Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(33): e2304663120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549278

RESUMO

Soil is an immense habitat for diverse organisms across the tree of life, but just how many organisms live in soil is surprisingly unknown. Previous efforts to enumerate soil biodiversity consider only certain types of organisms (e.g., animals) or report values for diverse groups without partitioning species that live in soil versus other habitats. Here, we reviewed the biodiversity literature to show that soil is likely home to 59 ± 15% of the species on Earth. We therefore estimate an approximately two times greater soil biodiversity than previous estimates, and we include representatives from the simplest (microbial) to most complex (mammals) organisms. Enchytraeidae have the greatest percentage of species in soil (98.6%), followed by fungi (90%), Plantae (85.5%), and Isoptera (84.2%). Our results demonstrate that soil is the most biodiverse singular habitat. By using this estimate of soil biodiversity, we can more accurately and quantitatively advocate for soil organismal conservation and restoration as a central goal of the Anthropocene.


Assuntos
Biodiversidade , Solo , Animais , Ecossistema , Fungos , Plantas , Mamíferos
2.
Ecol Lett ; 27(6): e14462, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39031813

RESUMO

The rhizosphere influence on the soil microbiome and function of crop wild progenitors (CWPs) remains virtually unknown, despite its relevance to develop microbiome-oriented tools in sustainable agriculture. Here, we quantified the rhizosphere influence-a comparison between rhizosphere and bulk soil samples-on bacterial, fungal, protists and invertebrate communities and on soil multifunctionality across nine CWPs at their sites of origin. Overall, rhizosphere influence was higher for abundant taxa across the four microbial groups and had a positive influence on rhizosphere soil organic C and nutrient contents compared to bulk soils. The rhizosphere influence on abundant soil microbiomes was more important for soil multifunctionality than rare taxa and environmental conditions. Our results are a starting point towards the use of CWPs for rhizosphere engineering in modern crops.


Assuntos
Produtos Agrícolas , Microbiota , Rizosfera , Microbiologia do Solo , Produtos Agrícolas/microbiologia , Solo/química , Fungos/fisiologia , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Invertebrados/microbiologia , Invertebrados/fisiologia
3.
Proc Biol Sci ; 291(2030): 20241595, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39226929

RESUMO

Ecoacoustics-or acoustic ecology-aids in monitoring elusive and protected species in several ecological contexts. For example, passive acoustic monitoring (PAM), which involves autonomous acoustic sensors, is widely used to detect various taxonomic groups in terrestrial and aquatic ecosystems, from birds and bats to fish and cetaceans. Here, we illustrate the potential of ecoacoustics to monitor soil biodiversity (specifically fauna)-a crucial endeavour given that 59% of species live in soil yet 75% of soils are affected by degradation. We describe the sources of sound in the soil (e.g. biological, geological and anthropogenic) and the ability of acoustic technology to detect and differentiate between these sounds, highlighting opportunities and current gaps in knowledge. We also propose a roadmap for the future development of optimized hardware, analytical pipelines and experimental approaches. Soil ecoacoustics is an emerging field with considerable potential to improve soil biodiversity monitoring and 'soil health' diagnostics. Indeed, early studies suggest soil ecoacoustics can be successfully applied in various ecosystems (e.g. grasslands, temperate, tropical and arid forests) and land uses (e.g. agriculture, viticulture, natural and restored ecosystems). Given the low cost, minimal intrusiveness, and effectiveness in supporting soil biodiversity assessments and biosecurity risks, we advocate for the advancement of soil ecoacoustics for future land management applications.


Assuntos
Acústica , Biodiversidade , Solo , Solo/química , Animais , Monitoramento Ambiental/métodos , Ecossistema , Conservação dos Recursos Naturais/métodos
4.
Mol Ecol ; : e17501, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39175265

RESUMO

Microbial and microeukaryotic communities are extremely abundant and diverse in soil habitats where they play critical roles in ecosystem functioning and services that are essential to soil health. Soil biodiversity is influenced by above-ground (vegetation) and below-ground factors (soil properties), which together create habitat-specific conditions. However, the compound effects of vegetation and soil properties on soil communities are less studied or often focused on one component of the soil biota. Here, we integrate metabarcoding (16S and 18S rRNA genes) and nematode morphology to assess the effects of habitat and soil properties shaping microbial and microeukaryotic communities as well as nematode-associated microbiomes. We show that both vegetation and soil properties (soil bulk density) were major factors structuring microbial and microeukaryotic communities in semi-arid soil habitats. Despite having lower nutrients and lower pH, denser soils displayed significantly higher alpha diversity than less dense soils across datasets. Nematode-associated microbiomes have lower microbial diversity, strongly differ from soil microbes and are more likely to respond to microscale variations among samples than to vegetation or soil bulk density. Consequently, different nematode lineages and trophic groups are likely to display similar associated microbiomes when sharing the same microhabitat. Different microbiome taxa were enriched within specific nematode lineages (e.g. Mycobacterium, Candidatus Cardinium) highlighting potentially new species-specific associations that may confer benefits to their soil nematode hosts. Our findings highlight the importance of exploring above- and below-ground effects to assess community structure in terrestrial habitats, and how fine-scale analyses are critical for understanding patterns of host-associated microbiomes.

5.
Glob Chang Biol ; 30(3): e17234, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38469998

RESUMO

Rapid biodiversity losses under global climate change threaten forest ecosystem functions. However, our understanding of the patterns and drivers of multiple ecosystem functions across biodiversity gradients remains equivocal. To address this important knowledge gap, we measured simultaneous responses of multiple ecosystem functions (nutrient cycling, soil carbon stocks, organic matter decomposition, plant productivity) to a tree species richness gradient of 1, 4, 8, 16, and 32 species in a young subtropical forest. We found that tree species richness had negligible effects on nutrient cycling, organic matter decomposition, and plant productivity, but soil carbon stocks and ecosystem multifunctionality significantly increased with tree species richness. Linear mixed-effect models showed that soil organisms, particularly arbuscular mycorrhizal fungi (AMF) and soil nematodes, elicited the greatest relative effects on ecosystem multifunctionality. Structural equation models revealed indirect effects of tree species richness on ecosystem multifunctionality mediated by trophic interactions in soil micro-food webs. Specifically, we found a significant negative effect of gram-positive bacteria on soil nematode abundance (a top-down effect), and a significant positive effect of AMF biomass on soil nematode abundance (a bottom-up effect). Overall, our study emphasizes the significance of a multitrophic perspective in elucidating biodiversity-multifunctionality relationships and highlights the conservation of functioning soil micro-food webs to maintain multiple ecosystem functions.


Assuntos
Ecossistema , Micorrizas , Cadeia Alimentar , Árvores , Solo/química , Biodiversidade , Plantas , Carbono
6.
Ann Bot ; 133(3): 399-412, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38085925

RESUMO

BACKGROUND: The soil microbiome plays a pivotal role in maintaining ecological balance, supporting food production, preserving water quality and safeguarding human health. Understanding the intricate dynamics within the soil microbiome necessitates unravelling complex bacterial-fungal interactions (BFIs). BFIs occur in diverse habitats, such as the phyllosphere, rhizosphere and bulk soil, where they exert substantial influence on plant-microbe associations, nutrient cycling and overall ecosystem functions. In various symbiotic associations, fungi form mycorrhizal connections with plant roots, enhancing nutrient uptake through the root and mycorrhizal pathways. Concurrently, specific soil bacteria, including mycorrhiza helper bacteria, play a pivotal role in nutrient acquisition and promoting plant growth. Chemical communication and biofilm formation further shape plant-microbial interactions, affecting plant growth, disease resistance and nutrient acquisition processes. SCOPE: Promoting synergistic interactions between mycorrhizal fungi and soil microbes holds immense potential for advancing ecological knowledge and conservation. However, despite the significant progress, gaps remain in our understanding of the evolutionary significance, perception, functional traits and ecological relevance of BFIs. Here we review recent findings obtained with respect to complex microbial communities - particularly in the mycorrhizosphere - and include the latest advances in the field, outlining their profound impacts on our understanding of ecosystem dynamics and plant physiology and function. CONCLUSIONS: Deepening our understanding of plant BFIs can help assess their capabilities with regard to ecological and agricultural safe-guarding, in particular buffering soil stresses, and ensuring sustainable land management practices. Preserving and enhancing soil biodiversity emerge as critical imperatives in sustaining life on Earth amidst pressures of anthropogenic climate change. A holistic approach integrates scientific knowledge on bacteria and fungi, which includes their potential to foster resilient soil ecosystems for present and future generations.


Assuntos
Microbiota , Micorrizas , Humanos , Ecossistema , Raízes de Plantas , Micorrizas/fisiologia , Simbiose , Solo , Microbiologia do Solo , Fungos
7.
Conserv Biol ; 38(2): e14187, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37768192

RESUMO

Belowground biodiversity distribution does not necessarily reflect aboveground biodiversity patterns, but maps of soil biodiversity remain scarce because of limited data availability. Earthworms belong to the most thoroughly studied soil organisms and-in their role as ecosystem engineers-have a significant impact on ecosystem functioning. We used species distribution modeling (SDMs) and available data sets to map the spatial distribution of commonly observed (i.e., frequently recorded) earthworm species (Annelida, Oligochaeta) across Europe under current and future climate conditions. First, we predicted potential species distributions with commonly used models (i.e., MaxEnt and Biomod) and estimated total species richness (i.e., number of species in a 5 × 5 km grid cell). Second, we determined how much the different types of protected areas covered predicted earthworm richness and species ranges (i.e., distributions) by estimating the respective proportion of the range area. Earthworm species richness was high in central western Europe and low in northeastern Europe. This pattern was mainly associated with annual mean temperature and precipitation seasonality, but the importance of predictor variables to species occurrences varied among species. The geographical ranges of the majority of the earthworm species were predicted to shift to eastern Europe and partly decrease under future climate scenarios. Predicted current and future ranges were only poorly covered by protected areas, such as national parks. More than 80% of future earthworm ranges were on average not protected at all (mean [SD] = 82.6% [0.04]). Overall, our results emphasize the urgency of considering especially vulnerable earthworm species, as well as other soil organisms, in the design of nature conservation measures.


Efectos del clima sobre la distribución y conservación de la lombriz de tierra europea Resumen La distribución de la biodiversidad del subsuelo no refleja necesariamente los patrones de biodiversidad, pero los mapas de la biodiversidad del suelo aún son escasos debido a la disponibilidad limitada de datos. Las lombrices son uno de los organismos del suelo más estudiados a detalle­en su papel de ingenieros del ecosistema­y tienen un impacto significativo sobre el funcionamiento de ecosistema. Usamos modelos de distribución de especies (MDE) y conjuntos de datos disponibles para mapear la distribución espacial de las especies (Annelida, Oligochaeta) de lombrices más observadas (es decir, registradas con frecuencia) en toda Europa bajo el clima actual y el futuro. Primero pronosticamos la distribución potencial de las especies con modelos de uso común (MaxEnt y Biomod) y estimamos la riqueza total de especies (número de especies en una cuadrícula de 5 × 5 km). Después determinamos cuánto pronosticaban los diferentes tipos de áreas protegidas contempladas la riqueza de lombrices y la distribución de las especies mediante la estimación de la proporción respectiva del rango del área. La riqueza de especies fue alta en el occidente central y baja en el noreste de Europa. Este patrón estuvo asociado principalmente con la temperatura media anual y la estacionalidad de la precipitación, aunque la importancia de las variables de pronóstico para la presencia de la especie varió entre especies. Se pronosticó que la distribución geográfica de la mayoría de las especies cambiaría al este de Europa y disminuiría parcialmente bajo los escenarios climáticos futuros. El pronóstico de la distribución actual y futura contaba con una cobertura deficiente de las áreas protegidas, como los parques nacionales. En promedio, más del 80% de la distribución futura de las lombrices no estaba protegido (promedio [SD] = 82.6% [0.04]). En general, nuestros resultados destacan la urgencia por considerar a las especies vulnerables de lombrices, así como a otros organismos del suelo, en el diseño de las medidas de conservación.


Assuntos
Ecossistema , Oligoquetos , Animais , Conservação dos Recursos Naturais , Biodiversidade , Solo , Mudança Climática
8.
Environ Res ; 262(Pt 2): 119931, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39260717

RESUMO

Soil health is integral to sustainable agroecosystem management. Current monitoring and assessment practices primarily focus on soil physicochemical properties, yet the perspective of multitrophic biodiversity remains underexplored. Here we used environmental DNA (eDNA) technology to monitor multitrophic biodiversity in four typical agroecosystems, and analyzed the species composition and diversity changes in fungi, bacteria and metazoan, and combined with the traditional physicochemical variables to establish a soil health assessment framework centered on biodiversity data. First, eDNA technology detected rich multitrophic biodiversity in four agroecosystems, including 100 phyla, 273 classes, 611 orders, 1026 families, 1668 genera and 1146 species with annotated classification, and the relative sequence abundance of dominant taxa fluctuates tens of times across agroecosystems. Second, significant differences in soil physicochemical variables such as organic matter (OM), total nitrogen (TN) and available phosphorus (AP) were observed among different agroecosystems, nutrients were higher in cropland and rice paddies, while heavy metals were higher in fish ponds and lotus ponds. Third, biodiversity metrics, including α and ß diversity, also showed significant changes across agroecosystems, the soil biota was generally more sensitive to nutrients (e.g., OM, TN or AP), while the fungal communities were mainly affected by heavy metals in October (e.g., Cu and Cr). Finally, we screened 48 sensitive organismal indicators and found significant positive consistency between the developed eDNA indices and the traditional soil quality index (SQI, reaching up to R2 = 0.58). In general, this study demonstrated the potential of eDNA technology in soil health assessment and underscored the importance of a multitrophic perspective for efficient monitoring and managing agroecosystems.

9.
Ecotoxicol Environ Saf ; 284: 116994, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39236652

RESUMO

The effect of pesticide residues on non-target microorganisms in multi-contaminated soils remains poorly understood. In this study, we examined the dissipation of commonly used pesticides in a multi-contaminated vineyard soil and its effect on bacterial, fungal, and protistan communities. We conducted laboratory soil microcosm experiments under varying temperature (20°C and 30°C) and water content (20 % and 40 %) conditions. Pesticide dissipation half-lives ranged from 27 to over 300 days, depending on the physicochemical properties of the pesticides and the soil conditions. In both autoclaved and non-autoclaved soil experiments, over 50 % of hydrophobic pesticides (dimethomorph > isoxaben > simazine = atrazine = carbendazim) dissipated within 200 days at 20°C and 30°C. However, the contribution of biodegradation to the overall dissipation of soluble pesticides (rac-metalaxyl > isoproturon = pyrimethanil > S-metolachlor) increased to over 75 % at 30°C and 40 % water content. This suggests that soluble pesticides became more bioavailable, with degradation activity increasing with higher temperature and soil water content. In contrast, the primary process contributing to the dissipation of hydrophobic pesticides was sequestration to soil. High-throughput amplicon sequencing analysis indicated that water content, temperature, and pesticides had domain-specific effects on the diversity and taxonomic composition of bacterial, fungal, and protistan communities. Soil physicochemical properties had a more significant effect than pesticides on the various microbial domains in the vineyard soil. However, pesticide exposure emerged as a secondary factor explaining the variations in microbial communities, with a more substantial effect on protists compared to bacterial and fungal communities. Overall, our results highlight the variability in the dissipation kinetics and processes of pesticides in a multi-contaminated vineyard soil, as well as their effects on bacterial, fungal, and protistan communities.


Assuntos
Biodegradação Ambiental , Fungos , Praguicidas , Microbiologia do Solo , Poluentes do Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Fungos/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Fazendas , Solo/química , Temperatura , Pirimidinas , Resíduos de Praguicidas/análise , Monitoramento Ambiental , Eucariotos/efeitos dos fármacos , Compostos de Fenilureia
10.
J Environ Manage ; 370: 122779, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39366225

RESUMO

Anthropogenic activities have resulted in rising atmospheric concentrations of carbon dioxide (CO2) and ozone (O3), exerting substantial direct and indirect impacts on soil biodiversity within agroecosystems. Despite the considerable attention given to the individual impacts of elevated CO2 and O3 levels, the combined effects on soil nematode communities have not been extensively explored. In this study, we investigated the interactive effects of elevated CO2 (+200 ppm, eCO2) and O3 (+40 ppb, eO3) levels on the abundance, diversity, and trophic composition of soil nematode communities associated with two rice cultivars (Nanjing 5055, NJ5055 and Wuyujing 3, WYJ3). Our findings revealed that soil nematodes had greater abundances under eO3, whereas eCO2 had no significant impacts. Conversely, both eCO2 and eO3, and their combination led to significant reductions in nematode generic richness, accompanied by a decline in the diversity particularly associated with the WYJ3 cultivar. Moreover, eCO2 and eO3 influenced nematode community composition and environmental factors, particularly for the WYJ3 cultivar. Both eCO2 and eO3 significantly increased soil nitrate levels. The changes in nematode community composition were related to soil nitrate levels, as well as nitrogen and carbon concentrations in rice plant roots. Furthermore, interactions between eCO2 and eO3 significantly impacted soil nematode abundance and trophic composition, revealing intricate consequences for soil nematode communities that transcend predictions based on single-factor experiments. This study unveils the potential impacts posed by eCO2 and eO3 on soil biodiversity mediated by rice cultivars, plant functional characteristics and soil feedback mechanisms, thereby underscoring the complex and interactive outcomes arising from concurrent drivers of climate change within the soil food web.

11.
J Environ Manage ; 364: 121379, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38870787

RESUMO

Chemical nutrient amendment by human activities can lead to environmental impacts contributing to global biodiversity loss. However, the comprehensive understanding of how below- and above-ground biodiversity shifts under fertilization regimes in natural ecosystems remains elusive. Here, we conducted a seven-year field experiment (2011-2017) and examined the effects of different fertilization on plant biodiversity and soil belowground (prokaryotic and eukaryotic) communities in the alpine meadow of the Tibetan Plateau, based on data collected in 2017. Our results indicate that nitrogen addition promoted total plant biomass but reduced the plant species richness. Conversely, phosphorus enrichment did not promote plant biomass and exhibited an unimodal pattern with plant richness. In the belowground realm, distinct responses of soil prokaryotic and eukaryotic communities were observed under fertilizer application. Specifically, soil prokaryotic diversity decreased with nitrogen enrichment, correlating with shifts in soil pH. Similarly, soil eukaryotic diversity decreased with increased phosphorous inputs, aligning with the equilibrium between soil available and total phosphorus. We also established connections between these soil organism communities with above-ground plant richness and biomass. Overall, our study contributes to a better understanding of the sustainable impacts of human-induced nutrient enrichment on the natural environment. Future research should delve deeper into the long-term effects of fertilization on soil health and ecosystem functioning, aiming to achieve a balance between agricultural productivity and environmental conservation.


Assuntos
Biodiversidade , Fertilizantes , Solo , Tibet , Solo/química , Ecossistema , Fósforo/análise , Microbiologia do Solo , Biomassa , Nitrogênio , Agricultura
12.
New Phytol ; 240(5): 2020-2034, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37700504

RESUMO

Agriculture is a major source of nutrient pollution, posing a threat to the earth system functioning. Factors determining the nutrient use efficiency of plant-soil systems need to be identified to develop strategies to reduce nutrient losses while ensuring crop productivity. The potential of soil biota to tighten nutrient cycles by improving plant nutrition and reducing soil nutrient losses is still poorly understood. We manipulated soil biota communities in outdoor lysimeters, planted maize, continuously collected leachates, and measured N2 O- and N2 -gas emissions after a fertilization pulse to test whether differences in soil biota communities affected nutrient recycling and N losses. Lysimeters with strongly simplified soil biota communities showed reduced crop N (-20%) and P (-58%) uptake, strongly increased N leaching losses (+65%), and gaseous emissions (+97%) of N2 O and N2 . Soil metagenomic analyses revealed differences in the abundance of genes responsible for nutrient uptake, nitrate reduction, and denitrification that helped explain the observed nutrient losses. Soil biota are major drivers of nutrient cycling and reductions in the diversity or abundance of certain groups (e.g. through land-use intensification) can disrupt nutrient cycling, reduce agricultural productivity and nutrient use efficiency, and exacerbate environmental pollution and global warming.


Assuntos
Nitrogênio , Solo , Nitrogênio/análise , Agricultura , Gases , Biota , Nutrientes , Óxido Nitroso , Fertilizantes
13.
New Phytol ; 238(6): 2305-2312, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37010088

RESUMO

Plant-nematode interactions are mainly considered from the negative aspect with a focus on plant-parasitic nematodes (PPNs), which is justified considering the agronomic losses caused by PPNs. Despite the fact that PPNs are outnumbered by nonparasitic free-living nematodes (FLNs), the functional importance of FLNs, especially with regard to plant performance, remains largely unknown. Here, we provide a comprehensive overview and most recent insights into soil nematodes by showing direct and indirect links of both PPNs and FLNs with plant performance. We especially emphasize the knowledge gaps and potential of FLNs as important indirect players in driving plant performance such as stimulating the resistance to pests via improving the disease suppressive activity of the rhizobiome. Together, we present a holistic view of soil nematodes as positive and negative contributors to plant performance, accentuating the positive but underexplored role of FLNs.


Assuntos
Nematoides , Doenças das Plantas , Animais , Doenças das Plantas/parasitologia , Plantas/parasitologia , Agricultura/métodos , Solo
14.
Glob Chang Biol ; 29(2): 296-307, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36281756

RESUMO

Biodiversity, both aboveground and belowground, is negatively affected by global changes such as drought or warming. This loss of biodiversity impacts Earth's ecosystems, as there is a positive relationship between biodiversity and ecosystem functioning (BEF). Even though soils host a large fraction of biodiversity that underlies major ecosystem functions, studies exploring the relationship between soil biodiversity and ecosystem functioning (sBEF) as influenced by global change drivers (GCDs) remain scarce. Here we highlight the need to decipher sBEF relationships under the effect of interactive GCDs that are intimately connected in a changing world. We first state that sBEF relationships depend on the type of function (e.g., C cycling or decomposition) and biodiversity facet (e.g., abundance, species richness, or biomass) considered. Then, we shed light on the impact of single and interactive GCDs on soil biodiversity and sBEF and show that results from scarce studies studying interactive effects range from antagonistic to additive to synergistic when two individual GCDs cooccur. This indicates the need for studies quantitatively accounting for the impacts of interactive GCDs on sBEF relationships. Finally, we provide guidelines for optimized methodological and experimental approaches to study sBEF in a changing world that will provide more valuable information on the real impact of (interactive) GCDs on sBEF. Together, we highlight the need to decipher the sBEF relationship in soils to better understand soil functioning under ongoing global changes, as changes in sBEF are of immediate importance for ecosystem functioning.


Assuntos
Ecossistema , Solo , Biodiversidade , Biomassa
15.
Glob Chang Biol ; 29(22): 6276-6285, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37578170

RESUMO

The decomposition of litter and the supply of nutrients into and from the soil are two fundamental processes through which the above- and belowground world interact. Microbial biodiversity, and especially that of decomposers, plays a key role in these processes by helping litter decomposition. Yet the relative contribution of litter diversity and soil biodiversity in supporting multiple ecosystem services remains virtually unknown. Here we conducted a mesocosm experiment where leaf litter and soil biodiversity were manipulated to investigate their influence on plant productivity, litter decomposition, soil respiration, and enzymatic activity in the littersphere. We showed that both leaf litter diversity and soil microbial diversity (richness and community composition) independently contributed to explain multiple ecosystem functions. Fungal saprobes community composition was especially important for supporting ecosystem multifunctionality (EMF), plant production, litter decomposition, and activity of soil phosphatase when compared with bacteria or other fungal functional groups and litter species richness. Moreover, leaf litter diversity and soil microbial diversity exerted previously undescribed and significantly interactive effects on EMF and multiple individual ecosystem functions, such as litter decomposition and plant production. Together, our work provides experimental evidence supporting the independent and interactive roles of litter and belowground soil biodiversity to maintain ecosystem functions and multiple services.

16.
Glob Chang Biol ; 29(19): 5706-5719, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37449367

RESUMO

Soil eukaryotes play a crucial role in maintaining ecosystem functions and services, yet the factors driving their diversity and distribution remain poorly understood. While many studies focus on some eukaryotic groups (mostly fungi), they are limited in their spatial scale. Here, we analyzed an unprecedented amount of observational data of soil eukaryomes at continental scale (787 sites across Europe) to gain further insights into the impact of a wide range of environmental conditions (climatic and edaphic) on their community composition and structure. We found that the diversity of fungi, protists, rotifers, tardigrades, nematodes, arthropods, and annelids was predominantly shaped by ecosystem type (annual and permanent croplands, managed and unmanaged grasslands, coniferous and broadleaved woodlands), and higher diversity of fungi, protists, nematodes, arthropods, and annelids was observed in croplands than in less intensively managed systems, such as coniferous and broadleaved woodlands. Also in croplands, we found more specialized eukaryotes, while the composition between croplands was more homogeneous compared to the composition of other ecosystems. The observed high proportion of overlapping taxa between ecosystems also indicates that DNA has accumulated from previous land uses, hence mimicking the land transformations occurring in Europe in the last decades. This strong ecosystem-type influence was linked to soil properties, and particularly, soil pH was driving the richness of fungi, rotifers, and annelids, while plant-available phosphorus drove the richness of protists, tardigrades, and nematodes. Furthermore, the soil organic carbon to total nitrogen ratio crucially explained the richness of fungi, protists, nematodes, and arthropods, possibly linked to decades of agricultural inputs. Our results highlighted the importance of long-term environmental variables rather than variables measured at the time of the sampling in shaping soil eukaryotic communities, which reinforces the need to include those variables in addition to ecosystem type in future monitoring programs and conservation efforts.


Assuntos
Artrópodes , Ecossistema , Animais , Solo/química , Eucariotos , Carbono , Biodiversidade , Europa (Continente) , Fungos , Microbiologia do Solo
17.
Microb Ecol ; 85(2): 669-683, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35112151

RESUMO

Soil is one of the most important assets of the planet Earth, responsible for maintaining the biodiversity and managing the ecosystem services for both managed and natural ecosystems. It encompasses large proportion of microscopic biodiversity, including prokaryotes and the microscopic eukaryotes. Soil microbiome is critical in managing the soil functions, but their activities have diminutive recognition in few systems like desert land and forest ecosystems. Soil microbiome is highly dependent on abiotic and biotic factors like pH, carbon content, soil structure, texture, and vegetation, but it can notably vary with ecosystems and the respective inhabitants. Thus, unboxing this black box is essential to comprehend the basic components adding to the soil systems and supported ecosystem services. Recent advancements in the field of molecular microbial ecology have delivered commanding tools to examine this genetic trove of soil biodiversity. Objective of this review is to provide a critical evaluation of the work on the soil microbiome, especially since the advent of the NGS techniques. The review also focuses on advances in our understanding of soil communities, their interactions, and functional capabilities along with understanding their role in maneuvering the biogeochemical cycle while underlining and tapping the unprecedented metagenomics data to infer the ecological attributes of yet undiscovered soil microbiome. This review focuses key research directions that could shape the future of basic and applied research into the soil microbiome. This review has led us to understand that it is difficult to generalize that soil microbiome plays a substantiated role in shaping the soil networks and it is indeed a vital resource for sustaining the ecosystem functioning. Exploring soil microbiome will help in unlocking their roles in various soil network. It could be resourceful in exploring and forecasting its impacts on soil systems and for dealing with alleviating problems like rapid climate change.


Assuntos
Ecossistema , Microbiota , Solo/química , Microbiologia do Solo , Biodiversidade , Mudança Climática
18.
Microb Ecol ; 86(1): 213-223, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35821127

RESUMO

Open-cast mining leads to the loss of naturally developed soils and their ecosystem functions and services. Soil restoration after mining aims to restore the agricultural productivity in which the functions of the fungal community play a crucial role. Whether fungi reach a comparable functional state as in the soil before mining within half a century of recultivation is still unanswered. Here, we characterised the soil fungal community using ITS amplicon Illumina sequencing across a 52-year chronosequence of agricultural recultivation after open-cast mining in northern Europe. Both taxonomic and functional community composition showed profound shifts over time, which could be attributed to the changes in nutrient status, especially phosphorus availability. However, taxonomic composition did not reach the pre-mining state, whereas functional composition did. Importantly, we identified a positive development of arbuscular mycorrhizal root fungal symbionts after the initial three years of alfalfa cultivation, followed by a decline after conversion to conventional farming, with arbuscular mycorrhizal fungi being replaced by soil saprobes. We conclude that appropriate agricultural management can steer the fungal community to its functional pre-mining state despite stochasticity in the reestablishment of soil fungal communities. Nonetheless, conventional agricultural management results in the loss of plant symbionts, favouring non-symbiotic fungi.


Assuntos
Ecossistema , Recuperação e Remediação Ambiental , Fungos , Microbiologia do Solo , Agricultura , Fungos/classificação , Fungos/genética , Fungos/metabolismo , Plantas/microbiologia , Solo/química , Íntrons/genética , Mineração , Biodiversidade
19.
BMC Microbiol ; 22(1): 237, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195831

RESUMO

Processes of soil restoration in anthropogenically disturbed soils is an urgent topic in modern ecology and nature management. Being mediator between mineral soil composition and plant vegetation, soil microbial community is important factor of soil restoration processes. Analysis of main soil nutrition components followed by 16S amplicon sequencing are sufficient methods for primary analysis of novel locations. Here is the primary analysis in a novel location in Northwest Europe (Russia). Main nutrition parameters (pH, P, Na and NH4+) and 16S rDNA Illumina amplicons were explored in abandoned soils from sandy pit quarry (2 sites) and refractory clay mining dumps (4 sites).Microbial communities of mature soils and dumps are variable and different in terms both nutritional and microbial components. pH, N and TOC are strong predictors for microbial composition. Dumps of refractory clays pQ_2 are non-developed soils, highly acidic and form specific microbial community. Differences between dumps and mature soils in both pre-quaternary and quaternary soils are connected with specific bacterial taxa. Those taxa are connected more with plant composition, not the soil properties themselves. The exact changes in microbial community are unique for different soils and areas.


Assuntos
Microbiologia do Solo , Solo , Argila , DNA Ribossômico , RNA Ribossômico 16S/genética , Solo/química
20.
Mol Ecol ; 31(15): 4078-4094, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35665980

RESUMO

Most of our understanding of island diversity comes from the study of aboveground systems, while the patterns and processes of diversification and community assembly for belowground biotas remain poorly understood. Here, we take advantage of a relatively young and dynamic oceanic island to advance our understanding of ecoevolutionary processes driving community assembly within soil mesofauna. Using whole organism community DNA (wocDNA) metabarcoding and the recently developed metaMATE pipeline, we have generated spatially explicit and reliable haplotype-level DNA sequence data for soil mesofaunal assemblages sampled across the four main habitats within the island of Tenerife. Community ecological and metaphylogeographic analyses have been performed at multiple levels of genetic similarity, from haplotypes to species and supraspecific groupings. Broadly consistent patterns of local-scale species richness across different insular habitats have been found, whereas local insular richness is lower than in continental settings. Our results reveal an important role for niche conservatism as a driver of insular community assembly of soil mesofauna, with only limited evidence for habitat shifts promoting diversification. Furthermore, support is found for a fundamental role of habitat in the assembly of soil mesofauna, where habitat specialism is mainly due to colonization and the establishment of preadapted species. Hierarchical patterns of distance decay at the community level and metaphylogeographical analyses support a pattern of geographic structuring over limited spatial scales, from the level of haplotypes through to species and lineages, as expected for taxa with strong dispersal limitations. Our results demonstrate the potential for wocDNA metabarcoding to advance our understanding of biodiversity.


Assuntos
Código de Barras de DNA Taxonômico , Solo , Biodiversidade , DNA , Ecossistema , Haplótipos/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa