Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 204(Pt A): 112032, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34516980

RESUMO

A novel FeVO4/BiVO4 heterojunction photocatalyst was synthesized by hydrothermal method. The FeVO4/BiVO4 nanostructures were characterized by XRD, SEM, XPS, UV-vis, and photoluminescence spectroscopy. The effects of catalyst dosage, contaminant concentration, initial hydrogen peroxide (H2O2) concentration, and pH value on the degradation of levofloxacin were investigated and several repeated experiments were conducted to evaluate the stability and reproducibility. The optimized process parameters were used for mineralization experiments. Reactive oxygen species, degradation intermediates, and possible catalytic mechanisms were also investigated. The results showed that the sonophotocatalytic performance of the FeVO4/BiVO4 heterojunction catalyst was better than that of sonocatalysis and photocatalysis. In addition, the Type II heterojunction formed by the material still had good stability in the degradation of levofloxacin after 5 cycles. The possible degradation pathway and mechanism of levofloxacin by sonophotocatalysis were put forward. This work develops new sono-photo hybrid process for potential application in the field of wastewater treatment.


Assuntos
Peróxido de Hidrogênio , Levofloxacino , Catálise , Cinética , Reprodutibilidade dos Testes
2.
Chemosphere ; 332: 138852, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37146776

RESUMO

CdS/ZnO nanosheets heterostructures ((x)CdS/ZNs) with different mole ratios of Cd/Zn ((x) = 0.2, 0.4, and 0.6) were synthesized by the impregnation-calcination method. PXRD patterns showed that the (100) diffraction of ZNs was the most significant in the (x)CdS/ZNs heterostructures, and it confirmed that CdS nanoparticles (in cubic phase) occupied the (101) and (002) crystal facets of ZNs with hexagonal wurtzite crystal phase. UV-Vis DRS results indicated that CdS nanoparticles decreased the band gap energy of ZNs (2.80-2.11 eV) and extended the photoactivity of ZNs to the visible light region. The vibrations of ZNs were not observed clearly in the Raman spectra of (x)CdS/ZNs due to the extensive coverage of CdS nanoparticles shielding the deeper-laying ZNs from Raman response. The photocurrent of (0.4) CdS/ZNs photoelectrode reached 33 µA, about 82 times higher than that for ZNs (0.4 µA, 0.1 V vs Ag/AgCl). The formation of an n-n junction at the (0.4) CdS/ZNs reduced the recombination of electron-hole pairs and increased the degradation performance of the as-prepared (0.4) CdS/ZNs heterostructure. The highest percentage removal of tetracycline (TC) in the sonophotocatalytic/photocatalytic processes was obtained by (0.4) CdS/ZNs under visible light. The quenching tests showed that O2•-, h+, and OH• were the main active species in the degradation process. The degradation percentage decreased negligibly in the sonophotocatalytic (84%-79%) compared to the photocatalytic (90%-72%) process after four re-using runs due to the presence of ultrasonic waves. For the estimation of degradation behavior, two machine learning methods were applied. The comparison between the ANN and GBRT models evidenced that both models had high prediction accuracy and could be used for predicting and fitting the experimental data of the %removal of TC. The excellent sonophotocatalytic/photocatalytic performance and stability of the fabricated (x)CdS/ZNs catalysts made them promising candidates for wastewater purification.


Assuntos
Compostos Heterocíclicos , Óxido de Zinco , Óxido de Zinco/química , Luz , Tetraciclina , Compostos de Zinco/química , Antibacterianos/química
3.
Chemosphere ; 162: 324-32, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27518924

RESUMO

Elimination/mineralization of paracetamol (PCT) was investigated by catalytic oxidation under ultrasound, UV and both. The catalyst was synthesized by immobilization of nPt on TiO2 to benefit from the ability of Pt to facilitate charge transfer processes and to separate e(-)/h(+) pairs. It was found that increasing the Pt-loading enhanced the rate of sonochemical reactions, but retarded that of photolytic reactions, due to reduced UV absorption on the surface. Simultaneous application of sonolysis and photolysis was synergistic due to disaggregation of the particles and homogenization of the active species over the catalyst surface. The decay of PCT was highly dependent on the availability of OH, as the reactions were nearly terminated in the presence of a strong OH scavenger-2-propanol. However, a remarkable rate enhancement was observed in the presence of a suitable dose of I(-), which scavenges both OH and hvb(+). The result was explained by the production of excess radicals upon sonolysis of iodide solutions, and the reactivity of PCT with them. Finally, carbon mineralization was significantly hindered in the presence of both scavengers due to increased competition for OH and inefficient formation of hydroquinone arising from reduced availability of hvb(+).


Assuntos
Acetaminofen/metabolismo , Sequestradores de Radicais Livres/farmacologia , Fotólise , Platina/química , Titânio/química , Ultrassom , 2-Propanol/farmacologia , Acetaminofen/química , Acetaminofen/efeitos da radiação , Catálise , Radical Hidroxila/química , Oxirredução , Processos Fotoquímicos , Fármacos Fotossensibilizantes/farmacologia , Solventes
4.
Top Curr Chem (Cham) ; 374(5): 75, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27709554

RESUMO

This chapter describes the use of ultrasound in remediation of wastewater contaminated with organic pollutants in the absence and presence of other advanced oxidation processes (AOPs) such as sonolysis, sono-ozone process, sonophotocatalysis, sonoFenton systems and sonophoto-Fenton methods in detail. All these methods are explained with the suitable literature illustrations. In most of the cases, hybrid AOPs (combination of ultrasound with one or more AOPs) resulted in superior efficacy to that of individual AOP. The advantageous effects such as additive and synergistic effects obtained by operating the hybrid AOPs are highlighted with appropriate examples. It is worth to mention here that the utilization of ultrasound is not only restricted in preparation of modern active catalysts but also extensively used for the wastewater treatment. Interestingly, ultrasound coupled AOPs are operationally simple, efficient, and environmentally benign, and can be readily applied for large scale industrial processes which make them economically viable.


Assuntos
Sonicação/métodos , Antibacterianos/química , Corantes/química , Peróxido de Hidrogênio/química , Radical Hidroxila/química , Ferro/química , Oxirredução , Ozônio/química , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/química
5.
Ultrason Sonochem ; 21(2): 846-53, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24071562

RESUMO

The removal of Orange II (O-II) from aqueous solution under irradiation at 850 kHz has been studied. The effects of both homogeneous (with FeSO4/H2O2), and heterogeneous (Fe containing ZSM-5 zeolite/H2O2) Fenton type reagents are reported together with the effect of UV irradiation in combination with ultrasound both alone and with homogeneous Fenton-type reagent. Degrees of decolourisation of 6.5% and 28.9% were observed using UV radiation and ultrasound, respectively, whereas under the simultaneous irradiation of ultrasound and UV light, the decolourisation degree reached 47.8%, indicating a synergetic effect of ultrasound and UV light. The decolourisation was increased with the addition of Fenton's reagent with an optimal Fenton molar reagent ratio, Fe(2+):H2O2 of 1:50. In the combined process of ultrasound and UV light with the homogeneous Fenton system 80.8% decolourisation could be achieved after 2h indicating that UV improves this type of Orange II degradation. The degree of decolourisation obtained using the heterogeneous sono-Fenton system (Fe containing ZSM-5 zeolite catalysts+H2O2+ultrasound) were consistently lower than the traditional homogeneous ultrasound Fenton system. This can be attributed to the greater difficulty of the reaction between Fe ions and hydrogen peroxide. In all cases the Orange II ultrasonic decolourisation was found to follow first order kinetics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa