Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
New Phytol ; 242(4): 1661-1675, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38358052

RESUMO

Arbuscular mycorrhizal fungi (AMF) transport substantial plant carbon (C) that serves as a substrate for soil organisms, a precursor of soil organic matter (SOM), and a driver of soil microbial dynamics. Using two-chamber microcosms where an air gap isolated AMF from roots, we 13CO2-labeled Avena barbata for 6 wk and measured the C Rhizophagus intraradices transferred to SOM and hyphosphere microorganisms. NanoSIMS imaging revealed hyphae and roots had similar 13C enrichment. SOM density fractionation, 13C NMR, and IRMS showed AMF transferred 0.77 mg C g-1 of soil (increasing total C by 2% relative to non-mycorrhizal controls); 33% was found in occluded or mineral-associated pools. In the AMF hyphosphere, there was no overall change in community diversity but 36 bacterial ASVs significantly changed in relative abundance. With stable isotope probing (SIP)-enabled shotgun sequencing, we found taxa from the Solibacterales, Sphingobacteriales, Myxococcales, and Nitrososphaerales (ammonium oxidizing archaea) were highly enriched in AMF-imported 13C (> 20 atom%). Mapping sequences from 13C-SIP metagenomes to total ASVs showed at least 92 bacteria and archaea were significantly 13C-enriched. Our results illustrate the quantitative and ecological impact of hyphal C transport on the formation of potentially protective SOM pools and microbial roles in the AMF hyphosphere soil food web.


Assuntos
Carbono , Minerais , Micorrizas , Micorrizas/fisiologia , Carbono/metabolismo , Minerais/metabolismo , Cadeia Alimentar , Hifas , Microbiologia do Solo , Isótopos de Carbono , Avena/microbiologia , Compostos Orgânicos/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Raízes de Plantas/microbiologia , Solo/química
2.
Oecologia ; 204(3): 491-504, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38265599

RESUMO

Climate change will likely increase habitat loss of endemic tree species and drives forest conversion in mountainous forests. Elevation gradients provide the opportunity to predict possible consequences of such changes. While species compositions of various taxa have been investigated along elevation gradients, data on trophic changes in soil-dwelling organisms are scarce. Here, we investigated trophic changes of the Collembola communities along the northern slope of Changbai Mountain, China. We sampled Collembola in primary forests at seven elevations (800-1700 m asl). We measured individual body lengths and bulk stable isotopes on species level. We further categorized Collembola species into life forms. The community-weighted means of Δ15N and Δ13C values as well as minimum Δ15N values and isotopic uniqueness of Collembola communities increased with increasing elevation, while the range of Δ15N values decreased. Maximum and minimum of Δ13C values differed between elevations but showed no linear trend. Further, Δ15N values of Collembola species occurring across all elevations increased with elevation. Changes in Δ15N values with elevation were most pronounced in hemiedaphic species, while Δ13C values increased strongest with elevation in euedaphic species. Δ15N values increased with decreasing body size in hemiedaphic and euedaphic species. Overall, the results suggest that Collembola species functioning as primary decomposers at lower elevations shift towards functioning as secondary decomposers or even predators or scavengers at higher elevation forests. The results further indicate that access to alternative food resources depends on Collembola life form as well as body size and varies between ecosystems.


Assuntos
Ecossistema , Florestas , Árvores , Isótopos de Carbono/análise , Tamanho Corporal
3.
Ecol Lett ; 26(5): 742-753, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36857203

RESUMO

Belowground life relies on plant litter, while its linkage to living roots had long been understudied, and remains unknown in the tropics. Here, we analysed the response of 30 soil animal groups to root trenching and litter removal in rainforest and plantations in Sumatra, and found that roots are similarly important to soil fauna as litter. Trenching effects were stronger in soil than in litter, with an overall decrease in animal abundance in rainforest by 42% and in plantations by 30%. Litter removal little affected animals in soil, but decreased the total abundance by 60% in rainforest and rubber plantations but not in oil palm plantations. Litter and root effects on animal group abundances were explained by body size or vertical distribution. Our study quantifies principle carbon pathways in soil food webs under tropical land use, providing the basis for mechanistic modelling and ecosystem-friendly management of tropical soils.


Assuntos
Ecossistema , Solo , Animais , Floresta Úmida , Cadeia Alimentar , Raízes de Plantas
4.
Glob Chang Biol ; 29(6): 1618-1627, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36458513

RESUMO

The response of soil biotas to climate change has the potential to regulate multiple ecosystem functions. However, it is still challenging to accurately predict how multiple climate change factors will affect multiple ecosystem functions. Here, we assessed the short-term responses of agroecosystem multifunctionality to a factorial combination of elevated CO2 (+200 ppm) and O3 (+40 ppb) and identified the key soil biotas (i.e., bacteria, fungi, protists, and nematodes) concerning the changes in the multiple ecosystem functions for two rice varieties (Japonica, Nanjing 5055 vs. Wuyujing 3). We provided strong evidence that combined treatment rather than individual treatments of short-term elevated CO2 and O3 significantly increased the agroecosystem multifunctionality index by 32.3% in the Wuyujing 3 variety, but not in the Nanjing 5055 variety. Soil biotas exhibited an important role in regulating multifunctionality under short-term elevated CO2 and O3 , with soil nematode abundances better explaining the changes in ecosystem multifunctionality than soil biota diversity. Furthermore, the higher trophic groups of nematodes, omnivores-predators served as the principal predictor of agroecosystem multifunctionality. These results provide unprecedented new evidence that short-term elevated CO2 and O3 can potentially affect agroecosystem multifunctionality through soil nematode abundances, especially omnivores-predators. Our study demonstrates that high trophic groups were specifically beneficial for regulating multiple ecosystem functions and highlights the importance of soil nematode communities for the maintenance of agroecosystem functions and health under climate change in the future.


Assuntos
Nematoides , Solo , Animais , Ecossistema , Dióxido de Carbono/análise , Bactérias , Microbiologia do Solo
5.
Glob Chang Biol ; 29(14): 4069-4080, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37114734

RESUMO

Exogenous carbon turnover within soil food web is important in determining the trade-offs between soil organic carbon (SOC) storage and carbon emission. However, it remains largely unknown how soil food web influences carbon sequestration through mediating the dual roles of microbes as decomposers and contributors, hindering our ability to develop policies for soil carbon management. Here, we conducted a 13 C-labeled straw experiment to demonstrate how soil food web regulated the residing microbes to influence the soil carbon transformation and stabilization process after 11 years of no-tillage. Our work demonstrated that soil fauna, as a "temporary storage container," indirectly influenced the SOC transformation processes and mediated the SOC sequestration through feeding on soil microbes. Soil biota communities acted as both drivers of and contributors to SOC cycling, with 32.0% of exogenous carbon being stabilizing in the form of microbial necromass as "new" carbon. Additionally, the proportion of mineral-associated organic carbon and particulate organic carbon showed that the "renewal effect" driven by the soil food web promoted the SOC to be more stable. Our study clearly illustrated that soil food web regulated the turnover of exogenous carbon inputs by and mediated soil carbon sequestration through microbial necromass accumulation.


Assuntos
Carbono , Solo , Sequestro de Carbono , Cadeia Alimentar , Microbiologia do Solo , Minerais
6.
Environ Sci Technol ; 57(30): 11206-11217, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37471306

RESUMO

Soil ecosystems are under considerable pressure due to anthropogenic factors, including microplastics (MPs) pollution and drought. However, little is known about the interactive effects of MPs and drought on soil organisms, especially soil micro-food web. We conducted a microcosm experiment with MPs pollution (including two types and two sizes of MPs) and drought to investigate their interaction effects on soil microbial, protist, and nematode communities in soil micro-food web. We found that MPs significantly decreased the complexity and stability of soil micro-food web, with greater negative effects of biodegradable and smaller-sized MPs than conventional and larger-sized MPs. Drought had negative effects on soil micro-food web in the non-MPs pollution soils while increasing the complexity and stability of soil micro-food web in the MPs pollution soils. Drought increased the proportion of negative correlations between bacteria and fungi in the biodegradable MPs soils while decreasing the proportion of negative correlations between protists and nematodes in the smaller-sized MPs soils. Our study reveals that drought may alleviate the negative effects of MPs on soil micro-food web by reducing competition among lower trophic levels in the biodegradable MPs pollution soils while reducing competition among higher trophic levels in the smaller-sized MPs pollution soils.

7.
Oecologia ; 202(3): 481-495, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37368022

RESUMO

Multi-factor experiments suggest that interactions among environmental changes commonly influence biodiversity and community composition. However, most field experiments manipulate only single factors. Soil food webs are critical to ecosystem health and may be particularly sensitive to interactions among environmental changes that include soil warming, eutrophication, and altered precipitation. Here, we asked how environmental changes interacted to alter soil nematode communities in a northern Chihuahuan Desert grassland. Factorial manipulations of nitrogen, winter rainfall, and nighttime warming matched predictions for regional environmental change. Warming reduced nematode diversity by 25% and genus-level richness by 32%, but declines dissipated with additional winter rain, suggesting that warming effects occurred via drying. Interactions between precipitation and nitrogen also altered nematode community composition, but only weakly affected total nematode abundance, indicating that most change involved reordering of species abundances. Specifically, under ambient precipitation, nitrogen fertilizer reduced bacterivores by 68% and herbivores by 73%, but did not affect fungivores. In contrast, under winter rain addition, nitrogen fertilization increased bacterivores by 95%, did not affect herbivores, and doubled fungivore abundance. Rain can reduce soil nitrogen availability and increase turnover in the microbial loop, potentially promoting the recovery of nematode populations overwhelmed by nitrogen eutrophication. Nematode communities were not tightly coupled to plant community composition and may instead track microbes, including biocrusts or decomposers. Our results highlight the importance of interactions among environmental change stressors for shaping the composition and function of soil food webs in drylands.


Assuntos
Nematoides , Solo , Animais , Ecossistema , Cadeia Alimentar , Nitrogênio , Microbiologia do Solo
8.
Helminthologia ; 59(3): 301-310, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36694830

RESUMO

The application of biocides may create unintended consequences on soil biota and ecosystem stability. The inputs of organic matter can increase biocides adsorption and reduction of non-target organisms influence. A field experiment was conducted to study the changes of soil abiotic and nematode communities resulting from biocides application in non-litter-added and litter-added soils in Illicium verum forest. Our results showed that litter addition could change the responses of soil nematodes to biocides. The influence of fungicide was evident mainly in litter-added plots in which it increased nematode abundance. Insecticide and its interaction with fungicide significantly decreased the diversity index and the abundance of omnivores-predators and herbivores in non-litter-added plots. While, insecticide had little effect on nematode diversity and abundance in litter-added plots. Litter addition may help to maintain the structure and stability of soil food web and result in bacteria dominant decomposition pathway. Our results suggest that litter addition may be a critical factor for maintaining soil ecosystem stability when biocides are applied in Illicium verum forest.

9.
J Nematol ; 532021.
Artigo em Inglês | MEDLINE | ID: mdl-33860265

RESUMO

Return of plant residues to the soil is a sustainable way of enhancing plant growth, health, and levels of soil quality. In Kenya, maize plant residues are the most commonly returned plant material in many agro-ecosystems. For any plant material to release nutrients into the soil, it must undergo a decomposition process that is usually affected by various organisms, especially nematodes. Despite their great contribution to the breakdown of plant organic matter, there is a dearth of information on the interaction between maize residues and free-living nematodes (FLN) in Kenya. In this respect, this study aimed to assess the influence of decomposing maize residues on FLN dynamics and the soil food web in Mwea, Kenya. The experimental plots were set up in a randomized complete block design, comprising of decomposition plots (incorporated with maize residue to a depth of 30 cm at a rate of 5 tons/hectare), while the plots unincorporated with maize residues were used as the control. Each treatment consisted of four replicates. In all, 30 FLN genera were recovered from the field trials, whereby Acrobeles was significantly abundant in decomposition plots in both seasons. We subsequently found that maize residues reduced the abundance of enrichment opportunist bacterivores (cp-1) relative to general opportunist (cp-2) bacterivores and fungivores. Notably, the results of the channel index showed that the decomposition of maize residues was dominated by fungal energy channels throughout the study in the two seasons. These results suggest that maize residues need to be coupled with a suitable labile organic matter. This would lead to sustainable, active, and reliable turn-over of maize residues into the soil food web ecosystems. The application of labile materials can also help to improve the population of enrichment bacterivores that are essential in the decomposition process. This study shows that the decomposition of maize residues influenced FLN composition, mainly the enrichment opportunist bacterivores whose abundance was lower.

10.
Proc Biol Sci ; 287(1934): 20201268, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32873207

RESUMO

Microplastics are recognized as an emerging contaminant worldwide. Although microplastics have been shown to strongly affect organisms in aquatic environments, less is known about whether and how microplastics can affect different taxa within a soil community, and it is unclear whether these effects can cascade through soil food webs. By conducting a microplastic manipulation experiment, i.e. adding low-density polyethylene fragments in the field, we found that microplastic addition significantly affected the composition and abundance of microarthropod and nematode communities. Contrary to soil fauna, we found only small effects of microplastics on the biomass and structure of soil microbial communities. Nevertheless, structural equation modelling revealed that the effects of microplastics strongly cascade through the soil food webs, leading to the modification of microbial functioning with further potential consequences on soil carbon and nutrient cycling. Our results highlight that taking into account the effects of microplastics at different trophic levels is important to elucidate the mechanisms underlying the ecological impacts of microplastic pollution on soil functioning.


Assuntos
Microbiota , Microplásticos , Microbiologia do Solo , Poluentes do Solo , Cadeia Alimentar , Solo
11.
J Nematol ; 522020.
Artigo em Inglês | MEDLINE | ID: mdl-33829172

RESUMO

Manipulating soil properties to modify the dynamics between nematodes and their natural enemies has been proposed to conserve services such as the biological control of insect pests by entomopathogenic nematodes. Many soil microarthropods including acari mites and collembola are natural enemies of nematodes; however, little is known about the naturally occurring assemblages of these two soil dwelling groups and how they might be influenced by soil conditions. A method to efficiently recover both nematodes and microarthropods from environmental samples would be helpful to characterize communities of these two groups in different habitats. Because samples of nematodes extracted from soil by sucrose centrifugation (SC) also contain soil mites, collembola, protozoans, and fungal and bacterial propagules, the efficiency of SC to recover microarthropods was compared to more conventional methods of microarthropod recovery such as heptane flotation (HF), Berlese funnels (BF), and a modified flotation Berlese method (FBF). Microarthropods were identified using an inverted microscope to class in one experiment and to order in a second. Significantly more microarthropods of all taxa were recovered by SC than with either Berlese method (BF or FBF). In total, 40% more microarthropods comprising seven orders were recovered by HF compared to SC, but the difference was not significant. Ecological indices (diversity, richness, and evenness) derived from HF and SC were congruent and significantly higher than those derived from BF. Excessive organic matter in the HF extractions, compared to those of SC, BF, and FBF, made mite detection and identification difficult and time consuming. Moreover, unlike SC, neither HF nor any Berlese method recovered nematodes. Accordingly, we found SC to be the most efficient method for microarthropod extraction, making it an ideal method for studies of communities of nematodes and many of their natural enemies in the soil.

12.
J Eukaryot Microbiol ; 66(3): 525-527, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30098099

RESUMO

Thecofilosea is a class in Cercozoa comprising mainly freshwater inhabiting algivores. Since direct observation of amoeboid protists in soil is not possible, the prey spectra of their terrestrial relatives remain obscure. To test for grazing selectivity and the preferred prey of terrestrial thecofiloseans, we conducted a food choice experiment including yeasts and algae as prey. When being offered all food sources at once, the yeast cells were strongly reduced, whereas the abundance of the algae only slightly decreased. Since Fisculla terrestris thrives with fungal prey, it must be considered as a predator of eukaryotes with high preference for fungal cells.


Assuntos
Cercozoários/fisiologia , Cadeia Alimentar , Fungos , Herbivoria
13.
J Anim Ecol ; 88(10): 1486-1497, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31211860

RESUMO

Arthropods in the leaf litter layer of forest soils influence ecosystem processes such as decomposition. Climate-change models predict both increases and decreases in average rainfall. Increased drought may have greater impacts on the litter arthropod community. In addition to affecting survival or behaviour of desiccation-sensitive species, lower rainfall may indirectly lower abundances of consumers that graze drought-stressed fungi, with repercussions for higher trophic levels. We tested the hypothesis that trophic structure will differ between the two rainfall scenarios. In particular, we hypothesized that densities of several broadly defined trophic groupings of arthropods would be lower under reduced rainfall. To test this hypothesis, we used sprinklers to impose two rainfall treatments during three growing seasons in roofed, fenced 14-m2 plots and documented changes in abundance from initial, pre-treatment densities of 39 arthropod taxa. Experimental plots were subjected to either LOW (fortnightly) or HIGH (weekly) average rainfall based upon climate models and the previous 100 years of regional weekly averages. Unroofed open plots, our reference treatment (REF), experienced higher than average rainfall during the experiment. The two rainfall extremes produced clear negative effects of lowered rainfall on major trophic groups. Broad categories of fungivores, detritivores and predators were more abundant in HIGH than LOW plots by the final year. Springtails (Collembola), which graze fungal hyphae, were 3× more abundant in the HIGH rainfall treatment. Taxa of larger-bodied fungivores and detritivores, spiders (Araneae), and non-spider predators were 2× more abundant under HIGH rainfall. Densities of mites (Acari), which include fungivores, detritivores and predators, were 1.5× greater in HIGH rainfall plots. Abundances and community structure of arthropods were similar in REF and experimental plots, showing that effects of rainfall uncovered in the experiment are applicable to nature. This pattern suggests that changes in rainfall will alter bottom-up control processes in a critical detritus-based food web of deciduous forests. Our results, in conjunction with other findings on the impact of desiccation on arthropods and fungal growth, suggest that drier conditions will depress densities of fungal consumers, causing declines in higher trophic levels, with possible impacts on soil processes and the larger forest food web.


Assuntos
Artrópodes , Animais , Clima , Mudança Climática , Ecossistema , Cadeia Alimentar
14.
Oecologia ; 189(2): 447-460, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30659383

RESUMO

Quantification of the bacterial, fungal, and plant energy channels to the nutrition of detritivores is methodologically challenging. This is especially true for earthworms that ingest large amounts of litter and soil mixed with microorganisms. Novel methods such as compound-specific stable isotope analysis (CSIA) of C and N of individual amino acids promise major progress in this field in comparison with bulk stable isotope analysis (bulk SIA). Here, we combine CSIA and bulk SIA of carbon and nitrogen to quantify the linkage of epigeic and endogeic earthworm species to different energy channels across boreal and temperate forest ecosystems. The results showed pronounced flux of energy directly from plants to earthworms (33-50% of essential amino acids, EAA) refining the position of earthworms in soil food webs as both competitors and consumers of microorganisms. Epigeic earthworm species primarily relied on plant litter and endogeic species primarily relied on bacteria and soil organic matter. The linkage of both groups to plant or microbial energy channel was likely driven by the quality of detritus. Both bulk 15N and 13C enrichments were related to the trophic level of earthworms. Furthermore, 15N enrichment was related to the proportions of bacterial and plant EAA in the diet. Strong negative correlation between trophic level (CSIA of nitrogen) and the proportion of plant EAA (CSIA of carbon) suggests that both novel methods can indicate the degree of microbivory in detritivores. CSIA of amino acids provide detailed and baseline-independent information on basal resources and trophic levels of detritivores.


Assuntos
Oligoquetos , Aminoácidos , Animais , Ecossistema , Cadeia Alimentar , Isótopos
15.
Microb Ecol ; 73(3): 699-709, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27928597

RESUMO

We studied the predator-prey interactions between heterotrophic protists and endospores of Bacillus cereus group bacteria, in order to gain insight on survival and dispersal of B. cereus endospores in the environment. It has been hypothesised that the spore stage protects against digestion by predating protists. Therefore, experiments were carried out to investigate the impact of B. cereus endospores and vegetative cells, as the only food source, on individual amoeboid, flagellated and ciliated protists. The presence of fluorescent-labelled intracellular bacteria confirmed that B. cereus endospores as well as vegetative cells were ingested by protists and appeared intact in the food vacuoles when observed by epifluorescence microscopy. Furthermore, protist growth and bacterial predation were followed by qPCR. Protists were able to grow on vegetative cells as well as endospores of B. cereus, despite the lower cell division rates observed for some protists when feeding on bacterial endospores. Survival and proliferation of ingested bacteria inside protists cells was also observed. Finally, B. cereus spore germination and growth was observed within all protists with higher abundance in the amoeboid protist after antibiotic treatment of the protist surface. These observations support that protists can act as a potential breeding ground for B. cereus endospores.


Assuntos
Bacillus cereus/crescimento & desenvolvimento , Eucariotos/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Animais , Contagem de Colônia Microbiana , Comportamento Predatório
16.
Pedobiologia (Jena) ; 65: 1-4, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30310241

RESUMO

Global change alters the composition and functioning of ecosystems by creating novel environmental conditions and thereby selecting for specific traits of organisms. Thus, trait-based approaches are promising tools to more mechanistically understand compositional and functional shifts in ecological communities as well as the dependency of response and effect traits upon global change. Such approaches have been particularly successful for the study of plant communities in terrestrial ecosystems. However, given the intimate linkages between aboveground and belowground compartments as well as the significance of plants as integrating organisms across those compartments, the role of plant traits in affecting soils communities has been understudied. This special issue contains empirical studies and reviews of plant trait effects on soil organisms and functions. Based on those contributions, we discuss here plasticity in trait expression, the context-dependency of plant trait effects, time lags in soil biotic responses to trait expression, and limitations of measured plant traits. We conclude that plant trait-based approaches are an important tool to advance soil ecological research, but also identify critical limitations and next steps.

17.
Pedobiologia (Jena) ; 63: 1-7, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29129942

RESUMO

The ecological interactions that occur in and with soil are of consequence in many ecosystems on the planet. These interactions provide numerous essential ecosystem services, and the sustainable management of soils has attracted increasing scientific and public attention. Although soil ecology emerged as an independent field of research many decades ago, and we have gained important insights into the functioning of soils, there still are fundamental aspects that need to be better understood to ensure that the ecosystem services that soils provide are not lost and that soils can be used in a sustainable way. In this perspectives paper, we highlight some of the major knowledge gaps that should be prioritized in soil ecological research. These research priorities were compiled based on an online survey of 32 editors of Pedobiologia - Journal of Soil Ecology. These editors work at universities and research centers in Europe, North America, Asia, and Australia.The questions were categorized into four themes: (1) soil biodiversity and biogeography, (2) interactions and the functioning of ecosystems, (3) global change and soil management, and (4) new directions. The respondents identified priorities that may be achievable in the near future, as well as several that are currently achievable but remain open. While some of the identified barriers to progress were technological in nature, many respondents cited a need for substantial leadership and goodwill among members of the soil ecology research community, including the need for multi-institutional partnerships, and had substantial concerns regarding the loss of taxonomic expertise.

18.
J Anim Ecol ; 85(5): 1275-85, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27322934

RESUMO

Supplementation of nutrients by symbionts enables consumers to thrive on resources that might otherwise be insufficient to meet nutritional demands. Such nutritional subsidies by intracellular symbionts have been well studied; however, supplementation of de novo synthesized nutrients to hosts by extracellular gut symbionts is poorly documented, especially for generalists with relatively undifferentiated intestinal tracts. Although gut symbionts facilitate degradation of resources that would otherwise remain inaccessible to the host, such digestive actions alone cannot make up for dietary insufficiencies of macronutrients such as essential amino acids (EAA). Documenting whether gut symbionts also function as partners for symbiotic EAA supplementation is important because the question of how some detritivores are able to subsist on nutritionally insufficient diets has remained unresolved. To answer this poorly understood nutritional aspect of symbiont-host interactions, we studied the enchytraeid worm, a bulk soil feeder that thrives in Arctic peatlands. In a combined field and laboratory study, we employed stable isotope fingerprinting of amino acids to identify the biosynthetic origins of amino acids to bacteria, fungi and plants in enchytraeids. Enchytraeids collected from Arctic peatlands derived more than 80% of their EAA from bacteria. In a controlled feeding study with the enchytraeid Enchytraeus crypticus, EAA derived almost exclusively from gut bacteria when the worms fed on higher fibre diets, whereas most of the enchytraeids' EAA derived from dietary sources when fed on lower fibre diets. Our gene sequencing results of gut microbiota showed that the worms harbour several taxa in their gut lumen absent from their diets and substrates. Almost all gut taxa are candidates for EAA supplementation because almost all belong to clades capable of biosynthesizing EAA. Our study provides the first evidence of extensive symbiotic supplementation of EAA by microbial gut symbionts and demonstrates that symbiotic bacteria in the gut lumen appear to function as partners both for symbiotic EAA supplementation and for digestion of insoluble plant fibres.


Assuntos
Aminoácidos Essenciais/metabolismo , Microbioma Gastrointestinal , Oligoquetos/microbiologia , Oligoquetos/fisiologia , Alaska , Animais , Regiões Árticas , Bactérias/classificação , Bactérias/genética , Dieta , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de RNA , Simbiose
19.
Soil Biol Biochem ; 102: 4-9, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27812227

RESUMO

An increasing number of empirical studies are challenging the central fundamentals on which the classical soil food web model is built. This model assumes that bacteria consume labile substrates twice as fast as fungi, and that mycorrhizal fungi do not decompose organic matter. Here, we build on emerging evidence that points to significant consumption of labile C by fungi, and to the ability of ectomycorrhizal fungi to decompose organic matter, to show that labile C constitutes a major and presently underrated source of C for the soil food web. We use a simple model describing the dynamics of a recalcitrant and a labile C pool and their consumption by fungi and bacteria to show that fungal and bacterial populations can coexist in a stable state with large inputs into the labile C pool and a high fungal use of labile C. We propose a new conceptual model for the bottom trophic level of the soil food web, with organic C consisting of a continuous pool rather than two or three distinct pools, and saprotrophic fungi using substantial amounts of labile C. Incorporation of these concepts will increase our understanding of soil food web dynamics and functioning under changing conditions.

20.
Glob Chang Biol ; 21(2): 973-85, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25242445

RESUMO

Soil biodiversity plays a key role in regulating the processes that underpin the delivery of ecosystem goods and services in terrestrial ecosystems. Agricultural intensification is known to change the diversity of individual groups of soil biota, but less is known about how intensification affects biodiversity of the soil food web as a whole, and whether or not these effects may be generalized across regions. We examined biodiversity in soil food webs from grasslands, extensive, and intensive rotations in four agricultural regions across Europe: in Sweden, the UK, the Czech Republic and Greece. Effects of land-use intensity were quantified based on structure and diversity among functional groups in the soil food web, as well as on community-weighted mean body mass of soil fauna. We also elucidate land-use intensity effects on diversity of taxonomic units within taxonomic groups of soil fauna. We found that between regions soil food web diversity measures were variable, but that increasing land-use intensity caused highly consistent responses. In particular, land-use intensification reduced the complexity in the soil food webs, as well as the community-weighted mean body mass of soil fauna. In all regions across Europe, species richness of earthworms, Collembolans, and oribatid mites was negatively affected by increased land-use intensity. The taxonomic distinctness, which is a measure of taxonomic relatedness of species in a community that is independent of species richness, was also reduced by land-use intensification. We conclude that intensive agriculture reduces soil biodiversity, making soil food webs less diverse and composed of smaller bodied organisms. Land-use intensification results in fewer functional groups of soil biota with fewer and taxonomically more closely related species. We discuss how these changes in soil biodiversity due to land-use intensification may threaten the functioning of soil in agricultural production systems.


Assuntos
Agricultura/métodos , Biodiversidade , Microbiologia do Solo , Europa (Continente)
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa