RESUMO
Snake venoms are heterogeneous mixtures of proteins and peptides used for prey subjugation. With modern proteomics there has been a rapid expansion in our knowledge of snake venom composition, resulting in the venom proteomes of 30% of vipers and 17% of elapids being characterised. From the reasonably complete proteomic coverage of front-fanged snake venom composition (179 species-68 species of elapids and 111 species of vipers), the venoms of vipers and elapids contained 42 different protein families, although 18 were only reported in < 5% of snake species. Based on the mean abundance and occurrence of the 42 protein families, they can be classified into 4 dominant, 6 secondary, 14 minor, and 18 rare protein families. The dominant, secondary and minor categories account for 96% on average of a snake's venom composition. The four dominant protein families are: phospholipase A2 (PLA2), snake venom metalloprotease (SVMP), three-finger toxins (3FTx), and snake venom serine protease (SVSP). The six secondary protein families are: L-amino acid oxidase (LAAO), cysteine-rich secretory protein (CRiSP), C-type lectins (CTL), disintegrins (DIS), kunitz peptides (KUN), and natriuretic peptides (NP). Venom variation occurs at all taxonomic levels, including within populations. The reasons for venom variation are complex, as variation is not always associated with geographical variation in diet. The four dominant protein families appear to be the most important toxin families in human envenomation, being responsible for coagulopathy, neurotoxicity, myotoxicity and cytotoxicity. Proteomic techniques can be used to investigate the toxicological profile of a snake venom and hence identify key protein families for antivenom immunorecognition.
Assuntos
Proteômica , Toxinas Biológicas , Humanos , Proteômica/métodos , Venenos de Serpentes , Antivenenos , Proteoma , PeptídeosRESUMO
Composition of Indian Russell's viper (Daboia russelii russelii) venom, a medically important snake and member of "Big Four" snakes of India was done by gel filtration chromatography followed by tandem mass spectrometry. The MS/MS analyses of tryptic digested gel filtration peaks divulged the presence of 63 different proteins belonging to 12 families. Phospholipase A2 (PLA2), serine proteases, metalloproteases, cysteine-rich secretory proteins, l-amino acid oxidase, C-type lectin-like proteins, kunitz-type serine protease inhibitor, disintegrin, nucleotidase, phosphodiesterase, vascular endothelial growth factor and vascular nerve growth factor families were identified. PLA2 enzymes with isoforms of N-, S- and H-type based on their first N-terminal amino acid residue were observed. The venom is also found to be rich in RVV-X, RVV-V and thrombin-like enzymes. Homologues of disintegrins with RGD and RTS motifs were also observed. The high percentage of PLA2 and proteases in the venom proteome could be responsible for the observed coagulopathy, haemorrhage and edema which can be correlated with the clinical manifestations of Russell's viper envenomation. This is the first proteomic analysis of Indian D. russelii venom which might assist in understanding the pathophysiological effects of viper envenomation. Such study will also be important for developing more effective antivenom for viper bite management.