Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(8): e17471, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39188066

RESUMO

Climate change has triggered poleward expansions in the distributions of various taxonomic groups, including tree species. Given the ecological significance of trees as keystone species in forests and their socio-economic importance, projecting the potential future distributions of tree species is crucial for devising effective adaptation strategies for both biomass production and biodiversity conservation in future forest ecosystems. Here, we fitted physiographically informed habitat suitability models (HSMs) at 50-m resolution across Sweden (55-68° N) to estimate the potential northward expansion of seven broadleaved tree species within their leading-edge distributions in Europe under different future climate change scenarios and for different time periods. Overall, we observed that minimum temperature was the most crucial variable for comprehending the spatial distribution of broadleaved tree species at their cold limits. Our HSMs projected a complex range expansion pattern for 2100, with individualistic differences among species. However, a frequent and rather surprising pattern was a northward expansion along the east coast followed by narrow migration pathways along larger valleys towards edaphically suitable areas in the north-west, where most of the studied species were predicted to expand. The high-resolution maps generated in this study offer valuable insights for our understanding of range shift dynamics at the leading edge of southern tree species as they expand into the receding boreal biome. These maps suggest areas where broadleaved tree species could already be translocated to anticipate forest and biodiversity conservation adaptation efforts in the face of future climate change.


Assuntos
Mudança Climática , Árvores , Árvores/crescimento & desenvolvimento , Suécia , Ecossistema , Florestas , Biodiversidade , Modelos Teóricos , Dispersão Vegetal , Temperatura
2.
J Insect Sci ; 19(6)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31703123

RESUMO

Distribution shifts are a common response in butterflies to a warming climate. Hong Kong has documented records of several new butterfly species in recent decades, comprising a high proportion of tropical species, some of which have successfully established. In this study, we examined possible drivers for the establishment of Euripus nyctelius Doubleday (Lepidoptera: Nymphalidae) by studying its thermal physiology and modeling current climate and future distributions projected by species distribution modeling (SDM). We found that E. nyctelius adults have a significantly higher critical thermal minimum than its local temperate relative, Hestina assimilis Linnaeus (Lepidoptera: Nymphalidae), suggesting a possible physiological constraint that may have been lifted with recent warming. SDMs provide further evidence that a shifting climate envelope may have improved the climate suitability for E. nyctelius in Hong Kong and South China-however, we cannot rule out the role of other drivers potentially influencing or driving range expansion, habitat change in particular. Conclusive attribution of warming-driven impacts for most tropical species is difficult or not possible due to a lack of historical or long-term data. Tropical insects will require a significant advancement in efforts to monitor species and populations across countries if we are to conclusively document climate-driven shifts in species distributions and manage the consequences of such species redistribution. Nevertheless, the warming climate and subsequent increased climatic suitability for tropical species in poleward areas, as shown here, is likely to result in future species redistribution events in subtropical and temperate ecosystems.


Assuntos
Distribuição Animal , Borboletas , Mudança Climática , Animais , Sudeste Asiático , Ásia Oriental , Temperatura
3.
Glob Chang Biol ; 24(11): 5440-5453, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30003633

RESUMO

The environmental effects of climate change are predicted to cause distribution shifts in many marine taxa, yet data are often difficult to collect. Quantifying and monitoring species' suitable environmental habitats is a pragmatic approach for assessing changes in species distributions but is underdeveloped for quantifying climate change induced range shifts in marine systems. Specifically, habitat predictions present opportunities for quantifying spatiotemporal distribution changes while accounting for sources of natural climate variation. Here we demonstrate the utility of a marine-based habitat model parameterized using citizen science data and remotely sensed environmental covariates for quantifying shifts in oceanographic habitat suitability over 22 years for a coastal-pelagic fish species in a climate change hotspot. Our analyses account for the effects of natural intra- and interannual climate variability to reveal rapid poleward shifts in core (94.4 km/decade) and poleward edge (108.8 km/decade) oceanographic habitats. Temporal persistence of suitable oceanographic habitat at high latitudes also increased by approximately 3 months over the study period. Our approach demonstrates how marine citizen science data can be used to quantify range shifts, but necessitates shifting focus from species distributions directly, to the distribution of species' environmental habitat preferences.


Assuntos
Distribuição Animal , Mudança Climática , Ecossistema , Perciformes/fisiologia , Animais , Austrália , Participação da Comunidade , Coleta de Dados , Geografia , Oceanos e Mares , Oceano Pacífico , Projetos de Pesquisa
4.
Bioscience ; 68(11): 873-884, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30464352

RESUMO

Temperature regimes have multiple spatial and temporal dimensions that have different impacts on biodiversity. Signatures of warming across these dimensions may contribute uniquely to the large-scale species redistributions and abundance changes that underpin community dynamics. A comprehensive review of the literature reveals that 86% of studies were focused on community responses to temperature aggregated over spatial or temporal dimensions (e.g., mean, median, or extremes). Therefore, the effects of temperature variation in space and time on biodiversity remain generally unquantified. In the present article, we argue that this focus on aggregated temperature measures may limit advancing our understanding of how communities are being altered by climate change. In light of this, we map the cause-and-effect pathways between the different dimensions of temperature change and communities in space and time. A broadened focus, shifted toward a multidimensional perspective of temperature, will allow better interpretation and prediction of biodiversity change and more robust management and conservation strategies.

5.
Ecol Evol ; 13(5): e10063, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37168983

RESUMO

How to best track species as they rapidly alter their distributions in response to climate change has become a key scientific priority. Information on species distributions is derived from biological records, which tend to be primarily sourced from traditional recording schemes, but increasingly also by citizen science initiatives and social media platforms, with biological recording having become more accessible to the general public. To date, however, our understanding of the respective potential of social media and citizen science to complement the information gathered by traditional recording schemes remains limited, particularly when it comes to tracking species on the move with climate change. To address this gap, we investigated how species occurrence observations vary between different sources and to what extent traditional, citizen science, and social media records are complementary, using the Banded Demoiselle (Calopteryx splendens) in Britain as a case study. Banded Demoiselle occurrences were extracted from citizen science initiatives (iRecord and iNaturalist) and social media platforms (Facebook, Flickr, and Twitter), and compared with traditional records primarily sourced from the British Dragonfly Society. Our results showed that species presence maps differ between record types, with 61% of the citizen science, 58% of the traditional, and 49% of the social media observations being unique to that data type. Banded Demoiselle habitat suitability maps differed most according to traditional and social media projections, with traditional and citizen science being the most consistent. We conclude that (i) social media records provide insights into the Banded Demoiselle distribution and habitat preference that are different from, and complementary to, the insights gathered from traditional recording schemes and citizen science initiatives; (ii) predicted habitat suitability maps that ignore information from social media records can substantially underestimate (by over 3500 km2 in the case of the Banded Demoiselle) potential suitable habitat availability.

6.
Environ Evid ; 12(1): 7, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-39294691

RESUMO

BACKGROUND: Among the most widely predicted climate change-related impacts to biodiversity are geographic range shifts, whereby species shift their spatial distribution to track their climate niches. A series of commonly articulated hypotheses have emerged in the scientific literature suggesting species are expected to shift their distributions to higher latitudes, greater elevations, and deeper depths in response to rising temperatures associated with climate change. Yet, many species are not demonstrating range shifts consistent with these expectations. Here, we evaluate the impact of anthropogenic climate change (specifically, changes in temperature and precipitation) on species' ranges, and assess whether expected range shifts are supported by the body of empirical evidence. METHODS: We conducted a Systematic Review, searching online databases and search engines in English. Studies were screened in a two-stage process (title/abstract review, followed by full-text review) to evaluate whether they met a list of eligibility criteria. Data coding, extraction, and study validity assessment was completed by a team of trained reviewers and each entry was validated by at least one secondary reviewer. We used logistic regression models to assess whether the direction of shift supported common range-shift expectations (i.e., shifts to higher latitudes and elevations, and deeper depths). We also estimated the magnitude of shifts for the subset of available range-shift data expressed in distance per time (i.e., km/decade). We accounted for methodological attributes at the study level as potential sources of variation. This allowed us to answer two questions: (1) are most species shifting in the direction we expect (i.e., each observation is assessed as support/fail to support our expectation); and (2) what is the average speed of range shifts? REVIEW FINDINGS: We found that less than half of all range-shift observations (46.60%) documented shifts towards higher latitudes, higher elevations, and greater marine depths, demonstrating significant variation in the empirical evidence for general range shift expectations. For the subset of studies looking at range shift rates, we found that species demonstrated significant average shifts towards higher latitudes (average = 11.8 km/dec) and higher elevations (average = 9 m/dec), although we failed to find significant evidence for shifts to greater marine depths. We found that methodological factors in individual range-shift studies had a significant impact on the reported direction and magnitude of shifts. Finally, we identified important variation across dimensions of range shifts (e.g., greater support for latitude and elevation shifts than depth), parameters (e.g., leading edge shifts faster than trailing edge for latitude), and taxonomic groups (e.g., faster latitudinal shifts for insects than plants). CONCLUSIONS: Despite growing evidence that species are shifting their ranges in response to climate change, substantial variation exists in the extent to which definitively empirical observations confirm these expectations. Even though on average, rates of shift show significant movement to higher elevations and latitudes for many taxa, most species are not shifting in expected directions. Variation across dimensions and parameters of range shifts, as well as differences across taxonomic groups and variation driven by methodological factors, should be considered when assessing overall confidence in range-shift hypotheses. In order for managers to effectively plan for species redistribution, we need to better account for and predict which species will shift and by how much. The dataset produced for this analysis can be used for future research to explore additional hypotheses to better understand species range shifts.

7.
Rev Fish Biol Fish ; 32(1): 231-251, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33814734

RESUMO

One of the most pronounced effects of climate change on the world's oceans is the (generally) poleward movement of species and fishery stocks in response to increasing water temperatures. In some regions, such redistributions are already causing dramatic shifts in marine socioecological systems, profoundly altering ecosystem structure and function, challenging domestic and international fisheries, and impacting on human communities. Such effects are expected to become increasingly widespread as waters continue to warm and species ranges continue to shift. Actions taken over the coming decade (2021-2030) can help us adapt to species redistributions and minimise negative impacts on ecosystems and human communities, achieving a more sustainable future in the face of ecosystem change. We describe key drivers related to climate-driven species redistributions that are likely to have a high impact and influence on whether a sustainable future is achievable by 2030. We posit two different futures-a 'business as usual' future and a technically achievable and more sustainable future, aligned with the Sustainable Development Goals. We then identify concrete actions that provide a pathway towards the more sustainable 2030 and that acknowledge and include Indigenous perspectives. Achieving this sustainable future will depend on improved monitoring and detection, and on adaptive, cooperative management to proactively respond to the challenge of species redistribution. We synthesise examples of such actions as the basis of a strategic approach to tackle this global-scale challenge for the benefit of humanity and ecosystems. Supplementary Information: The online version contains supplementary material available at 10.1007/s11160-021-09641-3.

8.
Sci Total Environ ; 783: 146896, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-33866165

RESUMO

Elevational range shifts of mountain species in response to climate change have profound impact on mountain biodiversity. However, current evidence indicates great controversies in the direction and magnitude of elevational range shifts across species and regions. Here, using historical and recent occurrence records of 83 plant species in a subtropical mountain, Mt. Gongga (Sichuan, China), we evaluated changes in species elevation centroids and limits (upper and lower) along elevational gradients, and explored the determinants of elevational changes. We found that 63.9% of the species shifted their elevation centroids upward, while 22.9% shifted downward. The changes in centroid elevations and range size were more strongly correlated with changes in lower than upper limits of species elevational ranges. The magnitude of centroid elevation shifts was larger than predicted by climate warming and precipitation changes. Our results show complex changes in species elevational distributions and range sizes in Mt. Gongga, and that climate change, species traits and climate adaptation of species all influenced their elevational movement. As Mt. Gongga is one of the global biodiversity hotspots, and contains many threatened plant species, these findings provide support to future conservation planning.


Assuntos
Altitude , Mudança Climática , Biodiversidade , China , Ecossistema , Plantas
9.
Ambio ; 48(12): 1498-1515, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31098878

RESUMO

While governments and natural resource managers grapple with how to respond to climatic changes, many marine-dependent individuals, organisations and user-groups in fast-changing regions of the world are already adjusting their behaviour to accommodate these. However, we have little information on the nature of these autonomous adaptations that are being initiated by resource user-groups. The east coast of Tasmania, Australia, is one of the world's fastest warming marine regions with extensive climate-driven changes in biodiversity already observed. We present and compare examples of autonomous adaptations from marine users of the region to provide insights into factors that may have constrained or facilitated the available range of autonomous adaptation options and discuss potential interactions with governmental planned adaptations. We aim to support effective adaptation by identifying the suite of changes that marine users are making largely without government or management intervention, i.e. autonomous adaptations, to better understand these and their potential interactions with formal adaptation strategies.


Assuntos
Biodiversidade , Ecossistema , Austrália , Clima , Mudança Climática , Humanos
10.
Chemosphere ; 214: 855-865, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30317166

RESUMO

We determined concentrations of eicosapentaenoic and docosahexaenoic acids (EPA + DHA), Σomega-3, polyunsaturated fatty acids (ΣPUFA), selenium, methylmercury, and selenium:methylmercury (Se:Hg) ratios in native and northward-redistributing sub-Arctic marine fish and invertebrates from low, mid-, and high Canadian Arctic latitudes. There was no clear latitudinal trend in nutrient or contaminant concentrations. Among species, EPA + DHA concentrations in native Arctic cod (Boreogadus saida) were similar to concentrations in sub-Arctic capelin (Mallotus villosus) and sand lance (Ammodytes spp.) (444-658 mg.100 g-1), and higher than in most other species. Concentrations of EPA + DHA were related to lipid content, but to a greater extent for higher trophic position species (R2 = 0.83) than for species at lower trophic positions (R2 = 0.61). Selenium concentrations were higher in sand lance (1.15 ±â€¯0.16 µg g-1) than in all other species (0.30-0.69 µg g-1), which was significantly, but weakly, explained by more pelagic feeding in sand lance. Methylmercury concentrations were similar (and Se:Hg ratios were higher) in capelin, sand lance, and Arctic cod (0.01-0.03 µg g-1 wet weight (ww)) and lower than in other prey (0.12-0.26 µg g-1 ww), which was significantly explained by the smaller size of these species and more pelagic feeding habits than other fish. These results suggested that a shift in prey fish composition from Arctic cod to capelin and/or sand lance is unlikely to reduce the food quality of the prey available to marine predators at least with respect to concentrations of essential fatty acids, selenium, and Se:Hg ratios.


Assuntos
Monitoramento Ambiental/métodos , Ácidos Graxos Essenciais/efeitos adversos , Compostos de Metilmercúrio/efeitos adversos , Selênio/efeitos adversos , Animais , Regiões Árticas , Canadá , Peixes , Qualidade dos Alimentos , Compostos de Metilmercúrio/análise , Compostos de Metilmercúrio/química , Selênio/química , Poluentes Químicos da Água/análise
11.
Ecol Evol ; 9(4): 1603-1622, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30847059

RESUMO

Anthropogenic climate change is widely considered a major threat to global biodiversity, such that the ability of a species to adapt will determine its likelihood of survival. Egg-burying reptiles that exhibit temperature-dependent sex determination, such as critically endangered hawksbill turtles (Eretmochelys imbricata), are particularly vulnerable to changes in thermal regimes because nest temperatures affect offspring sex, fitness, and survival. It is unclear whether hawksbills possess sufficient behavioral plasticity of nesting traits (i.e., redistribution of nesting range, shift in nesting phenology, changes in nest-site selection, and adjustment of nest depth) to persist within their climatic niche or whether accelerated changes in thermal conditions of nesting beaches will outpace phenotypic adaption and require human intervention. For these reasons, we estimated sex ratios and physical condition of hatchling hawksbills under natural and manipulated conditions and generated and analyzed thermal profiles of hawksbill nest environments within highly threatened mangrove ecosystems at Bahía de Jiquilisco, El Salvador, and Estero Padre Ramos, Nicaragua. Hawksbill clutches protected in situ at both sites incubated at higher temperatures, yielded lower hatching success, produced a higher percentage of female hatchlings, and produced less fit offspring than clutches relocated to hatcheries. We detected cooler sand temperatures in woody vegetation (i.e., coastal forest and small-scale plantations of fruit trees) and hatcheries than in other monitored nest environments, with higher temperatures at the deeper depth. Our findings indicate that mangrove ecosystems present a number of biophysical (e.g., insular nesting beaches and shallow water table) and human-induced (e.g., physical barriers and deforestation) constraints that, when coupled with the unique life history of hawksbills in this region, may limit behavioral compensatory responses by the species to projected temperature increases at nesting beaches. We contend that egg relocation can contribute significantly to recovery efforts in a changing climate under appropriate circumstances.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa