Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36920224

RESUMO

Synaptic connections between neurons are often formed in precise subcellular regions of dendritic arbors with implications for information processing within neurons. Cell-cell interactions are widely important for circuit wiring; however, their role in subcellular specificity is not well understood. We studied the role of axon-axon interactions in precise targeting and subcellular wiring of Drosophila somatosensory circuitry. Axons of nociceptive and gentle touch neurons terminate in adjacent, non-overlapping layers in the central nervous system (CNS). Nociceptor and touch receptor axons synapse onto distinct dendritic regions of a second-order interneuron, the dendrites of which span these layers, forming touch-specific and nociceptive-specific connectivity. We found that nociceptor ablation elicited extension of touch receptor axons and presynapses into the nociceptor recipient region, supporting a role for axon-axon interactions in somatosensory wiring. Conversely, touch receptor ablation did not lead to expansion of nociceptor axons, consistent with unidirectional axon-axon interactions. Live imaging provided evidence for sequential arborization of nociceptive and touch neuron axons in the CNS. We propose that axon-axon interactions and modality-specific timing of axon targeting play key roles in subcellular connection specificity of somatosensory circuitry.


Assuntos
Axônios , Proteínas de Drosophila , Animais , Axônios/fisiologia , Drosophila , Sinapses/fisiologia , Proteínas de Drosophila/genética , Células Receptoras Sensoriais , Dendritos/fisiologia
2.
Mol Cell Neurosci ; 126: 103866, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37263459

RESUMO

Development of neuronal and glial populations in the dorsal root ganglia (DRG) is required for detection of touch, body position, temperature, and noxious stimuli. While female-male differences in somatosensory perception have been previously reported, no study has examined global sex differences in the abundance of DRG cell types, and the developmental origin of these differences has not been characterized. To investigate whether sex-specific differences in neuronal and glial cell types arise in the DRG during development, we performed single-cell mass cytometry analysis on sex-separated DRGs from 4 separate litter replicates of postnatal day 0 (P0) C57/BL6 mouse pups. In this analysis, we observed that females had a higher abundance of total neurons (p = 0.0266), as well as an increased abundance of TrkB+ (p = 0.031) and TrkC+ (p = 0.04) neurons for mechanoreception and proprioception, while males had a higher abundance of TrkA+ (p = 0.025) neurons for thermoreception and nociception. Pseudotime comparison of the female and male datasets indicates that male neurons are more mature and differentiated than female neurons at P0. These findings warrant further studies to determine whether these differences are maintained across development, and their impact on somatosensory perception.


Assuntos
Gânglios Espinais , Caracteres Sexuais , Camundongos , Animais , Feminino , Masculino , Animais Recém-Nascidos , Gânglios Espinais/metabolismo , Neurônios/metabolismo , Diferenciação Celular
3.
Metab Brain Dis ; 35(7): 1119-1126, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32472224

RESUMO

Injured somatosensory nervous system cause neuropathic pain which is quite difficult to treat using current approaches. It is therefore important to find new therapeutic options. We have analyzed cedrol effect on chronic constriction injury (CCI) induced neuropathic pain in rats. The mechanical and thermal hypersensitivity were evaluated using the von Frey filament, radiant heat and acetone drop methods. The changes in the levels of biomarkers of oxidative stress including malondialdehyde (MDA) and total thiol (SH), as well as inflammatory mediators including Tumour Necrosis Factor alpha (TNF-α) and Interleukin 6 (IL-6) were estimated in the lumbar portion (L4-L6) of neuropathic rats. Administration of cedrol attenuated the CCI-induced mechanical and thermal hypersensitivity. CCI produced an increase in MDA along with a reduction in SH levels in the spinal cord of the CCI rats. Reduced levels of SH were restored by cedrol. Also, the levels of MDA were reduced in the cedrol-treated CCI rats compared to the untreated CCI rats. Besides, level of TNF-α and IL-6 increased in the spinal cord of CCI group and cedrol could reverse it. The current study showed that cedrol attenuates neuropathic pain in CCI rats by inhibition of inflammatory response and attenuation of oxidative stress.


Assuntos
Inflamação/tratamento farmacológico , Neuralgia/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Sesquiterpenos Policíclicos/farmacologia , Substâncias Protetoras/farmacologia , Medula Espinal/efeitos dos fármacos , Animais , Inflamação/metabolismo , Interleucina-6/metabolismo , Masculino , Malondialdeído/metabolismo , Neuralgia/metabolismo , Limiar da Dor/efeitos dos fármacos , Sesquiterpenos Policíclicos/uso terapêutico , Substâncias Protetoras/uso terapêutico , Ratos , Ratos Wistar , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Medula Espinal/metabolismo , Compostos de Sulfidrila/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Neural Dev ; 19(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167468

RESUMO

Prdm12 is an epigenetic regulator expressed in developing and mature nociceptive neurons, playing a key role in their specification during neurogenesis and modulating pain sensation at adulthood. In vitro studies suggested that Prdm12 recruits the methyltransferase G9a through its zinc finger domains to regulate target gene expression, but how Prdm12 interacts with G9a and whether G9a plays a role in Prdm12's functional properties in sensory ganglia remain unknown. Here we report that Prdm12-G9a interaction is likely direct and that it involves the SET domain of G9a. We show that both proteins are largely co-expressed in dorsal root ganglia during early murine development, opening the possibility that G9a plays a role in DRG and may act as a mediator of Prdm12's function in the development of nociceptive sensory neurons. To test this hypothesis, we conditionally inactivated G9a in neural crest using a Wnt1-Cre transgenic mouse line. We found that the specific loss of G9a in the neural crest lineage does not lead to dorsal root ganglia hypoplasia due to the loss of somatic nociceptive neurons nor to the ectopic expression of the visceral determinant Phox2b as observed upon Prdm12 ablation. These findings suggest that Prdm12 function in the initiation of the nociceptive lineage does not critically involves its interaction with G9a.


Assuntos
Neurogênese , Nociceptores , Camundongos , Animais , Nociceptores/metabolismo , Neurogênese/fisiologia , Células Receptoras Sensoriais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Gânglios Espinais , Camundongos Transgênicos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas do Tecido Nervoso/metabolismo
6.
J Comp Neurol ; 532(2): e25575, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38335058

RESUMO

The distinct organization of Kv2 voltage-gated potassium channels on and near the cell body of brain neurons enables their regulation of action potentials and specialized membrane contact sites. Somatosensory neurons have a pseudounipolar morphology and transmit action potentials from peripheral nerve endings through axons that bifurcate to the spinal cord and the cell body within ganglia including the dorsal root ganglia (DRG). Kv2 channels regulate action potentials in somatosensory neurons, yet little is known about where Kv2 channels are located. Here, we define the cellular and subcellular localization of the Kv2 paralogs, Kv2.1 and Kv2.2, in DRG somatosensory neurons with a panel of antibodies, cell markers, and genetically modified mice. We find that relative to spinal cord neurons, DRG neurons have similar levels of detectable Kv2.1 and higher levels of Kv2.2. In older mice, detectable Kv2.2 remains similar, while detectable Kv2.1 decreases. Both Kv2 subtypes adopt clustered subcellular patterns that are distinct from central neurons. Most DRG neurons co-express Kv2.1 and Kv2.2, although neuron subpopulations show preferential expression of Kv2.1 or Kv2.2. We find that Kv2 protein expression and subcellular localization are similar between mouse and human DRG neurons. We conclude that the organization of both Kv2 channels is consistent with physiological roles in the somata and stem axons of DRG neurons. The general prevalence of Kv2.2 in DRG as compared to central neurons and the enrichment of Kv2.2 relative to detectable Kv2.1 in older mice, proprioceptors, and axons suggest more widespread roles for Kv2.2 in DRG neurons.


Assuntos
Axônios , Gânglios Espinais , Camundongos , Humanos , Animais , Potenciais de Ação , Células Receptoras Sensoriais/fisiologia
7.
bioRxiv ; 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36909552

RESUMO

Axon and dendrite placement and connectivity is guided by a wide range of secreted and surface molecules in the developing nervous system. Nevertheless, the extraordinary complexity of connections in the brain requires that this repertoire be further diversified to precisely and uniquely regulate cell-cell interactions. One important mechanism for molecular diversification is alternative splicing. Drosophila Down syndrome cell adhesion molecule (Dscam2) undergoes cell type-specific alternative splicing to produce two isoform-specific homophilic binding proteins. Regulated alternative splicing of Dscam2 is important for dendrite and axon patterning, but how this translates to circuit wiring and animal behavior is not well understood. Here, we examined the role of cell-type specific expression of Dscam2 isoforms in regulating synaptic partner selection in the larval somatosensory system. We found that synaptic partners in the nociceptive circuit express different Dscam2 isoforms. Forcing synaptic partners to express a common isoform resulted in nociceptive axon patterning defects and attenuated nocifensive behaviors, indicating that a role for Dscam2 alternative splicing is to ensure that synaptic partners do not express matching isoforms. These results point to a model in which regulated alternative splicing of Dscam2 across populations of neurons restricts connectivity to specific partners and prevents inappropriate synaptic connections.

8.
Neuron ; 111(11): 1776-1794.e10, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37028432

RESUMO

Light touch sensation begins with activation of low-threshold mechanoreceptor (LTMR) endings in the skin and propagation of their signals to the spinal cord and brainstem. We found that the clustered protocadherin gamma (Pcdhg) gene locus, which encodes 22 cell-surface homophilic binding proteins, is required in somatosensory neurons for normal behavioral reactivity to a range of tactile stimuli. Developmentally, distinct Pcdhg isoforms mediate LTMR synapse formation through neuron-neuron interactions and peripheral axonal branching through neuron-glia interactions. The Pcdhgc3 isoform mediates homophilic interactions between sensory axons and spinal cord neurons to promote synapse formation in vivo and is sufficient to induce postsynaptic specializations in vitro. Moreover, loss of Pcdhgs and somatosensory synaptic inputs to the dorsal horn leads to fewer corticospinal synapses on dorsal horn neurons. These findings reveal essential roles for Pcdhg isoform diversity in somatosensory neuron synapse formation, peripheral axonal branching, and stepwise assembly of central mechanosensory circuitry.


Assuntos
Células Receptoras Sensoriais , Medula Espinal , Células Receptoras Sensoriais/fisiologia , Medula Espinal/fisiologia , Caderinas/genética , Caderinas/metabolismo , Sinapses , Corno Dorsal da Medula Espinal , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
9.
bioRxiv ; 2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38187582

RESUMO

The distinct organization of Kv2 voltage-gated potassium channels on and near the cell body of brain neurons enables their regulation of action potentials and specialized membrane contact sites. Somatosensory neurons have a pseudounipolar morphology and transmit action potentials from peripheral nerve endings through axons that bifurcate to the spinal cord and the cell body within ganglia including the dorsal root ganglia (DRG). Kv2 channels regulate action potentials in somatosensory neurons, yet little is known about where Kv2 channels are located. Here we define the cellular and subcellular localization of the Kv2 paralogs, Kv2.1 and Kv2.2, in DRG somatosensory neurons with a panel of antibodies, cell markers, and genetically modified mice. We find that relative to spinal cord neurons, DRG neurons have similar levels of detectable Kv2.1, and higher levels of Kv2.2. In older mice, detectable Kv2.2 remains similar while detectable Kv2.1 decreases. Both Kv2 subtypes adopt clustered subcellular patterns that are distinct from central neurons. Most DRG neurons co-express Kv2.1 and Kv2.2, although neuron subpopulations show preferential expression of Kv2.1 or Kv2.2. We find that Kv2 protein expression and subcellular localization is similar between mouse and human DRG neurons. We conclude that the organization of both Kv2 channels is consistent with physiological roles in the somata and stem axons of DRG neurons. The general prevalence of Kv2.2 in DRG as compared to central neurons and the enrichment of Kv2.2 relative to detectable Kv2.1, in older mice, proprioceptors, and axons suggest more widespread roles for Kv2.2 in DRG neurons.

10.
Bioengineering (Basel) ; 10(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36671631

RESUMO

New technologies for monitoring grip forces during hand and finger movements in non-standard task contexts have provided unprecedented functional insights into somatosensory cognition. Somatosensory cognition is the basis of our ability to manipulate and transform objects of the physical world and to grasp them with the right amount of force. In previous work, the wireless tracking of grip-force signals recorded from biosensors in the palm of the human hand has permitted us to unravel some of the functional synergies that underlie perceptual and motor learning under conditions of non-standard and essentially unreliable sensory input. This paper builds on this previous work and discusses further, functionally motivated, analyses of individual grip-force data in manual robot control. Grip forces were recorded from various loci in the dominant and non-dominant hands of individuals with wearable wireless sensor technology. Statistical analyses bring to the fore skill-specific temporal variations in thousands of grip forces of a complete novice and a highly proficient expert in manual robot control. A brain-inspired neural network model that uses the output metric of a self-organizing pap with unsupervised winner-take-all learning was run on the sensor output from both hands of each user. The neural network metric expresses the difference between an input representation and its model representation at any given moment in time and reliably captures the differences between novice and expert performance in terms of grip-force variability.Functionally motivated spatiotemporal analysis of individual average grip forces, computed for time windows of constant size in the output of a restricted amount of task-relevant sensors in the dominant (preferred) hand, reveal finger-specific synergies reflecting robotic task skill. The analyses lead the way towards grip-force monitoring in real time. This will permit tracking task skill evolution in trainees, or identify individual proficiency levels in human robot-interaction, which represents unprecedented challenges for perceptual and motor adaptation in environmental contexts of high sensory uncertainty. Cross-disciplinary insights from systems neuroscience and cognitive behavioral science, and the predictive modeling of operator skills using parsimonious Artificial Intelligence (AI), will contribute towards improving the outcome of new types of surgery, in particular the single-port approaches such as NOTES (Natural Orifice Transluminal Endoscopic Surgery) and SILS (Single-Incision Laparoscopic Surgery).

11.
Front Mol Neurosci ; 15: 856299, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35668789

RESUMO

Mechanical allodynia (MA) is the main reason that patients with diabetic peripheral neuropathy (DPN) seek medical advice. It severely debilitates the quality of life. Investigating hyperglycemia-induced changes in neural transcription could provide fundamental insights into the complex pathogenesis of painful DPN (PDPN). Gene expression profiles of physiological dorsal root ganglia (DRG) have been studied. However, the transcriptomic changes in DRG neurons in PDPN remain largely unexplored. In this study, by single-cell RNA sequencing on dissociated rat DRG, we identified five physiological neuron types and a novel neuron type MAAC (Fxyd7 + /Atp1b1 +) in PDPN. The novel neuron type originated from peptidergic neuron cluster and was characterized by highly expressing genes related to neurofilament and cytoskeleton. Based on the inferred gene regulatory networks, we found that activated transcription factors Hobx7 and Larp1 in MAAC could enhance Atp1b1 expression. Moreover, we constructed the cellular communication network of MAAC and revealed its receptor-ligand pairs for transmitting signals with other cells. Our molecular investigation at single-cell resolution advances the understanding of the dynamic peripheral neuron changes and underlying molecular mechanisms during the development of PDPN.

12.
Curr Top Dev Biol ; 142: 443-475, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33706924

RESUMO

Primary nociceptors are a heterogeneous class of peripheral somatosensory neurons, responsible for detecting noxious, pruriceptive, and thermal stimuli. These neurons are further divided into several molecularly defined subtypes that correlate with their functional sensory modalities and morphological features. During development, all nociceptors arise from a common pool of embryonic precursors, and then segregate progressively into their mature specialized phenotypes. In this review, we summarize the intrinsic transcriptional programs and extrinsic trophic factor signaling mechanisms that interact to control nociceptor diversification. We also discuss how recent transcriptome profiling studies have significantly advanced the field of sensory neuron development.


Assuntos
Neurônios , Nociceptores , Dor , Humanos , Prurido
13.
Elife ; 82019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31407662

RESUMO

Touch sensation hinges on force transfer across the skin and activation of mechanosensitive ion channels along the somatosensory neurons that invade the skin. This skin-nerve sensory system demands a quantitative model that spans the application of mechanical loads to channel activation. Unlike prior models of the dynamic responses of touch receptor neurons in Caenorhabditis elegans (Eastwood et al., 2015), which substituted a single effective channel for the ensemble along the TRNs, this study integrates body mechanics and the spatial recruitment of the various channels. We demonstrate that this model captures mechanical properties of the worm's body and accurately reproduces neural responses to simple stimuli. It also captures responses to complex stimuli featuring non-trivial spatial patterns, like extended or multiple contacts that could not be addressed otherwise. We illustrate the importance of these effects with new experiments revealing that skin-neuron composites respond to pre-indentation with increased currents rather than adapting to persistent stimulation.


Assuntos
Mecanorreceptores/fisiologia , Células Receptoras Sensoriais/fisiologia , Fenômenos Fisiológicos da Pele , Pele/anatomia & histologia , Estresse Mecânico , Tato , Animais , Caenorhabditis elegans , Modelos Neurológicos
14.
Cell Rep ; 29(10): 2953-2960.e2, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31801063

RESUMO

Functionally distinct classes of dorsal root ganglia (DRG) somatosensory neurons arise from neural crest cells (NCCs) in two successive phases of differentiation assumed to be respectively and independently controlled by the proneural genes Neurog2 and Neurog1. However, the precise role of Neurog2 during this process remains unclear, notably because no neuronal loss has been reported hitherto in Neurog2-/- mutants. Here, we show that at trunk levels, Neurog2 deficiency impairs the production of subsets of all DRG neuron subtypes. We establish that this phenotype is highly dynamic and reflects multiple defects in NCC-derived progenitors, including somatosensory-to-melanocyte fate switch, apoptosis, and delayed differentiation which alters neuronal identity, all occurring during a narrow time window when Neurog2 temporarily controls onset of Neurog1 expression and neurogenesis. Collectively, these findings uncover a critical period of cell fate plasticity and vulnerability among somatosensory progenitors and establish that Neurog2 function in the developing DRG is broader than initially envisaged.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Plasticidade Celular/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Crista Neural/metabolismo , Animais , Diferenciação Celular/fisiologia , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Neurogênese/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia
15.
Neuroscience ; 383: 216-234, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29746988

RESUMO

Electrical coupling mediated by connexin36-containing gap junctions that form electrical synapses is known to be prevalent in the central nervous system, but such coupling was long ago reported also to occur between cutaneous sensory fibers. Here, we provide evidence supporting the capability of primary afferent fibers to engage in electrical coupling. In transgenic mice with enhanced green fluorescent protein (eGFP) serving as a reporter for connexin36 expression, immunofluorescence labeling of eGFP was found in subpopulations of neurons in lumbar dorsal root and trigeminal sensory ganglia, and in fibers within peripheral nerves and tissues. Immunolabeling of connexin36 was robust in the sciatic nerve, weaker in sensory ganglia than in peripheral nerve, and absent in these tissues from Cx36 null mice. Connexin36 mRNA was detected in ganglia from wild-type mice, but not in those from Cx36 null mice. Labeling of eGFP was localized within a subpopulation of ganglion cells containing substance P and calcitonin gene-releasing peptide, and in peripheral fibers containing these peptides. Expression of eGFP was also found in various proportions of sensory ganglion neurons containing transient receptor potential (TRP) channels, including TRPV1 and TRPM8. Ganglion cells labeled for isolectin B4 and tyrosine hydroxylase displayed very little co-localization with eGFP. Our results suggest that previously observed electrical coupling between peripheral sensory fibers occurs via electrical synapses formed by Cx36-containing gap junctions, and that some degree of selectivity in the extent of electrical coupling may occur between fibers belonging to subpopulations of sensory neurons identified according to their sensory modality responsiveness.


Assuntos
Conexinas/metabolismo , Sinapses Elétricas/fisiologia , Neurônios Aferentes/citologia , Neurônios Aferentes/fisiologia , Animais , Axônios/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Ratos , Ratos Sprague-Dawley , Reflexo/fisiologia , Sensação/fisiologia , Proteína delta-2 de Junções Comunicantes
16.
Biophys Rev ; 9(5): 847-856, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28889335

RESUMO

First-order somatosensory neurons transduce and convey information about the external or internal environment of the body to the central nervous system. They are pseudo unipolar neurons with cell bodies residing in one of several ganglia located near the central nervous system, with the short branch of the axon connecting to the spinal cord or the brain stem and the long branch extending towards the peripheral organ they innervate. Besides their sensory transducer and conductive role, somatosensory neurons also have trophic functions in the tissue they innervate and participate in local reflexes in the periphery. The cell bodies of these neurons are remarkably diverse in terms of size, molecular constitution, and electrophysiological properties. These parameters have provided criteria for classification that have proved useful to establish and study their functions. In this review, we discuss ways to measure and classify populations of neurons based on their size and action potential firing pattern. We also discuss attempts to relate the different populations to specific sensory modalities.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa