RESUMO
Low pressure membrane takes a great role in hydraulic fracturing wastewater (HFW), while membrane fouling is a critical issue for the stable operation of microfiltration (MF). This study focused on fouling mitigation by sodium percarbonate (SPC) oxidation, activated by ultraviolet (UV) and ferrous ion (Fe(II)). The higher the concentration of oxidizer, the better the anti-fouling performance of MF membrane. Unlike severe MF fouling without oxidation (17.26 L/(m2·h)), UV/SPC and Fe(II)/SPC under optimized dosage improved the final flux to 740 and 1553 L/(m2·h), respectively, and the latter generated Fe(III) which acted as a coagulant. Fe(II)/SPC oxidation enabled a shift in fouling mechanism from complete blocking to cake filtration, while UV/SPC oxidation changed it to standard blockage. UV/SPC oxidation was stronger than Fe(II)/SPC oxidation in removing UV254 and fluorescent organics for higher oxidizing capacity, but the opposite was noted for DOC removal. The deposited foulants on membrane surface after oxidation decreased by at least 88% compared to untreated HFW. Correlation analysis showed that UV254, DOC and organic fraction were key parameters responsible for membrane fouling (correlation coefficientï¼0.80), oxidizing capacity and turbidity after oxidation were also important parameters. These results provide new insights for fouling control during the HFW treatment.
RESUMO
A novel pretreatment technique (i.e., using Sodium percarbonate, SPC) to improve the short-chain fatty acids (SCFA) production waste activated sludge (WAS) was proposed in this study. Results indicated that the maximum SCFA production of 1605.7 mg COD/L and acetic acid of 52.9% were attained at 0.2 g SPC/g TSS, being 8.4 and 2.8 times of the control (191.3 mg COD/L and 19%), respectively. Meanwhile, the optimal time for SCFA accumulation was decreased from 6d (control) to 4d (0.2 g/g TSS). Mechanism explorations unraveled that SPC largely accelerated WAS solubilization and enhanced the bioavailability of organics released from WAS. It improved enzymatic activities related to hydrolysis and acidogenesis, while suppressed the Coenzyme F420 responsible for SCFA consumption. Illumina MiSeq sequencing analysis showed that SPC substantially enhanced the relative abundances of hydrolytic and/or acid-forming microbes. Furthermore, CO3- and O2- were the key factors to production enhancement in SPC-involved sludge fermentation.
Assuntos
Ácidos Graxos Voláteis , Esgotos , Anaerobiose , Carbonatos , Fermentação , Concentração de Íons de HidrogênioRESUMO
The performance of Fe(III)-based catalyzed sodium percarbonate (SPC) for stimulating the oxidation of tetrachloroethene (PCE) for groundwater remediation applications was investigated. The chelating agents citric acid monohydrate (CIT), oxalic acid (OA), and Glutamic acid (Glu) significantly enhanced the degradation of PCE. Conversely, ethylenediaminetetraacetic acid (EDTA) had a negative impact on PCE degradation, which may due to its strong Fe chelation and HO⢠scavenging abilities. However, excessive SPC or chelating agent will retard PCE degradation. In addition, investigations using free radical probe compounds and radical scavengers revealed that PCE was primarily degraded by HO⢠radical oxidation in both the chelated and non-chelated systems, while O2â¢- also participated in the non-chelated system and the OA and Glu modified systems. According to the electron paramagnetic resonance (EPR) studies, the presence of HO⢠in the Fe(III)/SPC system was maintained much longer than that in the Fe(II)/SPC system. The results indicated that the addition of CIT, OA or Glu indeed enhanced the generation of HO⢠in the first 10 min and promoted degradation efficiency by increasing the amount of Fe(III) and maintaining the concentration of HO⢠radicals in solution. In conclusion, chelated Fe(III)-based catalyzed SPC oxidation is a promising method for the remediation of PCE-contaminated groundwater.
RESUMO
The prolonged hypoxic conditions hinder chronic wounds from healing and lead to severe conditions such as delayed re-epithelialization and enhanced risk of infection. Multifunctional wound dressings are highly required to address the challenges of chronic wounds. Herein, we report polyurethane-coated sodium per carbonate-loaded chitosan hydrogel (CSPUO2 ) as a multifunctional dressing. The hydrogels (Control, CSPU, and CSPUO2 ) were prepared by freeze gelation method and the developed hydrogels showed high porosity, good absorption capacity, and adequate biodegradability. The release of oxygen from the CSPUO2 hydrogel was confirmed by the increase in pH and a sustained oxygen release was observed over the period of 21 days, due to polyurethane (CSPU) coating. The CSPUO2 hydrogel exhibited around 2-fold increased angiogenic potential in CAM assay when compared with Control and CSPU dressing. CSPUO2 also showed good level of antibacterial efficacy against E. coli and S. aureus. In a full-thickness rat wound model, CSPUO2 hydrogel considerably accelerated wound healing with exceptional re-epithelialization granulation tissue formation less inflammatory cells and improved skin architecture highlighting the tremendous therapeutic potential of this hydrogel when compared with control and CSPU to treat chronic diabetic and burn wounds.
Assuntos
Quitosana , Ratos , Animais , Quitosana/farmacologia , Hidrogéis/farmacologia , Oxigênio/farmacologia , Escherichia coli , Staphylococcus aureus , Angiogênese , Poliuretanos , Cicatrização , Carbonatos , Antibacterianos/farmacologiaRESUMO
Membrane distillation (MD) offers promise for recycling shale gas produced water (SGPW), while membrane fouling is still a major obstacle in standalone MD. Herein, sodium percarbonate (SPC) oxidation was proposed as MD pretreatment, and the performance of the single MD, SPC-MD hybrid process and Fe(II)/SPC-MD hybrid process for SGPW treatment were systematically evaluated. Results showed that compared to raw SGPW, the application of SPC and Fe(II)/SPC led to the decrease of the fluorescent organics by 28.54 % and 54.52 %, respectively. The hydrophobic fraction decreased from 52.75 % in raw SGPW to 37.70 % and 27.20 % for SPC and Fe(II)/SPC, respectively, and the MD normalized flux increased from 0.19 in treating raw SGPW to 0.65 and 0.81, respectively. The superiority of SPC oxidation in reducing the deposited membrane foulants and restoring membrane properties was further confirmed through scanning electron microscopy observation, attenuated total reflection fourier transform infrared, water contact angle and surface tension analyses of fouled membranes. Correlation analysis revealed that hydrophobic/hydrophilic matters and fluorescent organics in SGPW took a crucial role in MD fouling. The mechanism of MD fouling mitigation by Fe(II)/SPC oxidation was attributed to the decrease in concentrations and hydrophobicity of organic by synergistic oxidation, coagulation and adsorption.
Assuntos
Carbonatos , Destilação , Membranas Artificiais , Oxirredução , Destilação/métodos , Carbonatos/química , Purificação da Água/métodos , Ferro/química , Interações Hidrofóbicas e HidrofílicasRESUMO
Large amounts of waste activated sludge are generated daily worldwide, posing significant environmental challenges. Anaerobic fermentation is a promising method for sludge disposal, but it has two technical bottlenecks: the availability of short-chain fatty acids (SCFAs)-producing substrates and SCFAs consumption by methanogenesis. This study proposes a pretreatment strategy combining sodium percarbonate (SPC) and magnetite (Fe3O4) to address these issues. Under optimized conditions (20 mg Fe3O4/g TSS and 15 mg SPC/g TSS), SCFAs production increased to 3244.10 ± 216.31 mg COD/L, about 3.06 times the control (1057.29 ± 35.06 mg COD/L) and surpassing reported treatments. The combined pretreatment enhanced the disruption of extracellular polymeric substances, increased the release of biodegradable matters, improved acidogenesis enzyme activities, and inhibited methanogenesis. Additionally, it increased NH4+-N release in favor of the recovery of phosphorus from sludge residual. This study demonstrates an efficient pretreatment for high SCFAs production and resource recovery from WAS.
Assuntos
Carbonatos , Ácidos Graxos Voláteis , Fermentação , Óxido Ferroso-Férrico , Esgotos , Eliminação de Resíduos Líquidos , Ácidos Graxos Voláteis/metabolismo , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Acetatos/metabolismo , Reatores BiológicosRESUMO
Ultrafiltration (UF) is extensively used for algae removal because of its ability to retain algal cells with high efficiency, but it still faces the problem of membrane fouling and low retention capacity of dissolved organics. Hence, a strategy of coagulation with chitosan quaternary ammonium salt (HTCC) enhanced by sodium percarbonate (SPC) pre-oxidation was proposed to improve the UF performance. The fouling resistances were calculated by a resistance-in-series model based on Darcy's formula, and the membrane fouling mechanism was evaluated using a pore plugging-cake filtration model. The effect of SPC-HTCC treatment on the properties of algal foulants was explored, and the result showed that the water quality was improved with the maximum removal rates of 78.8 %, 52.4 % and 79.5 % for algal cells, dissolved organic carbon and turbidity, respectively. The SPC could achieve a mild oxidation effect that degraded the electronegative organics attached to algal cells without destroying the cell integrity, making the algal pollutants easier to agglomerate through subsequent HTCC coagulation by forming larger flocs. In terms of membrane filtration, the terminal normalized flux was increased from 0.25 to 0.71, with the reversible and irreversible resistances reduced by 90.8 % and 40.2 %, individually. The synergistic treatment reduced the accumulation of algal cells and algae-derived organics on the membrane surface as inferred from the interface fouling characteristics. The interfacial free energy analysis showed that the synergistic treatment reduced the adhesion of contaminants to the membrane surface, as well as the attraction among pollutants. Overall, the proposed process has high application prospects for algae-laden water purification.
Assuntos
Compostos de Amônio , Quitosana , Purificação da Água , Ultrafiltração , Membranas ArtificiaisRESUMO
Ultrafiltration (UF) is a reliable method to treat algal-rich water, whereas severe membrane fouling has impeded its actual application. To improve UF performance and alleviate membrane fouling resulted by algal foulants, a novel strategy coupling ferrate (Fe(VI)) and sodium percarbonate (SPC) was proposed. During the coupling process, Fe(VI) was activated by SPC to generate high-valent Fe intermediates (Fe(V) and Fe(IV)), which played a crucial role in high-efficiency oxidation for algal foulants, and the in-situ formed Fe(III) particles decomposed by Fe(VI) also enhanced the coagulation and adsorption capacity to the coupling system. Under the triple effects of coagulation, adsorption and oxidation, the algal foulants were efficiently eliminated. The zeta potential increased from -32.70 mV to -6.56 mV at most, the particle size was significantly enlarged, and the generated flocs possessed a great settleability. The morphology, viability, and integrity of algae cells were effectively maintained. The dissolved organic matters and fluorescent organics were efficiently removed, as well as macromolecular organics were reduced into lower molecular weight components. With the collaborative effect of Fe(VI) and SPC, the terminal specific flux was increased from 0.29 to 0.92, and the reversible and irreversible fouling resistances were reduced by 98.5% and 69.4%, individually. The surface functional groups were changed, and the dominant mechanisms were also converted to pore blocking from cake layer filtration. Overall, the experimental results would provide some new thoughts in actual production for algal-rich water treatment and UF membrane fouling alleviation.
Assuntos
Ultrafiltração , Purificação da Água , Carbonatos , Compostos Férricos , Ferro , Membranas Artificiais , Purificação da Água/métodosRESUMO
To alleviate algal fouling in membrane water treatment processes, conventional technologies such as coagulation with poly aluminum chloride (PACl) has been widely adopted by many drinking water treatment plants. However, coagulation alone exhibited relatively weak removal effect for algal pollutants, and the coagulant residues due to the excess dosage also raised concerns. Thus, a novel process of coupling sodium percarbonate (SPC) oxidation and PACl coagulation was proposed, integrated with membrane filtration for algae-laden water treatment. The dosages of PACl and SPC were optimized, and the SPC dosing strategies were systematically compared. The changes in the characteristics of algal pollutants were investigated, and the results revealed that the resistance of algal foulants to aggregation was decreased, and the particle size of algal foulants became larger. With the synergism of coagulation and oxidation, the degradation of fluorescent organics was strengthened, and macromolecular biopolymers were decomposed into low molecular weight organics. The fouling control efficiency was further explored, and the results indicated that both irreversible and reversible fouling were effectively controlled, among which PACl/SPC (simultaneous treatment) performed best with the irreversible fouling reduced by 90.5%, while the efficiency of SPC-PACl (SPC followed by PACl) was relatively lower (57.3%). The fouling mechanism was altered by slowing the formation of cake filtration, and the reduction of algal cells played a more important role for the fouling alleviation. The interface properties of contaminated membranes (i.e., functional groups, images, and micromorphology) were characterized, and the efficiency of the proposed strategy was further verified. The proposed strategy exhibits great application values for improving membrane performance during algae-laden water treatment.
Assuntos
Filtração , Purificação da Água , Carbonatos , Membranas , OxirreduçãoRESUMO
The frequent occurrence of cyanobacterial blooms has become a concern for drinking water safety. Common pre-oxidation, which was widely considered to enhance the followed coagulation, can cause the rupture of algae cell, leading to the undesirable release of intracellular organic matter. In this study, the Fe2+ activating sodium percarbonate (SPC/Fe2+) process for pre-oxidation and in situ coagulation was proved to effectively remove Microcystis aeruginosa without damaging cell integrity at optimal combined doses of SPC (0.2 mM) and Fe2+ (0.2 mM). Moreover, the SPC/Fe2+ process can not only control the release of MCs, but also reduce extracellular MCs from 5.22 µg/L to 1.50 µg/L, due to their moderate oxidation. Meanwhile, the SPC/Fe2+ treatment produces low levels of residual Fe after settling. During sludge ageing, owing to oxidation damage on cells arising from the SPC/Fe2+ treatment, cells continually suffered severe damage and lysed on day 4, leading to large release of intracellular organic matter and MCs, correspondingly. As a result, it is worth noting that the M. aeruginosa cells in stored sludge should be treated or disposed of early. These findings support the development of a green and cost-effective technology to handle cyanobacteria-containing water based on SPC/Fe2+ for ensuring water quality.
Assuntos
Microcystis , Purificação da Água , Carbonatos , MicrocistinasRESUMO
In this study, the common chlorinated solvent trichloroethene (TCE) was selected as the target contaminant. The aqueous solution after solubilization treatment (containing TCE and sodium dodecyl sulfate (SDS)) was used as the research object to carry out the remediation technology research of citric acid (CA) enhanced Fe(II) activation in sodium percarbonate (SPC) system. In 0.15 mM TCE and 1 critical micelle concentration (CMC) SDS solution, CA chelating Fe(II) activated SPC could effectively promote 93.2% degradation of TCE when the dosages of SPC, Fe(II) and CA were 3.0, 6.0 and 3.0 mM, respectively. SDS had a significant inhibitory effect on the degradation of TCE, and the surface tension changed after the reaction. The addition of CA greatly increased the generation of hydroxyl radicals (HO) in the system, while the removal of TCE was mainly attributed to HO, and the removed TCE was almost completely dechlorinated. The pH range from 3 to 7 could keep the TCE degradation above 80.0%. In the actual groundwater remediation, this technique could also efficiently degrade TCE (including SDS), showing a great application potential and development prospective in practice.
Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Carbonatos , Ácido Cítrico , Compostos Ferrosos , Oxirredução , Estudos Prospectivos , Dodecilsulfato de Sódio , Poluentes Químicos da Água/análiseRESUMO
The degradation performance of trichloroethylene (TCE) by sodium percarbonate (SPC) activated with citric acid (CA) chelated Fe(II) in the presence of nonionic surfactant Tween-80 was investigated. The addition of CA successfully prevented the precipitation of iron and facilitated TCE degradation. However, Tween-80 had an inhibitory effect on TCE degradation mainly due to the competition of ∗OH between Tween-80 and TCE. The effect of SPC and Fe(II) dosage on TCE degradation was also explored and the results displayed that 87.2% of TCE could be degraded in 15 min at the SPC/Fe(II)/CA/TCE molar ratio of 3/4/2/1. Free radical probe tests confirmed that both O2-∗ and ∗OH were generated in the SPC/Fe(II)/CA system. Free radical scavenging tests implied that the degradation of TCE in the SPC/Fe(II)/CA system was mainly attributed to ∗OH, while O2-∗ was only partially involved in the degradation of TCE. In addition, TCE removal was suppressed with the raising of the initial solution pH from 3.0 to 9.0. The actual groundwater (containing Tween-80) tests confirmed that 93.2% of TCE degradation could be achieved at the SPC/Fe(II)/CA/TCE molar ratio of 30/40/10/1 and strongly demonstrated that the SPC/Fe(II)/CA process has potential for the in situ treatment of TCE contaminated groundwater in the presence of surfactant Tween-80. In conclusion, TCE degradation by Fe(II) activated SPC system in the presence of Tween-80 can be significantly enhanced with the addition of CA, and this finding offers an innovative direction for removing chlorinated organic contaminants from groundwater in contaminated site after surfactant solubilization treatment.
Assuntos
Carbonatos/química , Tensoativos/química , Tricloroetileno/química , Poluentes Químicos da Água/química , Quelantes , Ácido Cítrico , Compostos Ferrosos/química , Água Subterrânea , Ferro , Oxirredução , Polissorbatos , Surfactantes Pulmonares , Poluentes Químicos da Água/análiseRESUMO
Zeolite supported nano iron-nickel bimetallic composite (Z-nZVI-Ni) was prepared using a liquid-phase reduction process. The corresponding surface morphologies and physico-chemical properties of the Z-nZVI-Ni composite were determined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy dispersive X-ray spectra (EDS), Brunauer Emmett Teller (BET) adsorption, wide angle X-ray diffractometry (WA-XRD), and Fourier transform infrared spectroscopy (FTIR). The results indicated high dispersion of iron and nickel nano particles on the zeolite sheet with an enhanced surface area. Complete destruction of trichloroethene (TCE) and efficient removal of total organic carbon (TOC) were observed by using Z-nZVI-Ni as a heterogeneous catalyst for a Fenton-like oxidation process employing sodium percarbonate (SPC) as an oxidant. The electron spin resonance (ESR) of Z-nZVI-Ni verified the generation and intensity of hydroxyl radicals (OHâ¢). The quantification of OH⢠elucidated by using p-chlorobenzoic acid, a probe indicator, confirmed the higher intensity of OHâ¢. The transformation products were identified using GC-MS. The slow iron and nickel leaching offered higher stability and better catalytic activity of Z-nZVI-Ni, demonstrating its prospective long term applications in groundwater for TCE degradation.
RESUMO
In this study, the effects of reducing agents on the degradation of tetrachloroethene (PCE) were investigated in the Fe(II)/Fe(III) catalyzed sodium percarbonate (SPC) system. The addition of reducing agents, including hydroxylamine hydrochloride, sodium sulfite, ascorbic acid and sodium ascorbate, accelerated the Fe(III)/Fe(II) redox cycle, leading to a relatively steady Fe(II) concentration and higher production of free radicals. This, in turn, resulted in enhanced PCE oxidation by SPC, with almost complete PCE removal obtained for appropriate Fe and SPC concentrations. The chemical probe tests, using nitrobenzene and carbon tetrachloride, demonstrated that HO was the predominant radical in the system and that O2(-) played a minor role, which was further confirmed by the results of electron spin resonance measurements. PCE degradation decreased significantly with the addition of isopropanol, a HO scavenger, supporting the hypothesis that HO was primarily responsible for PCE degradation. It is noteworthy that Cl(-) release was slightly delayed in the first 20 min, indicating that intermediate products were produced. However, these intermediates were further degraded, resulting in the complete conversion of PCE to CO2. In conclusion, the use of reducing agents to enhance Fe(II)/Fe(III) catalyzed SPC oxidation appears to be a promising approach for the rapid degradation of organic contaminants in groundwater.