Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Indoor Air ; 31(3): 795-806, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33215777

RESUMO

The performance of a low-cost fan filter unit (FFU) in mitigating hazardous particulate matter (PM) levels in a naturally ventilated school classroom is presented. The FFU can be considered as a simplified mechanical ventilation and air-conditioning system without heating and cooling functions. The FFU improves indoor air quality through introduction of cleaned outdoor air to flush out internally generated heat and moisture and reducing infiltration by maintaining indoor pressurization. Indoor particle number concentrations were reduced between 85% and 95%. The particle removal performance (PRFFFU ) of the FFU is determined and incorporated into the augmented façade penetration factor (Paug ). A case-specific recursive dynamic mass balance model is used to characterize the infiltration factor (FINF ), deposition rate (K), and the penetration efficiency (Paug ) from continuously monitored indoor and outdoor mass concentration levels. Computed "Paug " (0.07, 0.09, and 0.13) and "FINF " (0.06, 0.08, and 0.11), respectively, for PM10, PM2.5, and PM1 suggest that exposure to PM was significantly reduced indoors. The effectiveness of the FFU for reduced "FINF " and "Paug " may be attributed to its superior filtration, dilution, and exfiltration mechanisms. In comparison with alternative PM mitigation solutions, the FFU is effective, affordable, and sustainable.


Assuntos
Poluição do Ar em Ambientes Fechados , Monitoramento Ambiental , Material Particulado , Ar Condicionado , Poluentes Atmosféricos , Habitação , Humanos , Modelos Teóricos , Tamanho da Partícula , Instituições Acadêmicas
2.
Environ Geochem Health ; 37(5): 843-59, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25432456

RESUMO

The characterization of aerosol acidity has received increased attention in recent years due to its influence on atmospheric visibility, climate change and human health. Distribution of water soluble inorganic (WSI) ions in 12 different size fractions of aerosols was investigated under two different atmospheric conditions (smoke-haze and non-haze periods) in 2012 using the Micro-Orifice Uniform Deposit Impactor (MOUDI) and nano-MOUDI for the first time in Singapore. To estimate the in situ acidity ([H(+)]Ins) and in situ aerosol pH (pHIS), the Aerosol Inorganic Model version-IV under deliquescent mode of airborne particles was used at prevailing ambient temperature and relative humidity. The study revealed an increase in the levels of airborne particulate matter (PM) mass and concentrations of WSI ions for all size fractions during the smoke-haze period, which was caused by the trans-boundary transport of biomass burning-impacted air masses from Indonesia. A bimodal distribution was observed for concentrations of SO4(2-), NO3(-), Cl(-), K(+) and Na(+), whereas concentrations of NH4(+), Ca(2+) and Mg(2+) showed a single mode distribution. The concentration of WSI ions in PM1.8 during the smoke-haze period increased by 3.8 (for SO4(2-)) to 10.5 (for K(+)) times more than those observed during the non-haze period. The pHIS were observed to be lower during the smoke-haze period than that during the non-haze period for all size fractions of PM, indicating that atmospheric aerosols were more acidic due to the influence of biomass burning emissions. The particles in the accumulation mode were more acidic than those in the coarse mode.


Assuntos
Aerossóis/análise , Material Particulado/análise , Fumaça/análise , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Singapura
3.
Chemosphere ; 286(Pt 2): 131803, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34364233

RESUMO

This study aims to investigate ion composition of PM2.5 in various sites and seasons and to identify the main sources on spatial and temporal basis. PM2.5 compositions of two urban and two rural areas in Northern Thailand in 2019 were investigated to distinguish urban traffic and rural open burning sources. During the burning season, average PM2.5 concentrations in rural areas (104 ± 45 µg m-3) were slightly higher than those in urban areas (94 ± 39 µg m-3). Source identification of PM2.5 by cluster analysis during burning season in urban sites and one rural site revealed mixed sources of aged aerosols from biomass burning, traffic and transboundary pollution, characterized by (NH4)2SO4 and KNO3. Only PM2.5 in one rural area (Chiang Dao), where intense open burning activities observed, contained significant KCl level in addition to other compounds. KCl is being used as a tracer for fresh aerosols from biomass burning as opposes to KNO3 for aged aerosols. It was found that KNO3 proportion in total ions increased with PM2.5 concentrations both in urban and rural areas, indicating prominent open burning influences in regional scale. Source identification in other seasons was more distinguishable between urban and rural areas, and more varied depending on local emissions. Urban PM2.5 sources were secondary inorganic aerosols from traffic gas conversion in contrast with rural PM2.5 which were mainly from biomass burning.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Biomassa , China , Monitoramento Ambiental , Íons/análise , Material Particulado/análise , Estações do Ano , Tailândia
4.
J Hazard Mater ; 403: 123555, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264848

RESUMO

During the 2019 smoke haze episode in Singapore, elevated levels of fine particulate matter (PM2.5) were observed, deteriorating both ambient and indoor air quality (IAQ). We investigated the mitigation of indoor human exposure to PM2.5 of outdoor origin under diverse exposure scenarios with and without filtration of PM2.5 during both hazy and non-hazy days. The key objective of our study was to make a comparative evaluation of the effectiveness of portable air cleaners (PACs) and air conditioning (AC) systems equipped with particle filters in improving IAQ and to assess related long-term carcinogenic and non-carcinogenic health risks. We conducted real-time measurements of PM2.5, black carbon mass concentrations and particle number concentrations in both indoor and outdoor areas, quantified the relative concentrations of the water-soluble fraction of toxic trace elements in PM2.5 for health risk assessment, and estimated the levels of thermal comfort. In addition, we calculated the total estimated cost of indoor air pollution control. Our findings suggest that indoor air cleaners are more effective at mitigating human exposure to airborne particles and reducing health risk with less consumption of electricity and better cost-effectiveness compared to AC. This information would be beneficial for public health interventions during major air pollution events.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Humanos , Tamanho da Partícula , Material Particulado/análise , Singapura
5.
Environ Pollut ; 257: 113425, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31676098

RESUMO

Light absorbing carbonaceous aerosols (LACA) consisting of black carbon (BC) and brown carbon (BrC) have received considerable attention because of their climate and health implications, but their sources, characteristics and fates remain unclear in Southeast Asia (SEA). In this study, we investigated spatio-temporal characteristics of LACA, their radiative properties and potential sources in Singapore under different weather conditions. Hourly BC concentrations, measured from May 2017 to March 2018, ranged from 0.31 µg/m3 to 14.37 µg/m3 with the mean value being 2.44 ±â€¯1.51 µg/m3. High mass concentrations of BC were observed during the south-west monsoon (SWM, 2.60 ±â€¯1.56 µg/m3) while relatively low mass concentrations were recorded during the north-east monsoon (NEM, 1.68 ±â€¯0.96 µg/m3). There was a shift in the Absorption Ångström exponent (AAE) from 1.1 to 1.4 when the origin of LACA changed from fossil fuel (FF) to biomass burning (BB) combustion. This shift is attributed to the presence of secondary BrC in LACA, derived from transboundary BB emissions during the SWM. Lower AAE values were observed when local traffic emissions were dominant during the NEM. This explanation is supported by measurements of water-soluble organic carbon (WSOC) in LACA and the corresponding AAE values determined at 365 nm using a UV-vis spectrophotometer. The AAE values, indicative of the presence of brown carbon (BrC), showed that photochemically aged LACA contribute to an enhancement in the light absorption of aerosols. In addition, spatio-temporal characteristics of BC in the intra-urban environment of Singapore were investigated across diverse outdoor and indoor microenvironments. High variability of BC was evident across these microenvironments. Several air pollution hotspots with elevated BC concentrations were identified. Overall, the results stress a need to control anthropogenic emissions of BC and BrC in order to mitigate near-term climate change impacts and provide health benefits.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/química , Carbono/análise , Monitoramento Ambiental , Luz Solar , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar , Sudeste Asiático , Biomassa , Combustíveis Fósseis , Material Particulado/análise , Singapura , Fuligem/análise , Água/química
6.
Sci Total Environ ; 601-602: 556-570, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575833

RESUMO

This study aims to determine PM2.5 concentrations and their composition during haze and non-haze episodes in Kuala Lumpur. In order to investigate the origin of the measured air masses, the Numerical Atmospheric-dispersion Modelling Environment (NAME) and Global Fire Assimilation System (GFAS) were applied. Source apportionment of PM2.5 was determined using Positive Matrix Factorization (PMF). The carcinogenic and non-carcinogenic health risks were estimated using the United State Environmental Protection Agency (USEPA) method. PM2.5 samples were collected from the centre of the city using a high-volume air sampler (HVS). The results showed that the mean PM2.5 concentrations collected during pre-haze, haze and post-haze periods were 24.5±12.0µgm-3, 72.3±38.0µgm-3 and 14.3±3.58µgm-3, respectively. The highest concentration of PM2.5 during haze episode was five times higher than World Health Organisation (WHO) guidelines. Inorganic compositions of PM2.5, including trace elements and water soluble ions were determined using inductively coupled plasma-mass spectrometry (ICP-MS) and ion chromatography (IC), respectively. The major trace elements identified were K, Al, Ca, Mg and Fe which accounted for approximately 93%, 91% and 92% of the overall metals' portions recorded during pre-haze, haze and post-haze periods, respectively. For water-soluble ions, secondary inorganic aerosols (SO42-, NO3- and NH4+) contributed around 12%, 43% and 16% of the overall PM2.5 mass during pre-haze, haze and post-haze periods, respectively. During haze periods, the predominant source identified using PMF was secondary inorganic aerosol (SIA) and biomass burning where the NAME simulations indicate the importance of fires in Sumatra, Indonesia. The main source during pre-haze and post-haze were mix SIA and road dust as well as mineral dust, respectively. The highest non-carcinogenic health risk during haze episode was estimated among the infant group (HI=1.06) while the highest carcinogenic health risk was estimated among the adult group (2.27×10-5).


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/análise , Medição de Risco , Cidades , Exposição Ambiental/estatística & dados numéricos , Incêndios , Humanos , Malásia , Material Particulado/análise , Oligoelementos/análise
7.
Environ Pollut ; 189: 194-201, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24682070

RESUMO

This study assessed the economic value of health impacts of transboundary smoke haze pollution in Kuala Lumpur and adjacent areas in the state of Selangor, Malaysia. Daily inpatient data from 2005, 2006, 2008, and 2009 for 14 haze-related illnesses were collected from four hospitals. On average, there were 19 hazy days each year during which the air pollution levels were within the Lower Moderate to Hazardous categories. No seasonal variation in inpatient cases was observed. A smoke haze occurrence was associated with an increase in inpatient cases by 2.4 per 10,000 populations each year, representing an increase of 31 percent from normal days. The average annual economic loss due to the inpatient health impact of haze was valued at MYR273,000 ($91,000 USD).


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Fumaça/análise , Doenças Cardiovasculares/epidemiologia , Efeitos Psicossociais da Doença , Avaliação do Impacto na Saúde , Hospitalização/economia , Hospitalização/estatística & dados numéricos , Humanos , Pacientes Internados/estatística & dados numéricos , Malásia/epidemiologia , Doenças Respiratórias/epidemiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa