Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
BMC Genomics ; 25(1): 671, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970011

RESUMO

BACKGROUND: The dirigent (DIR) genes encode proteins that act as crucial regulators of plant lignin biosynthesis. In Solanaceae species, members of the DIR gene family are intricately related to plant growth and development, playing a key role in responding to various biotic and abiotic stresses. It will be of great application significance to analyze the DIR gene family and expression profile under various pathogen stresses in Solanaceae species. RESULTS: A total of 57 tobacco NtDIRs and 33 potato StDIRs were identified based on their respective genome sequences. Phylogenetic analysis of DIR genes in tobacco, potato, eggplant and Arabidopsis thaliana revealed three distinct subgroups (DIR-a, DIR-b/d and DIR-e). Gene structure and conserved motif analysis showed that a high degree of conservation in both exon/intron organization and protein motifs among tobacco and potato DIR genes, especially within members of the same subfamily. Total 8 pairs of tandem duplication genes (3 pairs in tobacco, 5 pairs in potato) and 13 pairs of segmental duplication genes (6 pairs in tobacco, 7 pairs in potato) were identified based on the analysis of gene duplication events. Cis-regulatory elements of the DIR promoters participated in hormone response, stress responses, circadian control, endosperm expression, and meristem expression. Transcriptomic data analysis under biotic stress revealed diverse response patterns among DIR gene family members to pathogens, indicating their functional divergence. After 96 h post-inoculation with Ralstonia solanacearum L. (Ras), tobacco seedlings exhibited typical symptoms of tobacco bacterial wilt. The qRT-PCR analysis of 11 selected NtDIR genes displayed differential expression pattern in response to the bacterial pathogen Ras infection. Using line 392278 of potato as material, typical symptoms of potato late blight manifested on the seedling leaves under Phytophthora infestans infection. The qRT-PCR analysis of 5 selected StDIR genes showed up-regulation in response to pathogen infection. Notably, three clustered genes (NtDIR2, NtDIR4, StDIR3) exhibited a robust response to pathogen infection, highlighting their essential roles in disease resistance. CONCLUSION: The genome-wide identification, evolutionary analysis, and expression profiling of DIR genes in response to various pathogen infection in tobacco and potato have provided valuable insights into the roles of these genes under various stress conditions. Our results could provide a basis for further functional analysis of the DIR gene family under pathogen infection conditions.


Assuntos
Evolução Molecular , Família Multigênica , Nicotiana , Filogenia , Proteínas de Plantas , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/microbiologia , Nicotiana/genética , Nicotiana/microbiologia , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Estresse Fisiológico/genética , Regiões Promotoras Genéticas , Duplicação Gênica , Ralstonia solanacearum , Genes de Plantas
2.
BMC Genomics ; 25(1): 10, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166714

RESUMO

BACKGROUND: Plant U-box (PUB) E3 ubiquitin ligases have vital effects on various biological processes. Therefore, a comprehensive and systematic identification of the members of the U-box gene family in potato will help to understand the evolution and function of U-box E3 ubiquitin ligases in plants. RESULTS: This work identified altogether 74 PUBs in the potato (StPUBs) and examined their gene structures, chromosomal distributions, and conserved motifs. There were seventy-four StPUB genes on ten chromosomes with diverse densities. As revealed by phylogenetic analysis on PUBs within potato, Arabidopsis, tomato (Solanum lycopersicum), cabbage (Brassica oleracea), rice (Oryza sativa), and corn (Zea mays), were clustered into eight subclasses (C1-C8). According to synteny analysis, there were 40 orthologous StPUB genes to Arabidopsis, 58 to tomato, 28 to cabbage, 7 to rice, and 8 to corn. In addition, RNA-seq data downloaded from PGSC were utilized to reveal StPUBs' abiotic stress responses and tissue-specific expression in the doubled-monoploid potato (DM). Inaddition, we performed RNA-seq on the 'Atlantic' (drought-sensitive cultivar, DS) and the 'Qingshu NO.9' (drought-tolerant cultivar, DT) in early flowering, full-blooming, along with flower-falling stages to detect genes that might be involved in response to drought stress. Finally, quantitative real-time PCR (qPCR) was carried out to analyze three candidate genes for their expression levels within 100 mM NaCl- and 10% PEG 6000 (w/v)-treated potato plantlets for a 24-h period. Furthermore, we analyzed the drought tolerance of StPUB25 transgenic plants and found that overexpression of StPUB25 significantly increased peroxidase (POD) activity, reduced ROS (reactive oxygen species) and MDA (malondialdehyde) accumulation compared with wild-type (WT) plants, and enhancing drought tolerance of the transgenic plants. CONCLUSION: In this study, three candidate genes related to drought tolerance in potato were excavated, and the function of StPUB25 under drought stress was verified. These results should provide valuable information to understand the potato StPUB gene family and investigate the molecular mechanisms of StPUBs regulating potato drought tolerance.


Assuntos
Arabidopsis , Solanum tuberosum , Ubiquitina-Proteína Ligases/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Resistência à Seca , Filogenia , Secas , Ubiquitinas/genética , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
3.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892181

RESUMO

Potato (Solanum tuberosum L.) is a major global food crop, and oxidative stress can significantly impact its growth. Previous studies have shown that its resistance to oxidative stress is mainly related to transcription factors, post-translational modifications, and antioxidant enzymes in vivo, but the specific molecular mechanisms remain unclear. In this study, we analyzed the transcriptome data from potato leaves treated with H2O2 and Methyl viologen (MV), and a control group, for 12 h. We enriched 8334 (CK vs. H2O2) and 4445 (CK vs. MV) differentially expressed genes (DEGs), respectively, and randomly selected 15 DEGs to verify the sequencing data by qRT-PCR. Gene ontology (GO) enrichment analysis showed that the DEGs were mainly concentrated in cellular components and related to molecular function, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that most of the DEGs were related to metabolic pathways, plant hormone signal transduction, MAPK-signaling pathway, and plant-pathogen interactions. In addition, several candidate transcription factors, mainly including MYB, WRKY, and genes associated with Ca2+-mediated signal transduction, were also found to be differentially expressed. Among them, the plant hormone genes Soltu.DM.03G022780 and Soltu.DM.06G019360, the CNGC gene Soltu.DM.06G006320, the MYB transcription factors Soltu.DM.06G004450 and Soltu.DM.09G002130, and the WRKY transcription factor Soltu.DM.06G020440 were noticeably highly expressed, which indicates that these are likely to be the key genes in the regulation of oxidative stress tolerance. Overall, these findings lay the foundation for further studies on the molecular mechanisms of potato leaves in response to oxidative stress.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estresse Oxidativo , Folhas de Planta , Solanum tuberosum , Transcriptoma , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396922

RESUMO

Potato is an important food crop. After harvest, these tubers will undergo a period of dormancy. Brassinosteroids (BRs) are a new class of plant hormones that regulate plant growth and seed germination. In this study, 500 nM of BR was able to break the dormancy of tubers. Additionally, exogenous BR also upregulated BR signal transduction genes, except for StBIN2. StBIN2 is a negative regulator of BR, but its specific role in tuber dormancy remains unclear. Transgenic methods were used to regulate the expression level of StBIN2 in tubers. It was demonstrated that the overexpression of StBIN2 significantly prolonged tuber dormancy while silencing StBIN2 led to premature sprouting. To further investigate the effect of StBIN2 on tuber dormancy, RNA-Seq was used to analyze the differentially expressed genes in OE-StBIN2, RNAi-StBIN2, and WT tubers. The results showed that StBIN2 upregulated the expression of ABA signal transduction genes but inhibited the expression of lignin synthesis key genes. Meanwhile, it was also found that StBIN2 physically interacted with StSnRK2.2 and StCCJ9. These results indicate that StBIN2 maintains tuber dormancy by mediating ABA signal transduction and lignin synthesis. The findings of this study will help us better understand the molecular mechanisms underlying potato tuber dormancy and provide theoretical support for the development of new varieties using related genes.


Assuntos
Lignina , Solanum tuberosum , Lignina/metabolismo , Perfilação da Expressão Gênica , Reguladores de Crescimento de Plantas/metabolismo , Tubérculos , Desenvolvimento Vegetal , Solanum tuberosum/genética , Regulação da Expressão Gênica de Plantas , Dormência de Plantas/genética
5.
Plant Cell Physiol ; 64(4): 422-432, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36542813

RESUMO

Maltodextrin metabolism is thought to be involved in both starch initiation and degradation. In this study, potato tuber discs from transgenic lines containing antisense constructs against the plastidial and cytosolic isoforms of α-glucan phosphorylase and phosphoglucomutase were used to evaluate their influences on the conversion of externally supplied glucose-1-phosphate into soluble maltodextrins, as compared to wild-type potato tubers (Solanum tuberosum L. cv. Desiree). Relative maltodextrin amounts analyzed by capillary electrophoresis with laser-induced fluorescence revealed that tuber discs could immediately uptake glucose-1-phosphate and use it to produce maltooligosaccharides with a degree of polymerization of up to 30, as opposed to tubers repressing the plastidial glucan phosphorylase. The results presented here support previous indications that a specific transporter for glucose-1-phosphate may exist in both the plant cells and the plastidial membranes, thereby allowing a glucose-6-phosphate-independent transport. Furthermore, it confirms that the plastidial glucan phosphorylase is responsible for producing longer maltooligosaccharides in the plastids by catalyzing a glucosyl polymerization reaction when glucose-1-phosphate is available. All these findings contribute to a better understanding of the role of the plastidial phosphorylase as a key enzyme directly involved in the synthesis and degradation of glucans and their implication on starch metabolism.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Fosforilases/metabolismo , Plastídeos/metabolismo , Amido/metabolismo , Plantas Geneticamente Modificadas/metabolismo
6.
Breed Sci ; 73(3): 343-348, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37840981

RESUMO

Golden cyst nematodes have threatened the cultivation of 'Toyoshiro', a major potato variety used for chip processing in Japan. Common scab is a soilborne disease that occurs in potato fields worldwide. To solve these problems, we crossed two US varieties and selected a clone that showed a slightly higher marketable yield and a significantly higher yield rate, compared with 'Toyoshiro', and had good chip processing quality, extreme resistance to cyst nematodes, and moderately high resistance to common scab. This clone was named 'Poroshiri'; it is the first variety released from the Calbee Potato breeding program.

7.
Sensors (Basel) ; 23(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37112159

RESUMO

Late blight, caused by Phytophthora infestans, is a major disease of the potato crop with a strong negative impact on tuber yield and tuber quality. The control of late blight in conventional potato production systems is often through weekly application of prophylactic fungicides, moving away from a sustainable production system. In support of integrated pest management practices, machine learning algorithms were proposed as tools to forecast aerobiological risk level (ARL) of Phytophthora infestans (>10 sporangia/m3) as inoculum to new infections. For this, meteorological and aerobiological data were monitored during five potato crop seasons in Galicia (northwest Spain). Mild temperatures (T) and high relative humidity (RH) were predominant during the foliar development (FD), coinciding with higher presence of sporangia in this phenological stage. The infection pressure (IP), wind, escape or leaf wetness (LW) of the same day also were significantly correlated with sporangia according to Spearman's correlation test. ML algorithms such as random forest (RF) and C5.0 decision tree (C5.0) were successfully used to predict daily sporangia levels, with an accuracy of the models of 87% and 85%, respectively. Currently, existing late blight forecasting systems assume a constant presence of critical inoculum. Therefore, ML algorithms offer the possibility of predicting critical levels of Phytophthora infestans concentration. The inclusion of this type of information in forecasting systems would increase the exactitude in the estimation of the sporangia of this potato pathogen.


Assuntos
Phytophthora infestans , Solanum tuberosum , Algoritmo Florestas Aleatórias , Estações do Ano , Temperatura , Doenças das Plantas
8.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047107

RESUMO

Melatonin is among one of the promising agents able to protect agricultural plants from the adverse action of different stressors, including salinity. We aimed to investigate the effects of melatonin priming (0.1, 1.0 and 10 µM) on salt-stressed potato plants (125 mM NaCl), by studying the growth parameters, photochemical activity of photosystem II, water status, ion content and antioxidant system activity. Melatonin as a pleiotropic signaling molecule was found to decrease the negative effect of salt stress on stolon formation, tissue water content and ion status without a significant effect on the expression of Na+/H+-antiporter genes localized on the vacuolar (NHX1 to NHX3) and plasma membrane (SOS1). Melatonin effectively decreases the accumulation of lipid peroxidation products in potato leaves in the whole range of concentrations studied. A melatonin-induced dose-dependent increase in Fv/Fm together with a decrease in uncontrolled non-photochemical dissipation Y(NO) also indicates decreased oxidative damage. The observed protective ability of melatonin was unlikely due to its influence on antioxidant enzymes, since neither SOD nor peroxidase were activated by melatonin. Melatonin exerted positive effects on the accumulation of water-soluble low-molecular-weight antioxidants, proline and flavonoids, which could aid in decreasing oxidative stress. The most consistent positive effect was observed on the accumulation of carotenoids, which are well-known lipophilic antioxidants playing an important role in the protection of photosynthesis from oxidative damage. Finally, it is possible that melatonin accumulated during pretreatment could exert direct antioxidative effects due to the ROS scavenging activity of melatonin molecules.


Assuntos
Melatonina , Solanum tuberosum , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Melatonina/farmacologia , Complexo de Proteína do Fotossistema II/metabolismo , Solanum tuberosum/metabolismo , Fotossíntese , Homeostase , Estresse Salino , Água/metabolismo
9.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982787

RESUMO

Solanum tuberosum L. (common potato) is one of the most important crops produced almost all over the world. Genomic sequences of potato opens the way for studying the molecular variations related to diversification. We performed a reconstruction of genomic sequences for 15 tetraploid potato cultivars grown in Russia using short reads. Protein-coding genes were identified; conserved and variable parts of pan-genome and the repertoire of the NBS-LRR genes were characterized. For comparison, we used additional genomic sequences for twelve South American potato accessions, performed analysis of genetic diversity, and identified the copy number variations (CNVs) in two these groups of potato. Genomes of Russian potato cultivars were more homogeneous by CNV characteristics and have smaller maximum deletion size in comparison with South American ones. Genes with different CNV occurrences in two these groups of potato accessions were identified. We revealed genes of immune/abiotic stress response, transport and five genes related to tuberization and photoperiod control among them. Four genes related to tuberization and photoperiod were investigated in potatoes previously (phytochrome A among them). A novel gene, homologous to the poly(ADP-ribose) glycohydrolase (PARG) of Arabidopsis, was identified that may be involved in circadian rhythm control and contribute to the acclimatization processes of Russian potato cultivars.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Variações do Número de Cópias de DNA , Genoma de Planta , Genômica , Tetraploidia
10.
Molecules ; 28(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687048

RESUMO

The complete mechanism behind starch regulation has not been fully characterized. However, significant progress can be achieved through proteomic approaches. In this work, we aimed to characterize the starch-interacting proteins in potato (Solanum tuberosum L. cv. Desiree) tubers under variable circumstances. Starch-interacting proteins were extracted from developing tubers of wild type and transgenic lines containing antisense inhibition of glucan phosphorylases. Further, proteins were separated by SDS-PAGE and characterized through mass spectrometry. Additionally, starch-interacting proteins were analyzed in potato tubers stored at different temperatures. Most of the proteins strongly interacting with the potato starch granules corresponded to proteins involved in starch metabolism. GWD and PWD, two dikinases associated with starch degradation, were consistently found bound to the starch granules. This indicates that their activity is not only restricted to degradation but is also essential during storage starch synthesis. We confirmed the presence of protease inhibitors interacting with the potato starch surface as previously revealed by other authors. Starch interacting protein profiles of transgenic tubers appeared differently from wild type when tubers were stored under different temperatures, indicating a differential expression in response to changing environmental conditions.


Assuntos
Solanum tuberosum , Animais , Solanum tuberosum/genética , Proteômica , Animais Geneticamente Modificados , Eletroforese em Gel de Poliacrilamida , Amido
11.
Mol Biol (Mosk) ; 57(2): 197-208, 2023.
Artigo em Russo | MEDLINE | ID: mdl-37000649

RESUMO

In this study, we performed expression analysis of genes associated with cold-induced sweetening in potato tubers: vacuolar invertase (Pain-1), sucrose synthase (SUS4), and invertase inhibitor (InvInh2). Potato varieties Nikulinsky, Symfonia, and Nevsky were used. All three varieties were found to accumulate sugars at low temperatures; the maximum accumulation of reducing sugars was observed at 4°C. It was found that the expression pattern of genes associated with cold-induced sweetening differs depending on the variety and storage duration. The increased expression of vacuolar invertase and its inhibitor is more pronounced at the beginning of storage period, whereas the increased expression of sucrose synthase is more pronounced after 3 months of storage. At early storage periods, high expression of invertase and low expression of inhibitor is observed in the Dutch variety Symfonia, and vice versa in the Russian varieties Nikulinsky and Nevsky. The involvement of the studied genes in the process of cold-induced sweetening is discussed.


Assuntos
Solanum tuberosum , beta-Frutofuranosidase , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Temperatura Baixa , Açúcares/metabolismo , Genótipo , Proteínas de Plantas/genética
12.
J Food Sci Technol ; 60(2): 494-503, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36712196

RESUMO

The objective was to evaluate the effect of peppermint essential oil (PEO) on the inhibition of potato sprouting induced by gibberellic acid (GA) during storage. PEO (0.08 and 0.15 mL L-1) was applied in the presence and absence of gibberellic acid (10 mg L-1). The presence of phytopathogens and changes in breaking of dormancy, weight loss, moisture content, and total soluble solids were measured during 28 days. The inhibition of potato sprouting by the PEO occurred at the lowest concentration, even in the presence of GA. Sprout development was inhibited with PEO addition, delaying the dormancy break and reducing weight loss. However, potato sprouting was still inhibited after the removal of the PEO, evidencing its residual efficacy. PEO application at both concentrations had a satisfactory effect on sprout suppression and can be used as a promising eco-friendly approach for inhibiting the sprouting of potato tubers during storage.

13.
BMC Plant Biol ; 22(1): 282, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35676629

RESUMO

BACKGROUND: Nitrogen (N) is a major element and fundamental constituent of grain yield. N fertilizer plays an essential role in the roots, shoots, and leaves of crop plants. Here, we obtained two N-sensitive potato cultivars. RESULTS: The plants were cultivated in the pots using N-deficient and N-sufficient conditions. Crop height, leaf chlorophyll content, dry matter, and N-accumulation significantly decreased under N-deficient conditions. Furthermore, we performed a comprehensive analysis of the phenotype and transcriptome, GO terms, and KEGG pathways. We used WGCNA of co-expressed genes, and 116 differentially expressed hub genes involved in photosynthesis, nitrogen metabolism, and secondary metabolites to generate 23 modules. Among those modules, six NRT gene families, four pigment genes, two auxin-related genes, and two energy-related genes were selected for qRT-PCR validation. CONCLUSIONS: Overall, our study demonstrates the co-expressed genes and potential pathways associated with N transport and accumulation in potato cultivars' roots, shoots, and leaves under N-deficient conditions. Therefore, this study provides new ideas to conduct further research on improving nitrogen use efficiency in potatoes.


Assuntos
Solanum tuberosum , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Transcriptoma
14.
Planta ; 256(3): 54, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927530

RESUMO

MAIN CONCLUSION: For the first time it is reported that members of the nsLTP protein family could promote viral infection by inhibiting virus-induced RNA silencing. Non-specific lipid transfer proteins (nsLTPs) are a class of soluble proteins with low relative molecular weight and widely present in higher plants. The role of nsLTPs in biotic and abiotic stresses has been studied, but no report has shown that nsLTPs play a role in the process of viral infection. We report the function and mechanism of the classical nsLTP protein StLTP6 in viral infection. We found that StLTP6 expression was remarkably upregulated in potato infected with potato virus Y and potato virus S. The infection efficiency and virus content of StLTP6-overexpressed potato and Nicotiana benthamiana were remarkable increased. Further study found that the overexpression of StLTP6 inhibited the expression of multiple genes in the RNA silencing pathway, thereby inhibiting virus-induced RNA silencing. This result indicated that StLTP6 expression was induced during viral infection to inhibit the resistance of virus-induced RNA silencing and promote viral infection. In summary, we reported the role of StLTP6 in viral infection, broadening the biological function range of the nsLTP family and providing valuable information for the study of viral infection mechanism.


Assuntos
Solanum tuberosum , Viroses , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Doenças das Plantas/genética , Interferência de RNA , Solanum tuberosum/metabolismo , Viroses/genética
15.
Mol Biol Rep ; 49(6): 4683-4697, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35366758

RESUMO

BACKGROUND: The phosphatidylethanolamine-binding protein (PEBP) gene family is involved in regulating many plant traits. Genome-wide identification of PEPB members and knowledge of their responses to heat stress may assist genetic improvement of potato (Solanum tuberosum). METHODS AND RESULTS: We identified PEBP gene family members from both the recently-updated, long-reads-based reference genome (DM v6.1) and the previous short-reads-based annotation (PGSC DM v3.4) of the potato reference genome and characterized their heat-induced gene expression using RT-PCR and RNA-Seq. Fifteen PEBP family genes were identified from DM v6.1 and named as StPEBP1 to StPEBP15 based on their locations on 6 chromosomes and were classified into FT, TFL, MFT, and PEBP-like subfamilies. Most of the StPEBP genes were found to have conserved motifs 1 to 5. Tandem or segmental duplications were found between StPEBP genes in seven pairs. Heat stress induced opposite expression patterns of certain FT and TFL members but involving different members in leaves, roots and tubers. CONCLUSION: The long-reads-based genome assembly and annotation provides a better genomic resource for identification of PEBP family genes. Heat stress tends to decrease FT gene activities but increases TFL gene activities, but this opposite expression involves different FT/TFL pairs in leaves, roots, and tubers. This tissue-specific expression pattern of PEBP members may partly explain why different potato organs differ in their sensitivities to heat stress. Our study provides candidate PEBP family genes and relevant information for genetic improvement of heat tolerance in potato and may help understand heat-induced responses in other plants.


Assuntos
Solanum tuberosum , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Resposta ao Choque Térmico/genética , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Estresse Fisiológico/genética
16.
Pestic Biochem Physiol ; 183: 105056, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35430060

RESUMO

Pesticides can seriously affect the respiratory chain of the mitochondria of many crops, reducing the intensity of plant growth and its yield. Studying the effect of pesticides on the bioenergetic parameters of intact plant mitochondria is a promising approach for assessing their toxicity. In this study, we investigated the effect of some pesticides on isolated potato mitochondria, which used exogenous NADH as a substrate for respiration. We showed that succinate is the most preferred substrate for phosphorylating respiration of intact potato tubers mitochondria. Potato mitochondria poorly oxidize exogenous NADH, despite of the presence of external NADH dehydrogenases. Permeabilization of the mitochondrial membrane with alamethicin increased the availability of exogenous NADH to complex I. However, the pathway of electrons through complex I to complex IV makes intact potato mitochondria susceptible to a number of pesticides such as difenoconazole, fenazaquin, pyridaben and tolfenpyrad, which strongly inhibit the rate of mitochondrial respiration. However, these pesticides only slightly inhibited the rate of oxygen consumption during succinate-supported respiration. Dithianon, the inhibitor of Complex II, is the only pesticide which significantly increased the respiratory rate of NADH-supported respiration of permeabilized mitochondria of potato. Thus, it can be assumed that the alternative NADH dehydrogenases for electron flow represent a factor responsible for plant resistance to xenobiotics, such as mitochondria-targeted pesticides.


Assuntos
Praguicidas , Solanum tuberosum , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias , NAD/metabolismo , NAD/farmacologia , Praguicidas/metabolismo , Praguicidas/toxicidade , Respiração , Solanum tuberosum/metabolismo , Ácido Succínico/metabolismo , Ácido Succínico/farmacologia
17.
Plant Dis ; 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35881874

RESUMO

The eastern region of Kazakhstan is an important territorial district producing seed potatoes. Since 2022, the region has been divided into the Abay region (administrative center in Semey city) and the East Kazakhstan region (administrative center in Ust-Kamenogorsk city). One of the largest elite seed farms producing potatoes is East Kazakhstan Agricultural Station LLP (Ust-Kamenogorsk). Potato Virus Y (PVY) was reported as problem for the production of Solanum tuberosum L. in Kazakhstan more than 25 years ago, however, over the past 5 years the spread of recombinant strains of PVY has become more serious problem (Loebenstein, Manadilova 2003). The purpose of this study was to find out the prevalence of PVY strains in the fields of the eastern region of Kazakhstan, including the fields of elite seed farm and commercial potato fields of the Glubokovsky district for the period from 2020 to 2021. Previously, the presence of recombinant strains (PVYN, PVYNTN, PVYN-Wi, PVYO) was shown in the west of Kazakhstan (Khassanov et al. 2020), but there is no data on the variety of PVY strains in the east region of Kazakhstan. Considering the geographical remoteness of these regions by more than 2000 km, the study of the prevalence of PVY in the fields of Kazakhstan needs to be supplemented with new data. PVY strains show a range of symptoms in different potato cultivars. The most damaging of these symptoms is tuber necrosis (Karasev and Gray 2013) associated with PVYNTN and some other recombinant strains. The pathogenesis of a viral infection of the PVYN strain and its recombinants is associated with the development of severe necrotic lesions of the tuber material, because of which yield losses can reach 60% (Chikh-Ali at al., 2020). In July 2021 leaf samples of 240 plants of two local regional potato varieties (Tavria and Izolda) were randomly selected to study PVY strains circulating in seed potatoes. 120 samples of the Tavria variety (seed material of the Elita class) and 120 samples of the Izolda variety (seed material of the Elita class) grown on seed potato fields of the East Kazakhstan Agricultural Experimental Station (GPS: N50.03324°, E82.53346°) were tested for the presence of potato viruses (PVA, PVS, PVM, PLRV, PVY) using commercial ELISA test systems (Russian Potato Research Center, Russia). In most samples (43 leaf samples), PVY is identified in the presence of a number of other potato viruses, mainly with PVM and PVS viruses. In order to type of PVY recombinant strains, samples containing PVY monoinfection have been selected. According to the results of ELISA, 21 PVY monoinfection positive samples have been detected: 14 plants of the Tavria variety, 7 plants of the Izolda variety. Serotype analysis using anti-rabbit polyclonal antibodies (Bioreba Ag, Switzerland) specific for PVYO, PVYC and PVYN serotypes identified PVYO serotype in 14 samples of the Tavria variety and in 7 samples of the Izolda variety, PVYN serotype in 2 samples of the Tavria variety and in 2 samples of the Izolda variety. All 21 PVY-positive samples were tested for strain by reverse transcription polymerase chain reaction (RT-PCR) using the strain-specific primers described by Chikh Ali et al. (2010). The products of PCR analysis showed the presence of bands characteristic of the recombinant N:O strain, 853, 633, and 441 bp - in 17 samples and characteristic of the NTNa strain, 1307, 633 and 441 bp in 4 samples. After determining the results of the analysis of leaf material samples, PVY-infected plants were removed from the soil and the tuber material was visually analyzed for signs of necrosis. According to the results of visual diagnostics, the symptoms of tuber necrosis were found in 80% of cases of infection with recombinant strains of PVYNTNa. In terms of severity, the symptoms of tuber necrosis were identical in both strains and caused to the damage of 35-50% of tubers on each plant of the Tavria and Isolda varieties, which indicates the absence of resistance to these recombinant strains. As is known, at present, many potato varieties have strain-specific resistance to PVYO (Funke at al. 2017). However, N:O and NTNa recombinant strains are the most difficult to develop resistance (Green et al. 2017). This is the first report on the Tavria and Izolda potato varieties as a susceptible host to recombinant strains of PVYN:O and PVYNTNa. Over the past five years, recombinant strains PVYN:O and PVYNTNa were introduced in two regions of Kazakhstan. In this regard, research and development of effective strategies to reduce the spread of recombinant strains PVYN:O and PVYNTNa in Kazakhstan, is particularly relevant. The authors declared no conflicts of interest. Funding: research was carried out within the framework of the scientific project "Development and implementation of innovative technology aimed at imparting antiviral resistance to crop varieties", funded by the Ministry of Education and Science of the Republic of Kazakhstan, Individual registration number (IRN): AP08052163.

18.
Genomics ; 113(5): 3224-3234, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34273496

RESUMO

Germins and germin-like proteins (GLPs) were reported to participate in plant response to biotic and abiotic stresses involving hydrogen peroxide (H2O2) production, but their role in mitigating heat stress is poorly understood. Here, we investigated the ability of a Solanum tuberosum L. GLP (StGLP) gene isolated from the yeast cDNA library generated from heat-stressed potato plants and characterized its role in generating innate and/or acquired thermo-tolerance to potato via genetic transformation. The transgenic plants exhibited enhanced tolerance to gradual heat stress (GHS) compared with sudden heat shock (SHS) in terms of maximal cell viability, minimal ion leakage and reduced chlorophyll breakdown. Further, three StGLP transgenic lines (G9, G12 and G15) exhibited enhanced production of H2O2, which was either reduced or blocked by inhibitors of H2O2 under normal and heat stress conditions. This tolerance was mediated by up-regulation of antioxidant enzymes (catalase, ascorbate peroxidase and glutathione reductase) and other heat stress-responsive genes (StHSP70, StHSP20 and StHSP90) in transgenic potato plants. These results demonstrate that H2O2 produced by over-expression of StGLP in transgenic potato plants triggered the reactive oxygen species (ROS) scavenging signaling pathways controlling antioxidant and heat stress-responsive genes in these plants imparting tolerance to heat stress.


Assuntos
Solanum tuberosum , Regulação da Expressão Gênica de Plantas , Glicoproteínas , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Estresse Fisiológico/genética
19.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35163389

RESUMO

Tuber shape is one of the most important quality traits in potato appearance. Since poor or irregular shape results in higher costs for processing and influences the consumers' willingness to purchase, breeding for shape uniformity and shallow eye depth is highly important. Previous studies showed that the major round tuber shape controlling locus, the Ro locus, is located on chromosome 10. However, fine mapping and cloning of tuber shape genes have not been reported. In this study, the analyses of tissue sectioning and transcriptome sequencing showed that the developmental differences between round and elongated tuber shapes begin as early as the hook stage of the stolon. To fine map tuber shape genes, a high-density genetic linkage map of the Ro region on chromosome 10 based on a diploid segregating population was constructed. The total length of the genetic linkage map was 25.8 cM and the average marker interval was 1.98 cM. Combined with phenotypic data collected from 2014 to 2017, one major quantitative trait locus (QTL) for tuber shape was identified, which explained 61.7-72.9% of the tuber shape variation. Through the results of genotyping and phenotypic investigation of recombinant individuals, Ro was fine mapped in a 193.43 kb interval, which contained 18 genes. Five candidate genes were preliminarily predicted based on tissue sections and transcriptome sequencing. This study provides an important basis for cloning Ro gene(s).


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Loci Gênicos , Tubérculos , Solanum tuberosum , Tubérculos/genética , Tubérculos/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo
20.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36430379

RESUMO

Potato (Solanum tuberosum L.) is one of the most important crops worldwide, but due to its sensitivity to drought, its production can be affected by water availability. In this study, the varieties Agria and Zorba were used to determine the expression differences between control and water-stressed plants. For this purpose, they were sequenced by RNAseq, obtaining around 50 million transcripts for each variety and treatment. When comparing the significant transcripts obtained from control and drought-stressed plants of the Agria variety, we detected 931 genes that were upregulated and 2077 genes that were downregulated under stress conditions. When both treatments were compared in Zorba plants, 735 genes were found to be upregulated and 923 genes were found to be downregulated. Significantly more DEGs were found in the Agria variety, indicating a good stress response of this variety. "Abscisic acid and environmental stress-inducible protein TAS14-like" was the most overexpressed gene under drought conditions in both varieties, but expression differences were also found in numerous transcription factors and heat shock proteins. The principal GO term found was "cellular components", more specifically related to the cell membrane and the cell wall, but other metabolic pathways such as carbohydrate metabolism and osmotic adjustment were also identified. These results provide valuable information related to the molecular mechanisms of tolerance to water stress in order to establish the basis for breeding new, more tolerant varieties.


Assuntos
Solanum tuberosum , Solanum tuberosum/metabolismo , Desidratação/genética , Tetraploidia , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa