Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 141: 106605, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31479732

RESUMO

The origin of the mammalian order Eulipotyphla has been debated intensively with arguments around whether they began diversifying before or after the Cretaceous-Palaeogene (K-Pg) boundary at 66 Ma. Here, we used an in-solution nucleotide capture method and next generation DNA sequencing to determine the sequence of hundreds of ultra-conserved elements (UCEs), and conducted phylogenomic and molecular dating analyses for the four extant eulipotyphlan lineages-Erinaceidae, Solenodontidae, Soricidae, and Talpidae. Concatenated maximum-likelihood analyses with single or partitioned models and a coalescent species-tree analysis showed that divergences among the four major eulipotyphlan lineages occurred within a short period of evolutionary time, but did not resolve the interrelationships among them. Alternative suboptimal phylogenetic hypotheses received consistently the same amount of support from different UCE loci, and were not significantly different from the maximum likelihood tree topology, suggesting the prevalence of stochastic lineage sorting. Molecular dating analyses that incorporated among-lineage evolutionary rate differences supported a scenario where the four eulipotyphlan families diversified between 57.8 and 63.2 Ma. Given short branch lengths with low support values, traces of rampant genome-wide stochastic lineage sorting, and post K-Pg diversification, we concluded that the crown eulipotyphlan lineages arose through a rapid diversification after the K-Pg boundary when novel niches were created by the mass extinction of species.


Assuntos
Sequência Conservada , Mamíferos/classificação , Mamíferos/genética , Filogenia , Animais , Composição de Bases/genética , Calibragem , Sequência Conservada/genética , Variação Genética , Funções Verossimilhança , Fatores de Tempo
2.
Mol Phylogenet Evol ; 121: 158-165, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29331683

RESUMO

The mammalian order Eulipotyphla includes four extant families of insectivorans: Solenodontidae (solenodons); Talpidae (moles); Soricidae (shrews); and Erinaceidae (hedgehogs). Of these, Solenodontidae includes only two extant species, which are endemic to the largest islands of the Greater Antilles: Cuba and Hispaniola. Most molecular studies suggest that eulipotyphlan families diverged from each other across several million years, with the basal split between Solenodontidae and other families occurring in the Late Cretaceous. By contrast, Sato et al. (2016) suggest that eulipotyphlan families diverged from each other in a polytomy ∼58.6 million years ago (Mya). This more recent divergence estimate for Solenodontidae versus other extant eulipotyphlans suggests that solenodons must have arrived in the Greater Antilles via overwater dispersal rather than vicariance. Here, we show that the young timetree estimates for eulipotyphlan families and the polytomy are due to an inverted ingroup-outgroup arrangement of the tree, the result of using Tracer rather than TreeAnnotator to compile interfamilial divergence times, and of not enforcing the monophly of well-established clades such as Laurasiatheria and Eulipotyphla. Finally, Sato et al.'s (2016) timetree includes several zombie lineages where estimated divergence times are much younger than minimum ages that are implied by the fossil record. We reanalyzed Sato et al.'s (2016) original data with enforced monophyly for well-established clades and updated fossil calibrations that eliminate the inference of zombie lineages. Our resulting timetrees, which were compiled with TreeAnnotator rather than Tracer, produce dates that are in good agreement with other recent studies and place the basal split between Solenodontidae and other eulipotyphlans in the Late Cretaceous.


Assuntos
Fósseis , Mamíferos/classificação , Filogenia , Animais , Calibragem , Cuba , Evolução Molecular , Fatores de Tempo
3.
Toxins (Basel) ; 13(3)2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810196

RESUMO

Venomousness is a complex functional trait that has evolved independently many times in the animal kingdom, although it is rare among mammals. Intriguingly, most venomous mammal species belong to Eulipotyphla (solenodons, shrews). This fact may be linked to their high metabolic rate and a nearly continuous demand of nutritious food, and thus it relates the venom functions to facilitation of their efficient foraging. While mammalian venoms have been investigated using biochemical and molecular assays, studies of their ecological functions have been neglected for a long time. Therefore, we provide here an overview of what is currently known about eulipotyphlan venoms, followed by a discussion of how these venoms might have evolved under ecological pressures related to food acquisition, ecological interactions, and defense and protection. We delineate six mutually nonexclusive functions of venom (prey hunting, food hoarding, food digestion, reducing intra- and interspecific conflicts, avoidance of predation risk, weapons in intraspecific competition) and a number of different subfunctions for eulipotyphlans, among which some are so far only hypothetical while others have some empirical confirmation. The functions resulting from the need for food acquisition seem to be the most important for solenodons and especially for shrews. We also present several hypotheses explaining why, despite so many potentially beneficial functions, venomousness is rare even among eulipotyphlans. The tentativeness of many of the arguments presented in this review highlights our main conclusion, i.e., insights regarding the functions of eulipotyphlan venoms merit additional study.


Assuntos
Evolução Molecular , Comportamento Predatório , Musaranhos/metabolismo , Peçonhas/metabolismo , Animais , Comportamento Competitivo , Filogenia , Musaranhos/genética , Especificidade da Espécie , Peçonhas/genética
4.
Ecol Evol ; 10(11): 5056-5068, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32551081

RESUMO

Comparative assessment of the relative information content of different independent spatial data types is necessary to evaluate whether they provide congruent biogeographic signals for predicting species ranges. Opportunistic occurrence records and systematically collected survey data are available from the Dominican Republic for Hispaniola's surviving endemic non-volant mammals, the Hispaniolan solenodon (Solenodon paradoxus) and Hispaniolan hutia (Plagiodontia aedium); opportunistic records (archaeological, historical and recent) exist from across the entire country, and systematic survey data have been collected from seven protected areas. Species distribution models were developed in maxent for solenodons and hutias using both data types, with species habitat suitability and potential country-level distribution predicted using seven biotic and abiotic environmental variables. Three different models were produced and compared for each species: (a) opportunistic model, with starting model incorporating abiotic-only predictors; (b) total survey model, with starting model incorporating biotic and abiotic predictors; and (c) reduced survey model, with starting model incorporating abiotic-only predictors to allow further comparison with the opportunistic model. All models predict suitable environmental conditions for both solenodons and hutias across a broadly congruent, relatively large area of the Dominican Republic, providing a spatial baseline of conservation-priority landscapes that might support native mammals. Correlation between total and reduced survey models is high for both species, indicating the substantial explanatory power of abiotic variables for predicting Hispaniolan mammal distributions. However, correlation between survey models and opportunistic models is only moderately positive. Species distribution models derived from different data types can provide different predictions about habitat suitability and conservation-priority landscapes for threatened species, likely reflecting incompleteness and bias in spatial sampling associated with both data types. Models derived using both opportunistic and systematic data must therefore be applied critically and cautiously.

5.
J Mammal ; 100(1): 45-54, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30837777

RESUMO

The Hispaniolan solenodon, Solenodon paradoxus, and Hispaniolan hutia, Plagiodontia aedium, are the Dominican Republic's only surviving endemic non-volant land mammals, and are high priorities for conservation. The country has an extensive protected area (PA) network designed to maintain habitats and benefit biodiversity, but which faces significant anthropogenic threats likely to detrimentally impact both species. We examined how differences in habitats, forest structure, topography, and human activity influence presence of solenodons and hutias across the Dominican Republic. Systematic surveys of seven PAs were undertaken to record indirect signs, with presence-absence data analyzed using a multi-model inference approach incorporating ecological variables from both field and GIS data. Solenodons were detected relatively frequently, whereas detections of hutias were uncommon. Lower elevations, increased surrounding tree cover, canopy closure, and reduced levels of low vegetation are all associated with increased probability of detecting solenodons, whereas agriculture and mangrove represent poor-quality habitat. Increased canopy closure, tree basal area (indicating older-growth forest), and increased rock substrate (providing more den sites) are associated with increased probability of detecting hutias. Our findings indicated that human activities within PAs are likely to negatively affect both species, and conservation activities should focus on preventing encroachment and conversion of forest to agriculture to maintain high-quality forest habitats. El solenodonte de la Hispaniola, Solenodon paradoxus, y la hutia de la Hispaniola, Plagiodontia aedium, son los únicos mamíferos endémicos terrestres no voladores que sobreviven en la República Dominicana, su conservación es de alta prioridad. El país tiene una extensa red de áreas protegidas (AP) diseñada para mantener hábitats y beneficiar la biodiversidad, pero se enfrenta a amenazas antropogénicas. Sin embargo, no existen datos cuantitativos para evaluar las presiones antropogénicas que amenazan a los solenodontes y las hutias. Examinamos cómo las diferencias en los hábitats, la estructura del bosque, la topografía y la actividad humana influyen la presencia de solenodontes y hutias en toda la República Dominicana. Se realizaron encuestas sistemáticas de siete AP para registrar los signos indirectos de ambas especies, los datos de presencia/ausencia fueron analizados mediante inferencia multimodelo que incorpora variables ecológicas de los datos de campo y Sistema de Información Geográfica. Los Solenodontes se detectaron relativamente frecuentemente, mientras que las detecciones de hutias fueron menos comunes. Las elevaciones más bajas, el aumento de la cubierta arbórea circundante, el cierre del dosel y los niveles reducidos de vegetación baja se asocian con una mayor probabilidad de detectar solenodones. Mientras que la agricultura y los manglares representan un hábitat de mala calidad para el solenodonte. Aumento del cierre del dosel, área basal del árbol (que indica un bosque más antiguo) y un sustrato con mayor proporcion de roca (que proporciona más sitios para madrigueras) se asocian con una mayor probabilidad de detectar hutias. Nuestros hallazgos indican que las actividades humanas dentro de las AP pueden afectar negativamente a ambas especies. Las actividades de conservación deberían enfocarse en mantener hábitats forestales de alta calidad por medio de prevenir la invasión y la conversión de los bosques a agricultura.

6.
Mitochondrial DNA A DNA Mapp Seq Anal ; 28(5): 662-670, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27159724

RESUMO

Solenodons are insectivores found only in Hispaniola and Cuba, with a Mesozoic divergence date versus extant mainland mammals. Solenodons are the oldest lineage of living eutherian mammal for which a mitogenome sequence has not been reported. We determined complete mitogenome sequences for six Hispaniolan solenodons (Solenodon paradoxus) using next-generation sequencing. The solenodon mitogenomes were 16,454-16,457 bp long and carried the expected repertoire of genes. A mitogenomic phylogeny confirmed the basal position of solenodons relative to shrews and moles, with solenodon mitogenomes estimated to have diverged from those of other mammals ca. 78 Mya. Control region sequences of solenodons from the northern (n = 3) and southern (n = 5) Dominican Republic grouped separately in a network, with FST = 0.72 (p = 0.036) between north and south. This regional genetic divergence supports previous morphological and genetic reports recognizing northern (S. p. paradoxus) and southern (S. p. woodi) subspecies in need of separate conservation plans.


Assuntos
Eulipotyphla/classificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mitocôndrias/genética , Análise de Sequência de DNA/métodos , Animais , Eulipotyphla/genética , Evolução Molecular , Tamanho do Genoma , Genoma Mitocondrial , Filogenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa