the mLN. In patients with cancer, Treg cell Th1 polarization, but not CD8+/Treg cell ratios, correlated with poor responses to checkpoint blockade immunotherapy. Thus, IFN-γ in the mLN skews Treg cells to be Th1-like effector Treg cells, driving their close interaction with DC1s and subsequent suppression of cytotoxic T cell responses.


Assuntos
Neoplasias Pulmonares , Linfócitos T Reguladores , Humanos , Linfócitos T CD8-Positivos , Interferon gama , Linfócitos T Citotóxicos
6.
Cell ; 169(4): 750-765.e17, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475900

RESUMO

To guide the design of immunotherapy strategies for patients with early stage lung tumors, we developed a multiscale immune profiling strategy to map the immune landscape of early lung adenocarcinoma lesions to search for tumor-driven immune changes. Utilizing a barcoding method that allows a simultaneous single-cell analysis of the tumor, non-involved lung, and blood cells, we provide a detailed immune cell atlas of early lung tumors. We show that stage I lung adenocarcinoma lesions already harbor significantly altered T cell and NK cell compartments. Moreover, we identified changes in tumor-infiltrating myeloid cell (TIM) subsets that likely compromise anti-tumor T cell immunity. Paired single-cell analyses thus offer valuable knowledge of tumor-driven immune changes, providing a powerful tool for the rational design of immune therapies. VIDEO ABSTRACT.


Assuntos
Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Imunidade Inata , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Análise de Célula Única/métodos , Adenocarcinoma de Pulmão , Células Dendríticas/patologia , Humanos , Células Matadoras Naturais/patologia , Macrófagos/patologia , Linfócitos T/patologia , Microambiente Tumoral
7.
CA Cancer J Clin ; 73(6): 620-652, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37329269

RESUMO

Small cell lung cancer (SCLC) is characterized by rapid growth and high metastatic capacity. It has strong epidemiologic and biologic links to tobacco carcinogens. Although the majority of SCLCs exhibit neuroendocrine features, an important subset of tumors lacks these properties. Genomic profiling of SCLC reveals genetic instability, almost universal inactivation of the tumor suppressor genes TP53 and RB1, and a high mutation burden. Because of early metastasis, only a small fraction of patients are amenable to curative-intent lung resection, and these individuals require adjuvant platinum-etoposide chemotherapy. Therefore, the vast majority of patients are currently being treated with chemoradiation with or without immunotherapy. In patients with disease confined to the chest, standard therapy includes thoracic radiotherapy and concurrent platinum-etoposide chemotherapy. Patients with metastatic (extensive-stage) disease are treated with a combination of platinum-etoposide chemotherapy plus immunotherapy with an anti-programmed death-ligand 1 monoclonal antibody. Although SCLC is initially very responsive to platinum-based chemotherapy, these responses are transient because of the development of drug resistance. In recent years, the authors have witnessed an accelerating pace of biologic insights into the disease, leading to the redefinition of the SCLC classification scheme. This emerging knowledge of SCLC molecular subtypes has the potential to define unique therapeutic vulnerabilities. Synthesizing these new discoveries with the current knowledge of SCLC biology and clinical management may lead to unprecedented advances in SCLC patient care. Here, the authors present an overview of multimodal clinical approaches in SCLC, with a special focus on illuminating how recent advancements in SCLC research could accelerate clinical development.


Assuntos
Produtos Biológicos , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/diagnóstico , Carcinoma de Pequenas Células do Pulmão/terapia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/terapia , Etoposídeo/uso terapêutico , Terapia Combinada , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Produtos Biológicos/uso terapêutico
8.
Genes Dev ; 35(11-12): 870-887, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34016692

RESUMO

Small cell lung carcinoma (SCLC) is among the most lethal of all solid tumor malignancies. In an effort to identify novel therapeutic approaches for this recalcitrant cancer type, we applied genome-scale CRISPR/Cas9 inactivation screens to cell lines that we derived from a murine model of SCLC. SCLC cells were particularly sensitive to the deletion of NEDD8 and other neddylation pathway genes. Genetic suppression or pharmacological inhibition of this pathway using MLN4924 caused cell death not only in mouse SCLC cell lines but also in patient-derived xenograft (PDX) models of pulmonary and extrapulmonary small cell carcinoma treated ex vivo or in vivo. A subset of PDX models were exceptionally sensitive to neddylation inhibition. Neddylation inhibition suppressed expression of major regulators of neuroendocrine cell state such as INSM1 and ASCL1, which a subset of SCLC rely upon for cell proliferation and survival. To identify potential mechanisms of resistance to neddylation inhibition, we performed a genome-scale CRISPR/Cas9 suppressor screen. Deletion of components of the COP9 signalosome strongly mitigated the effects of neddylation inhibition in small cell carcinoma, including the ability of MLN4924 to suppress neuroendocrine transcriptional program expression. This work identifies neddylation as a regulator of neuroendocrine cell state and potential therapeutic target for small cell carcinomas.


Assuntos
Carcinoma de Células Pequenas/terapia , Ciclopentanos , Neoplasias Pulmonares/terapia , Proteína NEDD8/metabolismo , Pirimidinas , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Complexo do Signalossomo COP9/genética , Carcinoma de Células Pequenas/fisiopatologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclopentanos/farmacologia , Ciclopentanos/uso terapêutico , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Neoplasias Pulmonares/fisiopatologia , Camundongos , Proteína NEDD8/genética , Células Neuroendócrinas/citologia , Células Neuroendócrinas/efeitos dos fármacos , Proteínas/genética , Proteínas/metabolismo , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Proteínas Repressoras/genética , Deleção de Sequência
9.
Genes Dev ; 35(11-12): 847-869, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34016693

RESUMO

ASCL1 is a neuroendocrine lineage-specific oncogenic driver of small cell lung cancer (SCLC), highly expressed in a significant fraction of tumors. However, ∼25% of human SCLC are ASCL1-low and associated with low neuroendocrine fate and high MYC expression. Using genetically engineered mouse models (GEMMs), we show that alterations in Rb1/Trp53/Myc in the mouse lung induce an ASCL1+ state of SCLC in multiple cells of origin. Genetic depletion of ASCL1 in MYC-driven SCLC dramatically inhibits tumor initiation and progression to the NEUROD1+ subtype of SCLC. Surprisingly, ASCL1 loss promotes a SOX9+ mesenchymal/neural crest stem-like state and the emergence of osteosarcoma and chondroid tumors, whose propensity is impacted by cell of origin. ASCL1 is critical for expression of key lineage-related transcription factors NKX2-1, FOXA2, and INSM1 and represses genes involved in the Hippo/Wnt/Notch developmental pathways in vivo. Importantly, ASCL1 represses a SOX9/RUNX1/RUNX2 program in vivo and SOX9 expression in human SCLC cells, suggesting a conserved function for ASCL1. Together, in a MYC-driven SCLC model, ASCL1 promotes neuroendocrine fate and represses the emergence of a SOX9+ nonendodermal stem-like fate that resembles neural crest.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição SOX9/genética , Carcinoma de Pequenas Células do Pulmão/genética , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Crista Neural/citologia , Carcinoma de Pequenas Células do Pulmão/fisiopatologia , Células-Tronco/citologia
10.
Immunol Rev ; 321(1): 300-334, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37688394

RESUMO

Non-small-cell lung cancer (NSCLC), which has a high rate of metastatic spread and drug resistance, is the most common subtype of lung cancer. Therefore, NSCLC patients have a very poor prognosis and a very low chance of survival. Human cancers are closely linked to regulated cell death (RCD), such as apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis. Currently, small-molecule compounds targeting various types of RCD have shown potential as anticancer treatments. Moreover, RCD appears to be a specific part of the antitumor immune response; hence, the combination of RCD and immunotherapy might increase the inhibitory effect of therapy on tumor growth. In this review, we summarize small-molecule compounds used for the treatment of NSCLC by focusing on RCD and pharmacological systems. In addition, we describe the current research status of an immunotherapy combined with an RCD-based regimen for NSCLC, providing new ideas for targeting RCD pathways in combination with immunotherapy for patients with NSCLC in the future.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Morte Celular Regulada , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Imunoterapia , Apoptose
11.
EMBO J ; 42(7): e111112, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36799040

RESUMO

Brain metastasis, most commonly originating from lung cancer, increases cancer morbidity and mortality. Although metastatic colonization is the rate-limiting and most complex step of the metastatic cascade, the underlying mechanisms are poorly understood. Here, in vivo genome-wide CRISPR-Cas9 screening revealed that loss of interferon-induced transmembrane protein 1 (IFITM1) promotes brain colonization of human lung cancer cells. Incipient brain metastatic cancer cells with high expression of IFITM1 secrete microglia-activating complement component 3 and enhance the cytolytic activity of CD8+ T cells by increasing the expression and membrane localization of major histocompatibility complex class I. After activation, microglia (of the innate immune system) and cytotoxic CD8+ T lymphocytes (of the adaptive immune system) were found to jointly eliminate cancer cells by releasing interferon-gamma and inducing phagocytosis and T-cell-mediated killing. In human cancer clinical trials, immune checkpoint blockade therapy response was significantly correlated with IFITM1 expression, and IFITM1 enhanced the brain metastasis suppression efficacy of PD-1 blockade in mice. Our results exemplify a novel mechanism through which metastatic cancer cells overcome the innate and adaptive immune responses to colonize the brain, and suggest that a combination therapy increasing IFITM1 expression in metastatic cells with PD-1 blockade may be a promising strategy to reduce metastasis.


Assuntos
Neoplasias Encefálicas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Linfócitos T CD8-Positivos , Receptor de Morte Celular Programada 1 , Neoplasias Pulmonares/patologia , Encéfalo/patologia
12.
Mol Cell ; 76(5): 838-851.e5, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31564558

RESUMO

Intermediary metabolism in cancer cells is regulated by diverse cell-autonomous processes, including signal transduction and gene expression patterns, arising from specific oncogenotypes and cell lineages. Although it is well established that metabolic reprogramming is a hallmark of cancer, we lack a full view of the diversity of metabolic programs in cancer cells and an unbiased assessment of the associations between metabolic pathway preferences and other cell-autonomous processes. Here, we quantified metabolic features, mostly from the 13C enrichment of molecules from central carbon metabolism, in over 80 non-small cell lung cancer (NSCLC) cell lines cultured under identical conditions. Because these cell lines were extensively annotated for oncogenotype, gene expression, protein expression, and therapeutic sensitivity, the resulting database enables the user to uncover new relationships between metabolism and these orthogonal processes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral/metabolismo , Metaboloma/fisiologia , Biomarcadores Tumorais/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Regulação Neoplásica da Expressão Gênica/fisiologia , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Redes e Vias Metabólicas/genética , Metabolômica/métodos , Neoplasias/metabolismo
13.
Proc Natl Acad Sci U S A ; 121(23): e2317790121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38814866

RESUMO

The transformation of lung adenocarcinoma to small cell lung cancer (SCLC) is a recognized resistance mechanism and a hindrance to therapies using epidermal growth factor receptor tyrosine kinase inhibitors (TKIs). The paucity of pretranslational/posttranslational clinical samples limits the deeper understanding of resistance mechanisms and the exploration of effective therapeutic strategies. Here, we developed preclinical neuroendocrine (NE) transformation models. Next, we identified a transcriptional reprogramming mechanism that drives resistance to erlotinib in NE transformation cell lines and cell-derived xenograft mice. We observed the enhanced expression of genes involved in the EHMT2 and WNT/ß-catenin pathways. In addition, we demonstrated that EHMT2 increases methylation of the SFRP1 promoter region to reduce SFRP1 expression, followed by activation of the WNT/ß-catenin pathway and TKI-mediated NE transformation. Notably, the similar expression alterations of EHMT2 and SFRP1 were observed in transformed SCLC samples obtained from clinical patients. Importantly, suppression of EHMT2 with selective inhibitors restored the sensitivity of NE transformation cell lines to erlotinib and delayed resistance in cell-derived xenograft mice. We identify a transcriptional reprogramming process in NE transformation and provide a potential therapeutic target for overcoming resistance to erlotinib.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Transformação Celular Neoplásica , Cloridrato de Erlotinib , Neoplasias Pulmonares , Humanos , Animais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Camundongos , Cloridrato de Erlotinib/farmacologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Resistencia a Medicamentos Antineoplásicos/genética , Via de Sinalização Wnt/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Transcrição Gênica , Antígenos de Histocompatibilidade , Histona-Lisina N-Metiltransferase
14.
Genes Dev ; 33(3-4): 150-165, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30692209

RESUMO

Loss of tumor suppressor liver kinase B1 (LKB1) promotes cancer cell proliferation but also leads to decreased metabolic plasticity in dealing with energy crises. Autophagy is a protective process involving self-cannibalization to maintain cellular energy homeostasis during nutrient deprivation. We developed a mouse model for Lkb1-deficient lung cancer with conditional deletion of essential autophagy gene Atg7 to test whether autophagy compensates for LKB1 loss for tumor cells to survive energy crises. We found that autophagy ablation was synthetically lethal during Lkb1-deficient lung tumorigenesis in both tumor initiation and tumor growth. We further found that autophagy deficiency causes defective intracellular recycling, which limits amino acids to support mitochondrial energy production in starved cancer cells and causes autophagy-deficient cells to be more dependent on fatty acid oxidation (FAO) for energy production, leading to reduced lipid reserve and energy crisis. Our findings strongly suggest that autophagy inhibition could be a strategy for treating LKB1-deficient lung tumors.


Assuntos
Autofagia , Carcinogênese/patologia , Proteínas de Transporte/genética , Metabolismo dos Lipídeos/fisiologia , Neoplasias Pulmonares/fisiopatologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Modelos Animais de Doenças , Metabolismo Energético/genética , Deleção de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular
15.
Genes Dev ; 33(23-24): 1718-1738, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31727771

RESUMO

More than 90% of small cell lung cancers (SCLCs) harbor loss-of-function mutations in the tumor suppressor gene RB1 The canonical function of the RB1 gene product, pRB, is to repress the E2F transcription factor family, but pRB also functions to regulate cellular differentiation in part through its binding to the histone demethylase KDM5A (also known as RBP2 or JARID1A). We show that KDM5A promotes SCLC proliferation and SCLC's neuroendocrine differentiation phenotype in part by sustaining expression of the neuroendocrine transcription factor ASCL1. Mechanistically, we found that KDM5A sustains ASCL1 levels and neuroendocrine differentiation by repressing NOTCH2 and NOTCH target genes. To test the role of KDM5A in SCLC tumorigenesis in vivo, we developed a CRISPR/Cas9-based mouse model of SCLC by delivering an adenovirus (or an adeno-associated virus [AAV]) that expresses Cre recombinase and sgRNAs targeting Rb1, Tp53, and Rbl2 into the lungs of Lox-Stop-Lox Cas9 mice. Coinclusion of a KDM5A sgRNA decreased SCLC tumorigenesis and metastasis, and the SCLCs that formed despite the absence of KDM5A had higher NOTCH activity compared to KDM5A+/+ SCLCs. This work establishes a role for KDM5A in SCLC tumorigenesis and suggests that KDM5 inhibitors should be explored as treatments for SCLC.


Assuntos
Diferenciação Celular/genética , Células Neuroendócrinas/citologia , Receptores Notch/fisiologia , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Transdução de Sinais/genética , Carcinoma de Pequenas Células do Pulmão/enzimologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Linhagem Celular , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Histona Desmetilases/metabolismo , Humanos , Técnicas In Vitro , Camundongos , Células Neuroendócrinas/patologia , Carcinoma de Pequenas Células do Pulmão/fisiopatologia
16.
Hum Mol Genet ; 33(8): 677-686, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38224682

RESUMO

The metastatic non-small cell lung cancer (NSCLC) is one of the cancers with high incidence, poor survival, and limited treatment. Epithelial-mesenchymal transition (EMT) is the first step by which an early tumor converts to an invasive one. Studying the underlying mechanisms of EMT can help the understanding of cancer metastasis and improve the treatment. In this study, 1013 NSCLC patients and 123 NSCLC cell lines are deeply analyzed for the potential roles of alternative polyadenylation (APA) in the EMT process. A trend of shorter 3'-UTRs (three prime untranslated region) is discovered in the mesenchymal samples. The identification of EMT-related APA events highlights the proximal poly(A) selection of CARM1. It is a pathological biomarker of mesenchymal tumor and cancer metastasis through losing miRNA binding to upregulate the EMT inducer of CARM1 and releasing miRNAs to downregulate the EMT inhibitor of RBM47. The crucial role of this APA event in EMT also guides its effect on drug responses. The patients with shorter 3'-UTR of CARM1 are more benefit from chemotherapy drugs, especially cisplatin. A stratification of NSCLC patients based on this APA event is useful for chemotherapy design in future clinics.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Poliadenilação/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a RNA/genética
17.
Am J Hum Genet ; 110(9): 1574-1589, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37562399

RESUMO

Splicing quantitative trait loci (sQTLs) have been demonstrated to contribute to disease etiology by affecting alternative splicing. However, the role of sQTLs in the development of non-small-cell lung cancer (NSCLC) remains unknown. Thus, we performed a genome-wide sQTL study to identify genetic variants that affect alternative splicing in lung tissues from 116 individuals of Chinese ancestry, which resulted in the identification of 1,385 sQTL-harboring genes (sGenes) containing 378,210 significant variant-intron pairs. A comprehensive characterization of these sQTLs showed that they were enriched in actively transcribed regions, genetic regulatory elements, and splicing-factor-binding sites. Moreover, sQTLs were largely distinct from expression quantitative trait loci (eQTLs) and showed significant enrichment in potential risk loci of NSCLC. We also integrated sQTLs into NSCLC GWAS datasets (13,327 affected individuals and 13,328 control individuals) by using splice-transcriptome-wide association study (spTWAS) and identified alternative splicing events in 19 genes that were significantly associated with NSCLC risk. By using functional annotation and experiments, we confirmed an sQTL variant, rs35861926, that reduced the risk of lung adenocarcinoma (rs35861926-T, OR = 0.88, 95% confidence interval [CI]: 0.82-0.93, p = 1.87 × 10-5) by promoting FARP1 exon 20 skipping to downregulate the expression level of the long transcript FARP1-011. Transcript FARP1-011 promoted the migration and proliferation of lung adenocarcinoma cells. Overall, our study provided informative lung sQTL resources and insights into the molecular mechanisms linking sQTL variants to NSCLC risk.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Locos de Características Quantitativas/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Estudo de Associação Genômica Ampla/métodos , Neoplasias Pulmonares/genética , Processamento Alternativo/genética , Adenocarcinoma de Pulmão/genética , Polimorfismo de Nucleotídeo Único/genética
18.
Mol Cell Proteomics ; 23(5): 100749, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513890

RESUMO

Chemoimmunotherapy has evolved as a standard treatment for advanced non-small cell lung cancer (aNSCLC). However, inevitable drug resistance has limited its efficacy, highlighting the urgent need for biomarkers of chemoimmunotherapy. A three-phase strategy to discover, verify, and validate longitudinal predictive autoantibodies (AAbs) for aNSCLC before and after chemoimmunotherapy was employed. A total of 528 plasma samples from 267 aNSCLC patients before and after anti-PD1 immunotherapy were collected, plus 30 independent formalin-fixed paraffin-embedded samples. Candidate AAbs were firstly selected using a HuProt high-density microarray containing 21,000 proteins in the discovery phase, followed by validation using an aNSCLC-focused microarray. Longitudinal predictive AAbs were chosen for ELISA based on responders versus non-responders comparison and progression-free survival (PFS) survival analysis. Prognostic markers were also validated using immunohistochemistry and publicly available immunotherapy datasets. We identified and validated a panel of two AAbs (MAX and DHX29) as pre-treatment biomarkers and another panel of two AAbs (MAX and TAPBP) as on-treatment predictive markers in aNSCLC patients undergoing chemoimmunotherapy. All three AAbs exhibited a positive correlation with early responses and PFS (p < 0.05). The kinetics of MAX AAb showed an increasing trend in responders (p < 0.05) and a tendency to initially increase and then decrease in non-responders (p < 0.05). Importantly, MAX protein and mRNA levels effectively discriminated PFS (p < 0.05) in aNSCLC patients treated with immunotherapy. Our results present a longitudinal analysis of changes in prognostic AAbs in aNSCLC patients undergoing chemoimmunotherapy.


Assuntos
Autoanticorpos , Carcinoma Pulmonar de Células não Pequenas , Imunoterapia , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Feminino , Masculino , Autoanticorpos/sangue , Pessoa de Meia-Idade , Idoso , Prognóstico , Biomarcadores Tumorais , Adulto
19.
Proc Natl Acad Sci U S A ; 120(8): e2216479120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36791109

RESUMO

Anaplastic lymphoma kinase (ALK) fusion variants in Non-Small Cell Lung Cancer (NSCLC) consist of numerous dimerizing fusion partners. Retrospective investigations suggest that treatment benefit in response to ALK tyrosine kinase inhibitors (TKIs) differs dependent on the fusion variant present in the patient tumor. Therefore, understanding the oncogenic signaling networks driven by different ALK fusion variants is important. To do this, we developed controlled inducible cell models expressing either Echinoderm Microtubule Associated Protein Like 4 (EML4)-ALK-V1, EML4-ALK-V3, Kinesin Family Member 5B (KIF5B)-ALK, or TRK-fused gene (TFG)-ALK and investigated their transcriptomic and proteomic responses to ALK activity modulation together with patient-derived ALK-positive NSCLC cell lines. This allowed identification of both common and isoform-specific responses downstream of these four ALK fusions. An inflammatory signature that included upregulation of the Serpin B4 serine protease inhibitor was observed in both ALK fusion inducible and patient-derived cells. We show that Signal transducer and activator of transcription 3 (STAT3), Nuclear Factor Kappa B (NF-κB) and Activator protein 1 (AP1) are major transcriptional regulators of SERPINB4 downstream of ALK fusions. Upregulation of SERPINB4 promotes survival and inhibits natural killer cell-mediated cytotoxicity, which has potential for therapeutic impact targeting the immune response together with ALK TKIs in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Serpinas , Humanos , Quinase do Linfoma Anaplásico/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Oncogenes , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/genética , Proteômica , Estudos Retrospectivos , Serpinas/genética
20.
Genes Dev ; 32(1): 58-69, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29437725

RESUMO

Histone acetylation is associated with active transcription in eukaryotic cells. It helps to open up the chromatin by neutralizing the positive charge of histone lysine residues and providing binding platforms for "reader" proteins. The bromodomain (BRD) has long been thought to be the sole protein module that recognizes acetylated histones. Recently, we identified the YEATS domain of AF9 (ALL1 fused gene from chromosome 9) as a novel acetyl-lysine-binding module and showed that the ENL (eleven-nineteen leukemia) YEATS domain is an essential acetyl-histone reader in acute myeloid leukemias. The human genome encodes four YEATS domain proteins, including GAS41, a component of chromatin remodelers responsible for H2A.Z deposition onto chromatin; however, the importance of the GAS41 YEATS domain in human cancer remains largely unknown. Here we report that GAS41 is frequently amplified in human non-small cell lung cancer (NSCLC) and is required for cancer cell proliferation, survival, and transformation. Biochemical and crystal structural studies demonstrate that GAS41 binds to histone H3 acetylated on H3K27 and H3K14, a specificity that is distinct from that of AF9 or ENL. ChIP-seq (chromatin immunoprecipitation [ChIP] followed by high-throughput sequencing) analyses in lung cancer cells reveal that GAS41 colocalizes with H3K27ac and H3K14ac on the promoters of actively transcribed genes. Depletion of GAS41 or disruption of the interaction between its YEATS domain and acetylated histones impairs the association of histone variant H2A.Z with chromatin and consequently suppresses cancer cell growth and survival both in vitro and in vivo. Overall, our study identifies GAS41 as a histone acetylation reader that promotes histone H2A.Z deposition in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Histonas/metabolismo , Neoplasias Pulmonares/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Amplificação de Genes , Genes cdc , Histonas/fisiologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa