Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Appl Environ Microbiol ; 90(9): e0207623, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39136489

RESUMO

Social bees have been extensively studied for their gut microbial functions, but the significance of the gut microbiota in solitary bees remains less explored. Solitary bee, Megachile rotundata females provision their offspring with pollen from various plant species, harboring a diverse microbial community that colonizes larvae guts. The Apilactobacillus is the most abundant microbe, but evidence concerning the effects of Apilactobacillus and other provision microbes on growth and survival are lacking. We hypothesized that the presence of Apilactobacillus in abundance would enhance larval and prepupal development, weight, and survival, while the absence of intact microbial communities was expected to have a negative impact on bee fitness. We reared larvae on pollen provisions with naturally collected microbial communities (Natural pollen) or devoid of microbial communities (Sterile pollen). We also assessed the impact of introducing Apilactobacillus micheneri by adding it to both types of pollen provisions. Feeding larvae with sterile pollen + A. micheneri led to the highest mortality rate, followed by natural pollen + A. micheneri, and sterile pollen. Larval development was significantly delayed in groups fed with sterile pollen. Interestingly, larval and prepupal weights did not significantly differ across treatments compared to natural pollen-fed larvae. 16S rRNA gene sequencing found a dominance of Sodalis, when A. micheneri was introduced to natural pollen. The presence of Sodalis with abundant A. micheneri suggests potential crosstalk between both, shaping bee nutrition and health. Hence, this study highlights that the reliance on nonhost-specific environmental bacteria may not impact fitness of M. rotundata.IMPORTANCEThis study investigates the impact of environmentally acquired gut microbes of solitary bee fitness with insights into the microbial ecology of bee and their health. While the symbiotic microbiome is well-studied in social bees, the role of environmental acquired microbiota in solitary bees remains unclear. Assessing this relationship in a solitary pollinator, the leaf-cutting bee, Megachile rotundata, we discovered that this bee species does not depend on the diverse environmental bacteria found in pollen for either its larval growth or survival. Surprisingly, high concentrations of the most abundant pollen bacteria, Apilactobacillus micheneri did not consistently benefit bee fitness, but caused larval mortality. Our findings also suggest an interaction between Apilactobacillus and the Sodalis and perhaps their role in bee nutrition. Hence, this study provides significant insights that contribute to understanding the fitness, conservation, and pollination ecology of other solitary bee species in the future.


Assuntos
Microbioma Gastrointestinal , Larva , Pólen , Animais , Abelhas/microbiologia , Abelhas/crescimento & desenvolvimento , Larva/microbiologia , Larva/crescimento & desenvolvimento , Pólen/microbiologia , Feminino , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/crescimento & desenvolvimento , Lactobacillaceae/genética , Lactobacillaceae/crescimento & desenvolvimento , Lactobacillaceae/fisiologia , Lactobacillaceae/isolamento & purificação
2.
Am J Bot ; 111(7): e16375, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39004802

RESUMO

PREMISE: Cross-fertilization in most flowering plants is facilitated by mobile animals that transport pollen while foraging for floral rewards. The contributions of different visitors can vary widely, depending on the amount of pollen transferred during a single visit and on the frequency and timing of the visits of each pollinator taxon. METHODS: We used three approaches to measure the pollination value of bees that visit Mimulus ringens: pollinator interviews, field population observations, and caging studies. RESULTS: The single-visit effectiveness of small bees (primarily Halictidae) was only half that of larger bees (primarily Bombus) for pollen delivery and removal. In five field populations, we found substantial temporal and spatial variation in visitation and pollination. In most sites big bees were active before 08:00 hours, and by 10:00-11:00 hours, stigmas were usually fully pollinated and closed, and little pollen remained in anthers. Small bees seldom visited before 10:00 hours. Excluding big bees from plants confirmed that pollination is reduced and delayed in this ecological context. CONCLUSIONS: Big bees are the primary pollinators of M. ringens, accounting for at least 75% of seed production. Not only are they more effective per visit, in most situations they also visit before small bees become active. Although small bees are not usually important pollinators of M. ringens, they have the potential to partially replace them as a "fail-safe" pollinator in contexts where big bees are not abundant. In a world where pollinator abundance is declining, such backup pollinators may be important for maintaining plant reproduction.


Assuntos
Mimulus , Polinização , Animais , Polinização/fisiologia , Abelhas/fisiologia , Mimulus/fisiologia , Flores/fisiologia , Pólen/fisiologia , Fatores de Tempo
3.
BMC Biol ; 21(1): 229, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37867198

RESUMO

BACKGROUND: Venoms, which have evolved numerous times in animals, are ideal models of convergent trait evolution. However, detailed genomic studies of toxin-encoding genes exist for only a few animal groups. The hyper-diverse hymenopteran insects are the most speciose venomous clade, but investigation of the origin of their venom genes has been largely neglected. RESULTS: Utilizing a combination of genomic and proteo-transcriptomic data, we investigated the origin of 11 toxin genes in 29 published and 3 new hymenopteran genomes and compiled an up-to-date list of prevalent bee venom proteins. Observed patterns indicate that bee venom genes predominantly originate through single gene co-option with gene duplication contributing to subsequent diversification. CONCLUSIONS: Most Hymenoptera venom genes are shared by all members of the clade and only melittin and the new venom protein family anthophilin1 appear unique to the bee lineage. Most venom proteins thus predate the mega-radiation of hymenopterans and the evolution of the aculeate stinger.


Assuntos
Venenos de Abelha , Abelhas/genética , Animais , Perfilação da Expressão Gênica , Transcriptoma , Genômica , Duplicação Gênica
4.
Ecol Appl ; 33(1): e2743, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36107148

RESUMO

There is increasing evidence that farmers in many areas are achieving below maximum yields due to insufficient pollination. Practical and effective approaches are needed to maintain wild pollinator populations within agroecosystems so they can deliver critical pollination services that underpin crop production. We established nesting and wildflower habitat interventions in 24 UK apple orchards and measured effects on flower-visiting insects and the pollination they provide, exploring how this was affected by landscape context. We quantified the extent of pollination deficits and assessed whether the management of wild pollinators can reduce deficits and deliver improved outcomes for growers over 3 years. Wildflower interventions increased solitary bee numbers visiting apple flowers by over 20%, but there was no effect of nesting interventions. Other pollinator groups were influenced by both local and landscape-scale factors, with bumblebees and hoverflies responding to the relative proportion of semi-natural habitat at larger spatial scales (1000 m), while honeybees and other flies responded at 500 m or less. By improving fruit number and quality, pollinators contributed more than £16 k per hectare. However, deficits (where maximum potential was not being reached due to a lack of pollination) were recorded and the extent of these varied across orchards, and from year to year, with a 22% deficit in output in the worst (equivalent to ~£14 k/ha) compared to less than 3% (equivalent to ~£2 k/ha) in the best year. Although no direct effect of our habitat interventions on deficits in gross output was observed, initial fruit set and seed set deficits were reduced by abundant bumblebees, and orchards with a greater abundance of solitary bees saw lower deficits in fruit size. The abundance of pollinators in apple orchards is influenced by different local and landscape factors that interact and vary between years. Consequently, pollination, and the extent of economic output deficits, also vary between orchards and years. We highlight how approaches, including establishing wildflower areas and optimizing the ratio of cropped and non-cropped habitats can increase the abundance of key apple pollinators and improve outcomes for growers.


Assuntos
Malus , Polinização , Abelhas , Animais , Ecossistema , Insetos , Frutas , Produtos Agrícolas , Flores
5.
Biol Lett ; 19(2): 20220411, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36789529

RESUMO

Change in land configuration is an important driver of pollinator decline. Understanding patch selection by bees in fragmented landscapes has therefore become imperative to guide the design of habitats that support pollinators and ensure their conservation. This is especially true for solitary bees that make up most bee species in the world. To elucidate the decision-making process of a solitary bee when selecting patches, we tested four models of patch attractiveness that differed in the role of patch size and isolation distance in the selection process. In these models, bees used both patch size and patch distance, only patch distance, or chose randomly among patches. When patch size was included, bees could estimate patch resources fully or partially. An experiment with a centre patch, surrounded by four peripheral patches of different sizes and distances from the centre, provided observed transition data to test against predictions derived from each of the models. The alfalfa leafcutting bee, Megachile rotundata, does not move randomly among patches. This bee uses both patch size and isolation distance when selecting a patch but can only evaluate patch resources partially. This knowledge can guide the design of habitats in fragmented landscapes to facilitate solitary bee conservation.


Assuntos
Ecossistema , Polinização , Abelhas , Animais
6.
Microb Ecol ; 86(4): 3013-3026, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37794084

RESUMO

We characterized the microbial communities of the crop, midgut, hindgut, and ovaries of the wild solitary bees Andrena vaga, Anthophora plumipes, Colletes cunicularius, and Osmia cornuta through 16S rRNA gene and ITS2 amplicon sequencing and a large-scale isolation campaign. The bacterial communities of these bees were dominated by endosymbionts of the genera Wolbachia and Spiroplasma. Bacterial and yeast genera representing the remaining predominant taxa were linked to an environmental origin. While only a single sampling site was examined for Andrena vaga, Anthophora plumipes, and Colletes cunicularius, and two sampling sites for Osmia cornuta, the microbiota appeared to be host specific: bacterial, but not fungal, communities generally differed between the analyzed bee species, gut compartments and ovaries. This may suggest a selective process determined by floral and host traits. Many of the gut symbionts identified in the present study are characterized by metabolic versatility. Whether they exert similar functionalities within the bee gut and thus functional redundancy remains to be elucidated.


Assuntos
Microbiota , Micobioma , Spiroplasma , Abelhas , Animais , RNA Ribossômico 16S/genética , Bactérias
7.
Bull Entomol Res ; 113(3): 299-305, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36883790

RESUMO

The success of agriculture relies on healthy bees to pollinate crops. Commercially managed pollinators are often kept under temperature-controlled conditions to better control development and optimize field performance. One such pollinator, the alfalfa leafcutting bee, Megachile rotundata, is the most widely used solitary bee in agriculture. Problematically, very little is known about the thermal physiology of M. rotundata or the consequences of artificial thermal regimes used in commercial management practices. Therefore, we took a broad look at the thermal performance of M. rotundata across development and the effects of commonly used commercial thermal regimes on adult bee physiology. After the termination of diapause, we hypothesized thermal sensitivity would vary across pupal metamorphosis. Our data show that bees in the post-diapause quiescent stage were more tolerant of low temperatures compared to bees in active development. We found that commercial practices applied during development decrease the likelihood of a bee recovering from another bout of thermal stress in adulthood, thereby decreasing their resilience. Lastly, commercial regimes applied during development affected the number of days to adult emergence, but the time of day that adults emerged was unaffected. Our data demonstrate the complex interactions between bee development and thermal regimes used in management. This knowledge can help improve the commercial management of these bees by optimizing the thermal regimes used and the timing of their application to alleviate negative downstream effects on adult performance.


Assuntos
Temperatura Baixa , Medicago sativa , Abelhas , Animais , Temperatura , Pupa , Metamorfose Biológica
8.
Insect Mol Biol ; 31(6): 686-700, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35716016

RESUMO

Insect pollinators provide crucial ecosystem services yet face increasing environmental pressures. The challenges posed by novel and reemerging pathogens on bee health means we need to improve our understanding of the immune system, an important barrier to infections and disease. Despite the importance of solitary bees, which are ecologically relevant, our understanding of the genomic basis and molecular mechanisms underlying their immune potential, and how intrinsic and extrinsic factors may influence it is limited. To improve our understanding of the genomic architecture underlying immunity of a key solitary bee pollinator, we characterized putative immune genes of the red mason bee, Osmia bicornis. In addition, we used publicly available RNA-seq datasets to determine how sexes differ in immune gene expression and splicing but also how pesticide exposure may affect immune gene expression in females. Through comparative genomics, we reveal an evolutionarily conserved set of more than 500 putative immune-related genes. We found genome-wide patterns of sex-biased gene expression, with greater enrichment of immune-related processes among genes with higher constitutive expression in males than females. Our results also suggest an up-regulation of immune-related genes in response to exposure to two common neonicotinoids, thiacloprid and imidacloprid. Collectively, our study provides important insights into the gene repertoire, regulation and expression differences in the sexes of O. bicornis, as well as providing additional support for how neonicotinoids can affect immune gene expression, which may affect the capacity of solitary bees to respond to pathogenic threats.


Assuntos
Ecossistema , Inseticidas , Feminino , Masculino , Abelhas , Animais , Neonicotinoides , Genômica
9.
Oecologia ; 195(1): 65-75, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33392790

RESUMO

Although ecological disturbances can have a strong influence on pollinators through changes in habitat, virtually no studies have quantified how characteristics of wildfire influence the demography of essential pollinators. Nevertheless, evaluating this topic is critical for understanding how wildfire is linked to pollinator population dynamics, particularly given recent changes in wildfire frequency and severity in many regions of the world. In this study, we measured the demographic response of the blue orchard bee (Osmia lignaria) across a natural gradient of wildfire severity to assess how variation in wildfire characteristics influenced reproductive output, offspring sex ratio, and offspring mass. We placed nest blocks with a standardized number and sex ratio of pre-emergent adult bees across the wildfire gradient, finding some evidence for a positive but highly variable relationship between reproductive output and fire severity surrounding the nest site at both local (100 m) and landscape (750 m) scales. In addition, the production of female offspring was > 10% greater at nest sites experiencing the greatest landscape-scale fire severity relative to the lowest-severity areas. The finding that blue orchard bees biased offspring production towards the more expensive offspring sex with increasing fire severity shows a functional response to changes in habitat quality through increased density of flowering plants. Our findings indicate that burned mixed-conifer forest provides forage for the blue orchard bee across a severity gradient, and that the increase in floral resources that follows high-severity fire leads females to shift resource allocation to the more costly sex when nesting.


Assuntos
Incêndios , Incêndios Florestais , Animais , Abelhas , Ecossistema , Feminino , Reprodução , Razão de Masculinidade
10.
J Chem Ecol ; 47(4-5): 444-454, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33683547

RESUMO

Olfactory cues constitute one of the most important plant-pollinator communication channels. Specific chemical components can be associated with specific pollinator functional groups due to pollinator-mediated selection on flower volatile (FV) emission. Here, we used multivariate analyses of FV data to detect an association between FVs and the worldwide distributed pollinator group of the carpenter bees (Xylocopa spp.). We compiled FVs of 29 plant species: 9 pollinated by carpenter bees, 20 pollinated by other bee pollinator functional groups. We tested whether FV emission differed between these groups. To rule out any phylogenetic bias in our dataset, we tested FV emission for phylogenetic signal. Finally, using field assays, we tested the attractive function of two FVs found to be associated with carpenter bees. We found no significant multivariate difference between the two plant groups FVs. However, seven FVs (five apocarotenoid terpenoids, one long-chain alkane and one benzenoid) were significantly associated with carpenter bee pollination, thus being "predictor" compounds of pollination by this pollinator functional group. From those, ß-ionone and (E)-methyl cinnamate presented the highest indicator values and had their behavioural function assessed in field assays. Phylogenetic signal for FVs emission was weak, suggesting that their emission could result from pollinator-mediated selection. In field assays, the apocarotenoid ß-ionone attracted carpenter bees, but also bees from other functional groups. The benzenoid (E)-methyl cinnamate did not attract significant numbers of pollinators. Thus, ß-ionone functions as a non-specific bee attractant, while apocarotenoid FVs emerge as consistent indicators of pollination by large food-foraging bees among bee-pollinated flowers.


Assuntos
Flores/química , Feromônios/química , Polinização/fisiologia , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , Animais , Abelhas , Comportamento Animal , Cinamatos/química , Cinamatos/metabolismo , Preferências Alimentares/fisiologia , Masculino , Análise Multivariada , Norisoprenoides/química , Norisoprenoides/metabolismo , Odorantes , Feromônios/metabolismo , Filogenia , Reprodução
11.
Ecotoxicol Environ Saf ; 215: 112143, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33740489

RESUMO

Risk assessment of pesticides involves ecotoxicological testing. In case pesticide exposure to bees is likely, toxicity tests are performed with honey bees (Apis mellifera), with a tiered approach, for which validated and internationally accepted test protocols exist. However, concerns have grown regarding the protection of non-Apis bees [bumble bees (Bombus spp.), solitary and stingless bees], given their different life cycles and therefore distinct exposure routes. Larvae of solitary bees of the genus Osmia feed on unprocessed pollen during development, yet no toxicity test protocol is internationally accepted or validated to assess the impact of pesticide exposure during this stage of their life cycle. Therefore, the purpose of this study is to further validate a test protocol with two solitary bee species (O. cornuta and O. bicornis) to assess lethal and sublethal effects of pesticide exposure on larval development. Larvae were exposed to thiacloprid (neonicotinoid insecticide) mixed in a new, artificial pollen provision. Both lethal (developmental and winter mortality) and sublethal endpoints (larval development time, pollen provision consumption, cocoon weight, emergence time and adult longevity) were recorded. Effects of lower, more environmentally realistic doses were only reflected in sublethal endpoints. In both bee species, thiacloprid treatment was associated with increased developmental mortality and larval development time, and decreased pollen provision consumption and cocoon weight. The test protocol proved valid and robust and showed that for higher doses of thiacloprid the acute endpoint (larval mortality) is sufficient. In addition, new insights needed to develop a standardized test protocol were acquired, such as testing of a positive control for the first time and selection of male and female individuals at egg level.


Assuntos
Abelhas/fisiologia , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Tiazinas/toxicidade , Animais , Feminino , Himenópteros , Larva/efeitos dos fármacos , Estágios do Ciclo de Vida , Praguicidas/toxicidade , Pólen , Testes de Toxicidade
12.
J Insect Sci ; 21(5)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34519348

RESUMO

Islands are insular environments that are negatively impacted by invasive species. In Hawai'i, at least 21 non-native bees have been documented to date, joining the diversity of >9,000 non-native and invasive species to the archipelago. The goal of this study is to describe the persistence, genetic diversity, and natural history of the most recently established bee to Hawai'i, Megachile policaris Say, 1831 (Hymenoptera: Megachilidae). Contemporary surveys identify that M. policaris is present on at least O'ahu, Maui, and Hawai'i Island, with the earliest detection of the species in 2017. Furthermore, repeated surveys and observations by community members support the hypothesis that M. policaris has been established on Hawai'i Island from 2017 to 2020. DNA sequenced fragments of the cytochrome oxidase I locus identify two distinct haplotypes on Hawai'i Island, suggesting that at least two founders have colonized the island. In their native range, M. policaris is documented to forage on at least 21 different plant families, which are represented in Hawai'i. Finally, ensemble species distribution models (SDMs) constructed with four bioclimatic variables and occurrence data from the native range of M. policaris predicts high habitat suitability on the leeward side of islands throughout the archipelago and at high elevation habitats. While many of the observations presented in our study fall within the predicted habitat suitability on Hawai'i, we also detected the M. policaris on the windward side of Hawai'i Island suggesting that the SDMs we constructed likely do not capture the bioclimatic niche flexibility of the species.


Assuntos
Abelhas , Espécies Introduzidas , Distribuição Animal , Animais , Abelhas/genética , Abelhas/fisiologia , Ecossistema , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genes de Insetos , Haplótipos , Havaí , Modelos Estatísticos , Polinização , Dinâmica Populacional
13.
J Insect Sci ; 21(3)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34113998

RESUMO

Variation in body size has important implications for physical performance and fitness. For insects, adult size and morphology are determined by larval growth and metamorphosis. Female blue orchard bees, Osmia lignaria, (Say) provision a finite quantity of food to their offspring. In this study, we asked how provision-dependent variation in size changes adult morphology. We performed a diet manipulation in which some larvae were starved in the final instar and some were given unlimited food. We examined the consequences on adult morphology in two ways. First, allometric relationships between major body regions (head, thorax, abdomen) and total body mass were measured to determine relative growth of these structures. Second, morphometrics that are critical for flight (wing area, wing loading, and extra flight power index) were quantified. Head and thorax mass had hyperallometric relationships with body size, indicating these parts become disproportionately large in adults when larvae are given copious provisions. However, abdominal mass and wing area increased hypoallometrically with body size. Thus, large adults had disproportionately lighter abdomens and smaller wing areas than smaller adults. Though both males and females followed these general patterns, allometric patterns were affected by sex. For flight metrics, small adults had reduced wing loading and an increased extra flight power index. These results suggest that diet quantity alters development in ways that affect the morphometric trait relationships in adult O. lignaria and may lead to functional differences in performance.


Assuntos
Abelhas , Tamanho Corporal , Aptidão Genética/fisiologia , Asas de Animais , Animais , Abelhas/anatomia & histologia , Abelhas/fisiologia , Tamanho Corporal/fisiologia , Comportamento Alimentar , Feminino , Fertilidade , Himenópteros/anatomia & histologia , Himenópteros/fisiologia , Larva/fisiologia , Masculino , Fatores Sexuais , Asas de Animais/anatomia & histologia , Asas de Animais/fisiologia
14.
Biol Lett ; 15(10): 20190479, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31662065

RESUMO

Bees are often considered to be effective pollinators in both agricultural and natural ecosystems but could be ineffective pollinators in that they collect large quantities of pollen for food provision but deliver little to stigmas. Male bees do not collect pollen to feed larvae, and their pollination role has been underappreciated. Here we compare pollination effectiveness, visit frequency and pollen foraging behaviour between female and male individuals of a mining bee, Andrena emeishanica, visiting a nectariferous spring flower (Epimedium pubescens). Female bees were observed to forage for both pollen and nectar, but male bees foraged only for nectar. Female bees had large hairy hind tibiae with conspicuous scopae, and nearly 90% of the pollen grains they collected went onto the hind legs. Male bees removed less pollen from anthers than female bees but deposited more pollen on stigmas per visit. The higher pollen transfer efficiency of male bees was due to 48.4% of pollen grains remaining ungroomed on the thorax and abdomen, available for stigma contact, but their visitation rate to flowers was much lower. Our results indicate that male solitary bees could transfer more pollen on the stigma per visit but were less important (transferred less pollen in total, because they made fewer visits per unit time) than females.


Assuntos
Ecossistema , Polinização , Animais , Abelhas , Feminino , Flores , Masculino , Pólen , Estações do Ano
15.
J Invertebr Pathol ; 158: 43-45, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30240582

RESUMO

The micro-parasites present in the Apidae pollinator community are mostly multi-host pathogens. To study the impact of these multi-host pathogens on the Apidae pollinator community, as a driver of wild bee decline, pathological studies are needed for different hosts. Yet data on the pathogenesis of these pathogens for different genera and species is scarce or lacking, especially for solitary bee species. In this study, we monitored the effect of the multi-host micro-parasite Apicystis bombi on the lifespan of Osmia bicornis, a common solitary bee. Our results show that A. bombi infection significantly reduces O. bicornis survival.


Assuntos
Apicomplexa/fisiologia , Abelhas/parasitologia , Animais
16.
Mol Ecol ; 26(16): 4296-4308, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28334485

RESUMO

The occurrence and extent of multiple paternity is an important component of variation in plant mating dynamics. However, links between pollinator activity and multiple paternity are generally lacking, especially for plant species that attract functionally diverse floral visitors. In this study, we separated the influence of two functionally distinct floral visitors (hawkmoths and solitary bees) and characterized their impacts on multiple paternity in a self-incompatible, annual forb, Oenothera harringtonii (Onagraceae). We also situated pollinator-mediated effects in a spatial context by linking variation in multiple paternity to variation in plant spatial isolation. We documented pronounced differences in the number of paternal sires as function of pollinator identity: on average, the primary pollinator (hawkmoths) facilitated mating with nearly twice as many pollen donors relative to the secondary pollinator (solitary bees). This effect was consistent for both isolated and nonisolated individuals, but spatial isolation imposed pronounced reductions on multiple paternity regardless of pollinator identity. Considering that pollinator abundance and pollen dispersal distance did not vary significantly with pollinator identity, we attribute variation in realized mating dynamics primarily to differences in pollinator morphology and behaviour as opposed to pollinator abundance or mating incompatibility arising from underlying spatial genetic structure. Our findings demonstrate that functionally distinct pollinators can have strongly divergent effects on polyandry in plants and further suggest that both pollinator identity and spatial heterogeneity have important roles in plant mating dynamics.


Assuntos
Abelhas , Mariposas , Onagraceae/genética , Polinização , Animais , Flores , Pólen/genética , Autoincompatibilidade em Angiospermas
17.
Naturwissenschaften ; 104(3-4): 23, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28271178

RESUMO

In addition to the process of joining the sleeping aggregation, the choice of sleeping position is an important night-time behaviour of small diurnal insects because of the increased risk for predator attacks as well as bad weather. The aggregation behaviour of the solitary bee Amegilla florea urens was investigated to elucidate the choice of sleeping position on substrates. Male and female constructed single-sex aggregations on hanging leaves during May and June, respectively. Most individuals tended to form aggregations with other individuals while few individuals slept alone. During the aggregation forming, both the number of individuals that tried to join the aggregation and the completion time of aggregation increased with the number of sleeping individuals, whereas the success rate of joining was unaffected. The sleeping positions of subsequent arrivals on the substrates were higher than those of the first arrivals in female aggregations. Therefore, the first female to arrive tended to be located near the bottom of a hanging substrate. Dissecting sleeping females showed that they contained mature oocytes, indicating that sexually mature individuals formed aggregations. In male aggregations, however, we could not find a clear relationship between the position on substrates and the arrival sequence. We suggest that the purpose for sleeping in aggregations might be a dilution effect for nocturnal predation and that the females that finished both nesting and foraging quickly could choose the optimal positions in the aggregation when they arrived on the sleeping substrates.


Assuntos
Abelhas/fisiologia , Comportamento de Nidação/fisiologia , Animais , Feminino , Ilhas , Japão , Masculino , Fatores Sexuais , Sono , Comportamento Social
18.
J Insect Sci ; 17(2)2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28365763

RESUMO

The blue orchard bee, Osmia lignaria (Say), is a solitary bee that is an excellent pollinator of tree fruit orchards. Due to the annual rising costs of honey bee hive rentals, many orchardists are eager to develop management tools and practices to support O. lignaria as an alternative pollinator. Establishing O. lignaria pollination as a sustainable industry requires careful consideration of both bee and orchard management. Here, we test the effect of artificial nest box distribution on in-orchard propagation of O. lignaria in Utah commercial tart cherry orchards. Two nest box distributions were compared across three paired, 1.2-ha plots. One distribution, traditionally employed by O. lignaria consultants, included a centrally located tote for mass-nesting with smaller, surrounding 'satellite' nest boxes at orchard margins. The other distribution was composed of smaller, more equally distributed nest boxes throughout the 1.2-ha plots. Significantly higher propagation of O. lignaria was observed in the latter nest box distribution, although all treatments resulted in bee return exceeding the number of bees initially released. These findings provide support for the use of O. lignaria in tart cherry orchards, and demonstrate how simple changes to bee set-up and management can influence propagation efforts.


Assuntos
Abelhas/fisiologia , Prunus avium/fisiologia , Agricultura/métodos , Animais , Criação de Abelhas/métodos , Polinização , Dinâmica Populacional , Utah
19.
J Evol Biol ; 27(1): 116-32, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24330186

RESUMO

Rapid geographic range expansions can have dramatic effects on the distribution of genetic diversity, both within and among populations. Based on field records collected over the past two decades in Western Europe, we report on the rapid geographic range expansion in Colletes hederae, a solitary bee species. To characterize how this expansion shaped the distribution of genetic diversity within and among populations, we performed a genetic analysis based on the sequencing of three nuclear loci (RNAp, CAD and WgL). We then simulated the evolution of DNA sequences under a spatially explicit model of coalescence to compare different hypotheses regarding the mode of colonization associated with this rapid expansion and to identify those that are most consistent with the observed molecular data. Our genetic analyses indicate that the range expansion was not associated with an important reduction in genetic diversity, even in the most recently colonized area in the United Kingdom. Moreover, little genetic differentiation was observed among populations. Our comparative analysis of simulated data sets indicates that the observed genetic data are more consistent with a demographic scenario involving relatively high migration rates than with a scenario based on a high reproduction rate associated with few migrants. In the light of these results, we discuss the factors that might have contributed to the rapid geographic range expansion of this pollen-specialist solitary bee species across Western Europe.


Assuntos
Abelhas/genética , Animais , Sequência de Bases , Europa (Continente) , Evolução Molecular , Feminino , Variação Genética , Masculino , Dados de Sequência Molecular , Filogeografia
20.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38767866

RESUMO

Host-microbe interactions underlie the development and fitness of many macroorganisms, including bees. Whereas many social bees benefit from vertically transmitted gut bacteria, current data suggests that solitary bees, which comprise the vast majority of species diversity within bees, lack a highly specialized gut microbiome. Here, we examine the composition and abundance of bacteria and fungi throughout the complete life cycle of the ground-nesting solitary bee Anthophora bomboides standfordiana. In contrast to expectations, immature bee stages maintain a distinct core microbiome consisting of Actinobacterial genera (Streptomyces, Nocardiodes) and the fungus Moniliella spathulata. Dormant (diapausing) larval bees hosted the most abundant and distinctive bacteria and fungi, attaining 33 and 52 times their initial copy number, respectively. We tested two adaptive hypotheses regarding microbial functions for diapausing bees. First, using isolated bacteria and fungi, we found that Streptomyces from brood cells inhibited the growth of multiple pathogenic filamentous fungi, suggesting a role in pathogen protection during overwintering, when bees face high pathogen pressure. Second, sugar alcohol composition changed in tandem with major changes in fungal abundance, suggesting links with bee cold tolerance or overwintering biology. We find that A. bomboides hosts a conserved core microbiome that may provide key fitness advantages through larval development and diapause, which raises the question of how this microbiome is maintained and faithfully transmitted between generations. Our results suggest that focus on microbiomes of mature or active insect developmental stages may overlook stage-specific symbionts and microbial fitness contributions during host dormancy.


Assuntos
Bactérias , Fungos , Simbiose , Animais , Abelhas/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Fungos/fisiologia , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Fungos/crescimento & desenvolvimento , Larva/microbiologia , Microbioma Gastrointestinal , Estações do Ano , Interações entre Hospedeiro e Microrganismos , Diapausa/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa