Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
1.
J Proteome Res ; 23(3): 939-955, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364797

RESUMO

N-Linked glycosylation is one of the most essential post-translational modifications of proteins. However, N-glycan structural determination remains challenging because of the small differences in structures between isomers. In this study, we constructed a database containing collision-induced dissociation MSn mass spectra and chromatograms of high-performance liquid chromatography for the rapid identification of high-mannose and paucimannose N-glycan isomers. These N-glycans include isomers by breaking of arbitrary numbers of glycosidic bonds at arbitrary positions of canonical Man9GlcNAc2 N-glycans. In addition, some GlcMannGlcNAc2 N-glycan isomers were included in the database. This database is particularly useful for the identification of the N-glycans not in conventional N-glycan standards. This study demonstrated the application of the database to structural assignment for high-mannose N-glycans extracted from bovine whey proteins, soybean proteins, human mammary epithelial cells, and human breast carcinoma cells. We found many N-glycans that are not expected to be generated by conventional biosynthetic pathways of multicellular eukaryotes.


Assuntos
Mama , Manose , Humanos , Animais , Bovinos , Cromatografia Líquida de Alta Pressão , Bases de Dados Factuais , Polissacarídeos
2.
J Sci Food Agric ; 104(4): 2225-2232, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37938173

RESUMO

BACKGROUND: Extrusion is the main method for the preparation of plant-based meat. Current studies have focused on the effect of different extrusion parameters on the texture and quality of plant-based meat, but there has been less research on their digestibility. This study determined the textural properties of extruded soybean protein (ESPro) for different extrusion parameters and the digestibility after in vitro simulated digestion experiments. The effect of extrusion on the structure and digestibility of ESPro and the relationship between them were elucidated. RESULTS: The results demonstrated a significant improvement in the digestibility of ESPro through extrusion, with the highest values for cohesiveness, springiness, chewiness, fibrous degree, digestibility, and proportion of digested peptides with <1 kDa molecular weight at an extrusion temperature of 160 °C and a screw speed of 30 rpm (ESPro1). In addition, ß-sheet content in the secondary structure of the ESPro showed a significant negative association with ESPro digestibility. CONCLUSION: In this study, extrusion could improve the digestibility of ESPro by altering the protein structure. This advancement holds the potential for more effective applications in plant-based meats. © 2023 Society of Chemical Industry.


Assuntos
Carne , Proteínas de Soja , Animais , Fenômenos Fisiológicos da Nutrição Animal , Digestão
3.
J Sci Food Agric ; 104(6): 3341-3351, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38092560

RESUMO

BACKGROUND: Metal ions commonly inevitably appear in food products and have adverse effects on high-internal-phase emulsions (HIPEs) foods, but conformational conversion of soybean protein isolate (SPI)/soybean soluble polysaccharide (SSPS) on the interface layer of HIPEs influenced by different metal ions has rarely been reported. RESULTS: Here, the conformational conversion of SPI/SSPS induced by Na+ , K+ , Ca2+ , Mg2+ and Fe3+ ions and its effects on HIPEs were investigated. After adding the ions to SPI and SPI/SSPS dispersions, the particle size and zeta potential results showed different degrees of flocculation; the zeta potential and Fourier transform infrared spectra indicated that SPI and SPI/SSPS changes in structure involve electrostatic interactions and hydrogen bonding. Moreover, Raman spectra showed that the content of ß-sheet of SPI/SSPS HIPEs increased with the addition of Ca2+ , Mg2+ and Fe3+ , suggesting that SPI molecules at the interface formed a more orderly structure. The ultraviolet and fluorescence results showed that the hydrophobic environment of tryptophan and tyrosine residues inside protein molecules played a vital role in the emulsifying stability of SPI. CONCLUSION: These findings suggested that the SPI/SSPS complexes for food applications were not susceptible to ions, thus ensuring complex stability, showing potential for commercial application in the production of emulsions. © 2023 Society of Chemical Industry.


Assuntos
Glycine max , Proteínas de Soja , Proteínas de Soja/química , Emulsões/química , Polissacarídeos/química , Cátions
4.
Eur J Nutr ; 62(6): 2687-2703, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37273002

RESUMO

PURPOSE: When blended, animal and plant proteins can complement each other in terms of amino acid composition and release time. In this study, we investigated whether the blended protein diet has a better feeding effect than the single protein diet, and to reveal the differences in growth and intestinal microbiota composition caused by the blended protein diet. METHODS: Forty Sprague Dawley (SD) rats received diets with different protein sources, including casein (C), whey protein (WP), black soybean protein (BSP), and black soybean-whey blended protein (BS-WP), for eight weeks. To investigate the effects of blended protein supplement on gut microbiota and metabolites, we performed a high throughput 16S rDNA sequencing and fecal metabolomics profiling. In addition, we determined growth and serum biochemical indices, and conducted intestinal morphology analyses. RESULTS: Compared to those in the BSP and WP groups, the daily body weight gain and feed conversion efficiency increased in the BS-WP group. Serum biochemical indices indicated that the protein utilization efficiency of the WP and BS-WP groups was relatively high, and the BS-WP blended protein diet improved the protein adoption rate. The BS-WP blended protein diet also improved intestinal tissue morphology and promoted intestinal villi development compared to the single protein diets. Furthermore, dietary protein altered the composition of gut microbiota, the gut microbial diversity of rats fed with the BS-WP diet was significantly (P < 0.05) higher than that of the other groups. The difference in dietary protein corresponded with an alteration of fecal amino acids and their metabolites, and tryptophan and tyrosine metabolism were the key mechanisms leading to the changes in fecal microbial composition. CONCLUSION: Dietary protein sources played an important role in the growth and development of rats by influencing intestinal metabolism and microbial composition. The BS-WP blended protein diet was more conducive to nutrient absorption than the single protein diet. Furthermore, blended protein increased the diversity of intestinal microbes and aided the establishment of intestinal barrier function.


Assuntos
Microbioma Gastrointestinal , Ratos , Animais , Ratos Sprague-Dawley , Dieta , Proteínas do Soro do Leite/farmacologia , Caseínas/farmacologia , Proteínas Alimentares/farmacologia , Metabolômica , Ração Animal
5.
Nano Lett ; 22(3): 1374-1381, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35060737

RESUMO

The proliferation of lithium (Li) dendrites stemming from uncontrollable Li deposition seriously limits the practical application of Li metal batteries. The regulation of uniform Li deposition is thus a prerequisite for promoting a stable Li metal anode. Herein, a commercial lithiophilic skeleton of soybean protein fiber (SPF) is introduced to homogenize the Li-ion flux and induce the biomimetic Li growth behavior. Especially, the SPF can promote the formation of a LiF-nanocrystal-enriched interface upon cycling, resulting in low interfacial impedance and rapid charge transfer kinetics. Finally, the SPF-mediated Li metal anode can achieve high Coulombic efficiency of 98.7% more than 550 cycles and a long-term lifespan over 3400 h (∼8500 cycles) in symmetric tests. Furthermore, the practical pouch cell modified with SPF can maintain superior electrochemical performance over 170 cycles under a low N/P ratio and high mass loading of the cathode.


Assuntos
Fontes de Energia Elétrica , Lítio , Nanopartículas , Proteínas de Soja , Eletrodos , Lítio/química , Proteínas de Soja/química
6.
Int J Mol Sci ; 24(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37762432

RESUMO

Soybean (Glycine max (L.) Merr.) is an important source of plant protein, the nutritional quality of which is considerably affected by the content of the sulfur-containing amino acid, methionine (Met). To improve the quality of soybean protein and increase the Met content in seeds, soybean cystathionine γ-synthase 2 (GmCGS2), the first unique enzyme in Met biosynthesis, was overexpressed in the soybean cultivar "Jack", producing three transgenic lines (OE3, OE4, and OE10). We detected a considerable increase in the content of free Met and other free amino acids in the developing seeds of the three transgenic lines at the 15th and 75th days after flowering (15D and 75D). In addition, transcriptome analysis showed that the expression of genes related to Met biosynthesis from the aspartate-family pathway and S-methyl Met cycle was promoted in developing green seeds of OE10. Ultimately, the accumulation of total amino acids and soluble proteins in transgenic mature seeds was promoted. Altogether, these results indicated that GmCGS2 plays an important role in Met biosynthesis, by providing a basis for improving the nutritional quality of soybean seeds.


Assuntos
Aminoácidos , Glycine max , Glycine max/metabolismo , Aminoácidos/metabolismo , Proteínas de Soja/genética , Proteínas de Soja/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Molecules ; 28(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38005187

RESUMO

To identify the ideal soybean protein isolate for texturized vegetable protein processing, the effect of different soybean protein isolates on texturized vegetable protein composition was studied. Three different types of soybean protein isolates were selected and analyzed for functional properties (water holding capacity (WHC), emulsifying properties, foaming properties), amino acid content, and protein secondary structure. Then, using the same formulation, the soybean protein isolates were extruded to produce texturized vegetable protein, and its textural properties, degree of texturization, microstructure, free sulfhydryl (free SH), and disulfide (S-S) content were determined. Lastly, a correlation analysis was performed to examine the connection between soybean protein isolates and texturized vegetable proteins. After correlation analysis, the soybean protein isolate functional properties that affect the textural properties of the texturized vegetable protein were as follows: the emulsifying property affected the hardness, adhesiveness, springiness, gumminess, and chewiness of the texturized vegetable proteins; and the foaming property affected the gumminess, chewiness, and the degree of texturization of the texturized vegetable proteins. In addition, 16 amino acids including threonine (Thr), methionine (Met), and arginine (Arg) affect texturized vegetable proteins, mainly with respect to adhesiveness, springiness, and free SH. The effects of secondary structure (α-helix, random coil) on texturized vegetable proteins were degree of texturization, resilience, and cohesion, respectively. Therefore, choosing the soybean protein isolate with better emulsifying and foaming properties provides a more suitable approach for processing texturized vegetable protein.


Assuntos
Alimentos de Soja , Proteínas de Soja , Estrutura Secundária de Proteína , Metionina , Aminoácidos
8.
Molecules ; 28(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37959850

RESUMO

Consumers who are environmentally and health conscious are increasingly looking for plant-based alternatives to replace animal-based products in their daily diets. Among these alternatives, there is a growing demand for meat analogues that closely resemble the taste and texture of meat. As a result, significant efforts have been dedicated to developing meat analogues with a desirable meat-like structure. Currently, soy protein and wheat gluten are the main ingredients used for producing these meat analogues due to their availability and unique functionalities. This study observed that high moisture extrusion at moisture levels of 50-80% has become a common approach for creating fibrous structures, with soy protein and wheat gluten being considered incompatible proteins. After the structuring process, they form two-phase filled gels, with wheat gluten acting as the continuous phase and soy protein serving as a filler material. Moreover, the formation of soy protein and wheat gluten networks relies on a combination of covalent and non-covalent interaction bonds, including hydrogen bonds that stabilize the protein networks, hydrophobic interactions governing protein chain associations during thermo-mechanical processes, and disulfide bonds that potentially contribute to fibrous structure formation. This review provides case studies and examples that demonstrate how specific processing conditions can improve the overall structure, aiming to serve as a valuable reference for further research and the advancement of fibrous structures.


Assuntos
Proteínas de Soja , Triticum , Animais , Proteínas de Soja/química , Triticum/química , Glutens/química , Carne , Ligação de Hidrogênio
9.
J Sci Food Agric ; 103(6): 2752-2761, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36273266

RESUMO

BACKGROUND: Soybean protein isolate hydrolysates (SPIHs) produced at high hydrostatic pressure have higher bioactivity. The aim of the study was to analyze the effects of different SPIH concentrations obtained under various pressures (0.1, 100, 200, and 300 MPa) on gelling properties, structural characteristics, and main forces of myofibrillar protein (MP) in MP-SPIH plural gels. RESULTS: The MP-SPIH plural gel with 3% SPIH produced under 200 MPa had the maximum gel strength (0.42 N) and water holding capacity (53.69%). A decline in thermal stability and a rise in storage modulus (G') of MP-SPIH plural gels were found with increased SPIH pressure and concentration. Additionally, the addition of SPIHs increased the amounts of α-helix and ß-sheet, decreased random coil structural content of MP in MP-SPIH plural gels, and facilitated the generation of a denser and uniform gels network. The molecular forces in MP-SPIH plural gels were mainly hydrophobic interaction and hydrogen bond. CONCLUSION: This study showed that the interaction of MP with 3% SPIH obtained at 200 MPa improved the quality of plural gels. © 2022 Society of Chemical Industry.


Assuntos
Hidrolisados de Proteína , Proteínas de Soja , Pressão Hidrostática , Glycine max , Géis/química , Reologia
10.
Compr Rev Food Sci Food Saf ; 22(4): 2747-2772, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37161497

RESUMO

Tofu is nutritious, easy to make, and popular among consumers. At present, traditional tofu production has gradually become perfect, but there are still shortcomings, such as long soaking time, serious waste of water resources, and the inability to realize orders for production at any time. Moreover, tofu production standards have not yet been clearly defined, with large differences in quality between them, which is not conducive to industrialized and large-scale production. Ultrasound has become a promising green processing technology with advantages, such as high extraction rate, short processing time, and ease of operation. This review focused on the challenges associated with traditional tofu production during soaking, grinding, and boiling soybeans. Moreover, the advantages of ultrasonic processing over traditional processing like increasing nutrient content, improving gel properties, and inhibiting the activity of microorganisms were explained. Furthermore, the quantification of acoustic fields by real-time monitoring technology was introduced to construct the theoretical correlation between ultrasonic treatments and tofu processing. It was concluded that ultrasonic treatment improved the functional properties of soybean protein, such as solubility, emulsifying properties, foamability, rheological properties, gel strength, and thermal stability. Therefore, the application of ultrasonic technology to traditional tofu processing to optimize industrial parameters is promising.


Assuntos
Alimentos de Soja , Proteínas de Soja , Glycine max , Solubilidade
11.
Plant Foods Hum Nutr ; 78(3): 552-556, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37594557

RESUMO

Maillard reaction (MR) with oat ß-glucan changed the structure of soybean protein isolate (SPI), further leading to the enhancement of its functional properties. SPI was unfolded by MR, and the SPI conjugates with high molecular weight were identified. The water solubility of SPI was improved by cross-linking with hydrophilic ß-glucan, while the hydrophobicity also increased along with the unfolding of the SPI. Cross-linking with ß-glucan elevated the viscosity of SPI, thus enhancing viscosity-related physiological activities, including bile acid binding ability, fat binding capacity, and hypoglycemic activity, and the functional properties increased as the ßG content involved in MR increased.


Assuntos
Reação de Maillard , beta-Glucanas , Proteínas de Soja , Hipoglicemiantes
12.
Proteins ; 90(2): 418-434, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34486167

RESUMO

Protein allergens is a health risk for consumption of soybeans. To understand allerginicity mechanism, T cell epitopes of 7 soybean allergens were predicted and screened by abilities to induce cytokine interleukin (IL) 4. The relationships among amino acid composition, properties, allergenicity, and pepsin hydrolysis sites were analyzed. Among the 138 T cell epitopes identified, YIKDVFRVIPSEVLS, KDVFRVIPSEVLSNS, DVFRVIPSEVLSNSY of Gly m 6.0501 (P04347), and AKADALFKAIEAYLL, ADALFKAIEAYLLAH of Gly m 4.0101 (P26987) were the most possible epitope candidates. In T cell epitopes pattern, the frequencies of amino acids Q, D, E, P, and G decreased, while F, I, N, V, K, H, A, L, and S increased. Hydrophobic residues at positions p1 and p2 and positively charged residues in positions p13 might contribute to allergenicity. Most of epitopes could be hydrolyzed by pepsin into small polypeptides within 12 residues length, and the anti-digestive epitope regions contained I, V, S, N, and Q residues. T cell epitopes EEQRQQEGVIVELSK from Gly m 5.03 (P25974) showed resistance to pepsin hydrolysis and would cause a higher Th2 cell response. This research provides basis for the development of hypoallergenic soybean products in the soybean industry as well as for the immunotherapy design for protein allergy.


Assuntos
Antígenos de Plantas/química , Epitopos de Linfócito T/química , Glycine max/metabolismo , Peptídeos/química , Proteínas de Soja/química , Biologia Computacional , Mapeamento de Epitopos
13.
Mol Biol Rep ; 49(7): 6623-6632, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35618938

RESUMO

BACKGROUND: Molecular markers have played and will continue to play a major role in the genetic characterization and improvement of soybeans. They have helped identify major loci for tolerance to abiotic stressors, disease resistance, herbicide resistance, soybean seed quality traits, and yield. However, most yield quantitative trait loci (QTL) are specific to a certain population, and the genetic variation found in the specific bi-parental population is not always shared in other populations. A major objective in soybean breeding is to develop high yielding cultivars. Unfortunately, soybean seed yield, as well as protein and oil content, are complex quantitative traits to characterize from the phenotypic and genotypic perspectives. The objectives of this study are to detect soybean genomic regions that increase protein content, while maintaining oil content and seed yield and to successfully identify soybean QTL associated with these seed quality traits. METHODS AND RESULTS: To achieve these objectives, data from the 138 recombinant inbred lines grown in six environments were used to perform QTL detection analyses in search of significant genomic regions affecting soybean seed protein, oil, and yield. CONCLUSIONS: A total of 21 QTL were successfully identified for yield, protein, oil, methionine, threonine, lodging, maturity, and meal. Knowledge of their locations and flanking markers will aid in marker assisted selection for plant breeders. This will lead to a more valuable soybean for farmers, processors, and animal nutritionists.


Assuntos
Glycine max , Locos de Características Quantitativas , Mapeamento Cromossômico/métodos , Genótipo , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas/genética , Sementes/genética , Sementes/metabolismo , Glycine max/genética , Glycine max/metabolismo
14.
Molecules ; 27(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36296612

RESUMO

Tripeptide LSW, initially identified as a potent ACE inhibitory peptide from soybean protein, was recently reported to exert a protective effect against angiotensin II-induced endothelial dysfunction via extracellular vesicles (EVs). However, the molecular mechanisms, especially in lipid accumulation-induced atherosclerosis, still remain unclear. The study aimed to investigate whether the protective effects of LSW against endothelial dysfunction on vascular endothelial cells (VECs) was via vascular smooth muscle cells (VSMCs)-derived miRNA-145 packaged in EVs. The miRNA-145 was concentrated in EVs from LSW-treated VSMCs (LEVs), internalized into the HVUECs, and targeted the programmed cell death protein 4 (PDCD4) expression of HUVECs. Oxidized low-density lipoprotein (oxLDL) was applied to induce endothelial dysfunction in HUVECs; oxLDL-induced endothelial dysfunction in HUVECs was attenuated by PDCD4 knockout or LEVs incubation. The results of this study suggested a novel function of LSW as a regulator on the functional EVs from vascular cells in the oxLDL-induced atherosclerotic model.


Assuntos
Aterosclerose , Vesículas Extracelulares , MicroRNAs , Humanos , Células Endoteliais , Músculo Liso Vascular/metabolismo , Angiotensina II/metabolismo , Proteínas de Soja/farmacologia , Miócitos de Músculo Liso/metabolismo , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/metabolismo , Vesículas Extracelulares/metabolismo , Aterosclerose/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fenótipo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação a RNA/metabolismo
15.
Molecules ; 27(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36235227

RESUMO

Blends with different proportions of protein or starch show different rheological behaviors, which may be related to the fibrous structure formation of extruded textured plant proteins. The consistency factor K and the viscosity exponent n of soybean-protein-isolate (SPI)/wheat-gluten (WG)/corn-starch (CS) blends were investigated through capillary rheometry. All blends exhibited shear-thinning behavior at 80 °C and 50% moisture. The CS content in SPI/CS blends or WG content in SPI/WG blends showed a positive relation to the viscosity exponent n and a negative relation to the consistency factor K. However, there was no correlation between the CS content in WG/CS blends and n or K. The coefficient of determination of the linear relationship between K and mass fraction in SPI/CS, SPI/WG/CS, SPI/WG and WG/CS decreased from 0.872 to 0.073. SPI was more likely to form a non-interactive structure, while wheat-gluten was more likely to form a highly interactive structure. It turned out that the materials with globular morphology, such as soybean-protein-isolate and corn-starch, are likely to form a non-interactive structure.


Assuntos
Amido , Triticum , Glutens/química , Proteínas de Soja/química , Glycine max/metabolismo , Amido/química , Triticum/química , Viscosidade , Zea mays/química
16.
Molecules ; 27(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36144842

RESUMO

Soybean protein hydrolysates were prepared using two proteolytic enzymes (Alcalase and Protamex) and the degree of hydrolysis (DH) and their functional and antioxidant properties were evaluated. The highest DH value was 20%, with a yield of 19.77% and protein content of 51.64%. The total amino acid content was more than 41% for all protein hydrolysates. The protein hydrolysates from Protamex at pH 2.0 had excellent solubility, emulsifying activity, and foaming capacity, at 83.83%, 95.03 m2/g, and 93.84%, respectively. The water-holding capacity was 4.52 g/g for Alcalase, and the oil-holding capacity was 4.91 g/g for Protamex. The antioxidant activity (62.07%), as measured by the samples' reaction with DPPH (2,2-diphenyl-1-picrylhydrazyl) and the reducing power (0.27) were the strongest for Protamex. An ABTS activity rate of 70.21% was recorded for Alcalase. These findings indicated a strong potential for the utilization of soybean protein hydrolysates to improve the functional properties and antioxidant activity of soybeans as well as their nutritional values.


Assuntos
Antioxidantes , Hidrolisados de Proteína , Aminoácidos , Antioxidantes/química , Hidrólise , Peptídeo Hidrolases/química , Hidrolisados de Proteína/química , Glycine max/metabolismo , Subtilisinas/metabolismo , Água
17.
J Sci Food Agric ; 102(13): 6062-6070, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35462432

RESUMO

BACKGROUND: To clarify the role of the extension region on the structure-functional relationship of the α-subunit of ß-conglycinin, α-subunit and its segment of the core region (αc-subunit) were expressed via an Escherichia coli system. Their physicochemical properties were compared under acid, neutral or alkaline conditions (pH 4.0, 7.0, and 8.0) and high or low ionic strength (µ = 0.05 and 0.5), respectively. RESULTS: The results showed that the extension region contributed to increasing thermal stability, especially at low ionic strength under acidic and neutral conditions. The extension region stabilized the α-subunit with high solubility, low turbidity, and small particle size under neutral and alkaline conditions, whereas these impacts were suppressed at a high ionic strength and acidic conditions. Surface hydrophobicity of the α-subunit decreased under acidic and alkaline conditions without being interfered with by ionic strength. CONCLUSION: It can be concluded that the extension region played different roles under different pH and ionic strength conditions. These factors should be specified carefully and speculated individually to explore the more detailed and profound nature of ß-conglycinin at the submolecular level. The results could benefit a better understanding of the relationship between domain structure and functions of soybean protein. © 2022 Society of Chemical Industry.


Assuntos
Globulinas , Proteínas de Soja , Antígenos de Plantas/química , Globulinas/química , Concentração de Íons de Hidrogênio , Concentração Osmolar , Proteínas de Armazenamento de Sementes/química , Proteínas de Soja/química , Glycine max/química
18.
J Sci Food Agric ; 102(7): 2693-2703, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34694006

RESUMO

BACKGROUND: Bioactive protein hydrolysates and peptides are believed to help counteract and ameliorate physical fatigue. Fermented soybean protein peptides (FSPPs) were prepared by protease hydrolysis and microbial fermentation. The present study aimed to evaluate the anti-fatigue properties of FSPPs. RESULTS: The forced swimming time in the FSPP group was 35.78% longer than the control group, the oxygen-resistant survival time of the FSPP group was significantly prolonged and the prolongation rate was 31.00%. In addition, FSPPs decreased the lactic acid (LD), blood urea nitrogen (BUN) and creatine kinase (CK) concentration by 27.47%, 25.93% and 21.70%, respectively, after treatment, while increasing the levels of liver glycogen and muscle glycogen by 93.35% and 67.31%, respectively. FSPPs can significantly increase gut microbiota diversity and regulate the species richness of gut microbiota. The results of real-time polymerase chain reaction (RT-PCR) and western blotting showed that FSPPs activate p-AMPK/PGC1-α and PI3K/Akt/mTOR signaling pathways. CONCLUSION: These results indicate that treatment with FSPPs induces anti-fatigue effects, which may be due to the mediating muscle protein synthesis and participation in skeletal muscle hypertrophy, providing energy for muscle cells. FSPPs may have potential applications in the food industry as functional material additives. © 2021 Society of Chemical Industry.


Assuntos
Alimentos Fermentados , Proteínas de Soja , Animais , Nitrogênio da Ureia Sanguínea , Fígado/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Soja/metabolismo , Natação
19.
J Sci Food Agric ; 102(11): 4462-4472, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35092622

RESUMO

BACKGROUNDS: In the present study, a glycosylated soybean protein with glucose was prepared after pH treatment under different conditions (5.0, 6.0 7.0, 8.0, 9.0) and the conformation and emulsifying properties of soybean protein isolate (SPI) and soybean protein isolate-glucose (SPI-G) were investigated. RESULTS: The degree of grafting (37.11%) and browning (39.2%) of SPI-G conjugates were obtained at pH 9.0 (P < 0.05). The results of analysis of polyacrylamide gel electrophoresis, Fourier transform infrared spectroscopy and Endogenous fluorescence spectroscopy showed that the Maillard reaction between the SPI and glucose occurred and the natural rigid structure of test proteins was stretched and became looser, and thus the tertiary conformation was unfolding. Furthermore, the particle size of the all of samples was reduced under different pH conditions, indicating that pH treatment can increase the flexibility of SPI molecules. The proteins exhibited the best surface hydrophobicity, thermal stability and emulsifying activity (EA) of modified products when subjected to a pH treatment of 9.0, whereas they afforded the best emulsion stability (ES) at pH 8.0. There was a good correlation between the molecular flexibility and emulsifying properties of SPI-G [0.963 (F:EA) and 0.879 (F:ES)] (P < 0.05). CONCLUSION: The present study shows that the structural and emulsification characteristics of natural SPI and SPI-G conjugates have been significantly enhanced via pH treatment and these results provide a theoretical guidance for the application of glycosylated SPI in the food industry. © 2022 Society of Chemical Industry.


Assuntos
Glucose , Proteínas de Soja , Emulsões/química , Glucose/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Reação de Maillard , Proteínas de Soja/química
20.
Artigo em Inglês | MEDLINE | ID: mdl-34478847

RESUMO

This study aimed to investigate the effects of replacing fish meal (FM) with soybean protein concentrates (SPC) on the intermediary metabolism and health of Totoaba macdonaldi juveniles. Fish (initial weight 50 ± 1 g) were fed for 60 days with eight diets: a reference diet (RD) and seven experimental diets where FM was replaced gradually with 15 to 100% SPC (SPC15, SPC30, SPC45, SPC60, SPC75, SPC90, and SPC100, respectively). Hexokinase (HK), glucokinase (GK), and alanine aminotransferase (ALT) enzyme activities showed highly significant differences (p < 0.01) between fish fed RD (0% SPC) compared to fish fed the diets with 60, 75, 90, and 100% SPC. The ALT enzyme shows a highly significant (p < 0.01) decrease in activity for fish fed 75, 90, and 100% SPC inclusions compared to fish fed the RD. The aspartate aminotransferase AST/ALT ratio showed a significant increase in activity for fish fed 100% soybean compared only with fish fed the control diet. The histological organization of the liver in totoaba juveniles fed RD, SPC15, SPC30 and SPC45 diets were similar. Totoaba fed with SPC90 and SPC100 showed histological alterations in hepatic and pancreatic parenchyma. Overall, according to the findings in this study, 45% of dietary FM could be replaced by SPC without causing adverse changes in metabolism, histological organization of liver, and health of juveniles of totoaba when cultured for 60 days. However, levels greater than 60% of SPC could compromise the health status of fish.


Assuntos
Metabolismo Energético , Peixes/metabolismo , Fígado/metabolismo , Valor Nutritivo , Proteínas de Soja/administração & dosagem , Alanina Transaminase/metabolismo , Ração Animal , Animais , Aspartato Aminotransferases/metabolismo , Proteínas de Peixes/metabolismo , Peixes/crescimento & desenvolvimento , Glucoquinase/metabolismo , Hexoquinase/metabolismo , Fígado/patologia , Pâncreas/patologia , Proteínas de Soja/metabolismo , Proteínas de Soja/toxicidade , Fatores de Tempo , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa