Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 598: 107-112, 2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35158208

RESUMO

Yeast Gtr1p is a GTPase that forms a heterodimer with Gtr2p, another GTPase; it is involved in regulating TORC1 activity in nutrient signaling, including amino acid availability and growth control. Gtr1p is a positive regulator of TORC1, a kinase that regulates various cellular functions (e.g., protein synthesis and autophagy) under specific nutrient and environmental conditions, including oxidative stress. In this study, we examined the roles of Gtr1p in oxidative stress responses. We found that yeast cells expressing guanosine diphosphatase (GDP)-bound Gtr1p (Gtr1-S20Lp) were resistant to hydrogen peroxide (H2O2), whereas guanosine triphosphate (GTP)-bound Gtr1p (Gtr1-Q65Lp) was sensitive to H2O2 compared with the wild type. Consistent with these findings, yeast cells lacking Iml1p, a component of the GTPase-activating protein complex for Gtr1p, exhibited the H2O2-sensitive phenotype. In gtr1S20L cells, autophagy was highly induced under oxidative stress. gtr1Q65L cells showed decreased expression of the SNQ2 gene, which encodes a multidrug transporter involved in resistance to oxidative stress, and the overexpression of SNQ2 rescued the oxidative stress sensitivity of gtr1Q65L cells. These results suggest that Gtr1p is involved in oxidative stress responses through mechanisms that include autophagy and SNQ2 expression.


Assuntos
Proteínas Monoméricas de Ligação ao GTP/metabolismo , Estresse Oxidativo/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Autofagia , Regulação Fúngica da Expressão Gênica , Peróxido de Hidrogênio/farmacologia , Proteínas Monoméricas de Ligação ao GTP/genética , Estresse Oxidativo/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética
2.
Biosci Biotechnol Biochem ; 85(6): 1422-1432, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33770159

RESUMO

A yeast estrogen screening (YES) assay was improved to increase sensitivity for detection of phytoestrogens. New yeast strains minus one or the other of transporters Pdr5 or Snq2 and harboring yEGFP as a reporter gene were developed. The new strains showed 2-100-fold improvement in sensitivity for detection of standard estrogens and antiestrogens. In addition, the assay time (1 h) using the newly developed strains was shorter than that (4 h) previously reported. Furthermore, the snq2-minus strains were most effective for detection of estrogenic activity while the pdr5-minus strains were most effective for detection of antiestrogenic activity. The efficacy of the new methods was evaluated and confirmed by testing with 23 Thai medicinal plant species. The new strains were also tested for detection of xenoestrogens. The results revealed that the newly developed YES methods were specific and rapid and suitable for simple high-throughput screening or detection of estrogen-like compounds.


Assuntos
Bioensaio , Fitoestrógenos/metabolismo , Saccharomyces cerevisiae/metabolismo , Genes Reporter/genética , Saccharomyces cerevisiae/genética
3.
Toxicology ; 409: 129-136, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30118793

RESUMO

In animals, cigarette smoke may alter pharmacokinetics by altering activity and expression of ABC drug transporters. We previously demonstrated that cigarette smoke condensate (CSC) impairs activity and expression of several hepatic ABC drug transporters which mediate toxicant efflux. However, CSC effects on efflux transporters are still unknown in Saccharomyces cerevisiae which resists diverse chemical stresses, by inducing pleiotropic drug resistance (PDR) genes among others. The yeast ABC transporters are functionally and structurally homologous to the mammalian ones. In this study, Saccharomyces cerevisiae exposure to CSC for 15 min caused a dose-dependent inhibition of rhodamine 123 efflux, whereas a longer exposure (3 h) induced mRNA expression of the ABC PDR efflux pumps Pdr5, Snq2, Pdr 10 and Pdr15, and of Tpo1, a member of the major facilitator superfamily (MFS). CSC also increased toxicity of caffeine, which is handled by two PDR transporters, Pdr5 and Snq2. Taken together, these data demonstrated that yeast efflux transporters are targets of cigarette smoke chemicals, and that Saccharomyces cerevisiae may cope with CSC-induced stress, including the initial efflux inhibition, by induction of the mRNA of several plasma membrane PDR and MFS efflux transporters. Saccharomyces cerevisiae is therefore a valid model to investigate pollutant effects on ABC and MFS transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Cafeína/toxicidade , Proteínas Fúngicas/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Fumaça/efeitos adversos , Produtos do Tabaco/efeitos adversos , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Rodaminas/metabolismo , Saccharomyces cerevisiae/fisiologia
4.
Front Genet ; 9: 476, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30374366

RESUMO

Pleiotropic drug resistance (PDR) family of ATP-binding cassette (ABC) transporters play a key role in the simultaneous acquisition of resistance to a wide range of structurally and functionally unrelated cytotoxic compounds in yeasts. Saccharomyces cerevisiae Pdr18 was proposed to transport ergosterol at the plasma membrane, contributing to the maintenance of adequate ergosterol content and decreased levels of stress-induced membrane disorganization and permeabilization under multistress challenge leading to resistance to ethanol, acetic acid and the herbicide 2,4-D, among other compounds. PDR18 is a paralog of SNQ2, first described as a determinant of resistance to the chemical mutagen 4-NQO. The phylogenetic and neighborhood analysis performed in this work to reconstruct the evolutionary history of ScPDR18 gene in Saccharomycetaceae yeasts was focused on the 214 Pdr18/Snq2 homologs from the genomes of 117 strains belonging to 29 yeast species across that family. Results support the idea that a single duplication event occurring in the common ancestor of the Saccharomyces genus yeasts was at the origin of PDR18 and SNQ2, and that by chromosome translocation PDR18 gained a subtelomeric region location in chromosome XIV. The multidrug/multixenobiotic phenotypic profiles of S. cerevisiae pdr18Δ and snq2Δ deletion mutants were compared, as well as the susceptibility profile for Candida glabrata snq2Δ deletion mutant, given that this yeast species has diverged previously to the duplication event on the origin of PDR18 and SNQ2 genes and encode only one Pdr18/Snq2 homolog. Results show a significant overlap between ScSnq2 and CgSnq2 roles in multidrug/multixenobiotic resistance (MDR/MXR) as well as some overlap in azole resistance between ScPdr18 and CgSnq2. The fact that ScSnq2 and ScPdr18 confer resistance to different sets of chemical compounds with little overlapping is consistent with the subfunctionalization and neofunctionalization of these gene copies. The elucidation of the real biological role of ScSNQ2 will enlighten this issue. Remarkably, PDR18 is only found in Saccharomyces genus genomes and is present in almost all the recently available 1,000 deep coverage genomes of natural S. cerevisiae isolates, consistent with the relevant encoded physiological function.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa