Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Basic Res Cardiol ; 119(1): 151-168, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38145999

RESUMO

A deficiency of striated preferentially expressed gene (Speg), a member of the myosin light chain kinase family, results in abnormal myofibril structure and function of immature cardiomyocytes (CMs), corresponding with a dilated cardiomyopathy, heart failure and perinatal death. Mitochondrial development plays a role in cardiomyocyte maturation. Therefore, this study investigated whether Speg deficiency ( - / - ) in CMs would result in mitochondrial abnormalities. Speg wild-type and Speg-/- C57BL/6 littermate mice were utilized for assessment of mitochondrial structure by transmission electron and confocal microscopies. Speg was expressed in the first and second heart fields at embryonic (E) day 7.5, prior to the expression of mitochondrial Na+/Ca2+/Li+ exchanger (NCLX) at E8.5. Decreases in NCLX expression (E11.5) and the mitochondrial-to-nuclear DNA ratio (E13.5) were observed in Speg-/- hearts. Imaging of E18.5 Speg-/- hearts revealed abnormal mitochondrial cristae, corresponding with decreased ATP production in cells fed glucose or palmitate, increased levels of mitochondrial superoxide and depolarization of mitochondrial membrane potential. Interestingly, phosphorylated (p) PGC-1α, a key mediator of mitochondrial development, was significantly reduced in Speg-/- hearts during screening for targeted genes. Besides Z-line expression, Speg partially co-localized with PGC-1α in the sarcomeric region and was found in the same complex by co-immunoprecipitation. Overexpression of a Speg internal serine/threonine kinase domain in Speg-/- CMs promoted translocation of pPGC-1α into the nucleus, and restored ATP production that was abolished by siRNA-mediated silencing of PGC-1α. Our results demonstrate a critical role of Speg in mitochondrial development and energy metabolism in CMs, mediated in part by phosphorylation of PGC-1α.


Assuntos
Cardiomiopatia Dilatada , Doenças Mitocondriais , Camundongos , Animais , Gravidez , Feminino , Miócitos Cardíacos/metabolismo , Camundongos Endogâmicos C57BL , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , DNA Mitocondrial/metabolismo , Trifosfato de Adenosina/metabolismo , Doenças Mitocondriais/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Musculares/genética , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo
2.
Int J Mol Sci ; 23(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35563595

RESUMO

Left Ventricular Non-Compaction (LVNC) is defined by the triad prominent myocardial trabecular meshwork, thin compacted layer, and deep intertrabecular recesses. LVNC associated with dilation is characterized by the coexistence of left ventricular dilation and systolic dysfunction. Pediatric cases with dilated-LVNC have worse outcomes than those with isolated dilated cardiomyopathy and adult patients. Herein, we report a clinical and genetic investigation using trio-based whole-exome sequencing of a pediatric case with early-onset dilated-LVNC. Compound heterozygous mutations were identified in the Striated Muscle Enriched Protein Kinase (SPEG) gene, a key regulator of cardiac calcium homeostasis. A paternally inherited mutation: SPEG; p.(Arg2470Ser) and the second variant, SPEG; p.(Pro2687Thr), is common and occurred de novo. Subsequently, Sanger sequencing was performed for the family in order to segregate the variants. Thus, the index case, his father, and both sisters carried the SPEG: p.(Arg2470Ser) variant. Only the index patient carried both SPEG variants. Both sisters, as well as the patient's father, showed LVNC without cardiac dysfunction. The unaffected mother did not harbor any of the variants. The in silico analysis of the identified variants (rare and common) showed a decrease in protein stability with alterations of the physical properties as well as high conservation scores for the mutated residues. Interestingly, using the Project HOPE tool, the SPEG; p.(Pro2687Thr) variant is predicted to disturb the second fibronectin type III domain of the protein and may abolish its function. To our knowledge, the present case is the first description of compound heterozygous SPEG mutations involving a de novo variant and causing dilated-LVNC without neuropathy or centronuclear myopathy.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Miopatias Congênitas Estruturais , Adulto , Cardiomiopatias/genética , Cardiomiopatia Dilatada/genética , Criança , Coração , Ventrículos do Coração , Humanos , Proteínas Musculares/genética , Miopatias Congênitas Estruturais/genética , Proteínas Serina-Treonina Quinases
3.
Circulation ; 142(12): 1159-1172, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32683896

RESUMO

BACKGROUND: Enhanced diastolic calcium (Ca2+) release through ryanodine receptor type-2 (RyR2) has been implicated in atrial fibrillation (AF) promotion. Diastolic sarcoplasmic reticulum Ca2+ leak is caused by increased RyR2 phosphorylation by PKA (protein kinase A) or CaMKII (Ca2+/calmodulin-dependent kinase-II) phosphorylation, or less dephosphorylation by protein phosphatases. However, considerable controversy remains regarding the molecular mechanisms underlying altered RyR2 function in AF. We thus aimed to determine the role of SPEG (striated muscle preferentially expressed protein kinase), a novel regulator of RyR2 phosphorylation, in AF pathogenesis. METHODS: Western blotting was performed with right atrial biopsies from patients with paroxysmal AF. SPEG atrial knockout mice were generated using adeno-associated virus 9. In mice, AF inducibility was determined using intracardiac programmed electric stimulation, and diastolic Ca2+ leak in atrial cardiomyocytes was assessed using confocal Ca2+ imaging. Phosphoproteomics studies and Western blotting were used to measure RyR2 phosphorylation. To test the effects of RyR2-S2367 phosphorylation, knockin mice with an inactivated S2367 phosphorylation site (S2367A) and a constitutively activated S2367 residue (S2367D) were generated by using CRISPR-Cas9. RESULTS: Western blotting revealed decreased SPEG protein levels in atrial biopsies from patients with paroxysmal AF in comparison with patients in sinus rhythm. SPEG atrial-specific knockout mice exhibited increased susceptibility to pacing-induced AF by programmed electric stimulation and enhanced Ca2+ spark frequency in atrial cardiomyocytes with Ca2+ imaging, establishing a causal role for decreased SPEG in AF pathogenesis. Phosphoproteomics in hearts from SPEG cardiomyocyte knockout mice identified RyR2-S2367 as a novel kinase substrate of SPEG. Western blotting demonstrated that RyR2-S2367 phosphorylation was also decreased in patients with paroxysmal AF. RyR2-S2367A mice exhibited an increased susceptibility to pacing-induced AF, and aberrant atrial sarcoplasmic reticulum Ca2+ leak, as well. In contrast, RyR2-S2367D mice were resistant to pacing-induced AF. CONCLUSIONS: Unlike other kinases (PKA, CaMKII) that increase RyR2 activity, SPEG phosphorylation reduces RyR2-mediated sarcoplasmic reticulum Ca2+ release. Reduced SPEG levels and RyR2-S2367 phosphorylation typified patients with paroxysmal AF. Studies in S2367 knockin mouse models showed a causal relationship between reduced S2367 phosphorylation and AF susceptibility. Thus, modulating SPEG activity and phosphorylation levels of the novel S2367 site on RyR2 may represent a novel target for AF treatment.


Assuntos
Fibrilação Atrial/metabolismo , Sinalização do Cálcio , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Fibrilação Atrial/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Quinase de Cadeia Leve de Miosina/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo
4.
Pflugers Arch ; 473(3): 331-347, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33399957

RESUMO

Cardiomyocyte contraction relies on precisely regulated intracellular Ca2+ signaling through various Ca2+ channels and transporters. In this article, we will review the physiological regulation of Ca2+ handling and its role in maintaining normal cardiac rhythm and contractility. We discuss how inherited variants or acquired defects in Ca2+ channel subunits contribute to the development or progression of diseases of the heart. Moreover, we highlight recent insights into the role of protein phosphatase subunits and striated muscle preferentially expressed protein kinase (SPEG) in atrial fibrillation, heart failure, and cardiomyopathies. Finally, this review summarizes current drug therapies and new advances in genome editing as therapeutic strategies for the cardiac diseases caused by aberrant intracellular Ca2+ signaling.


Assuntos
Sinalização do Cálcio/fisiologia , Cardiopatias/metabolismo , Coração/fisiologia , Animais , Humanos
5.
BMC Pediatr ; 21(1): 209, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33926407

RESUMO

BACKGROUND: Centronuclear myopathy (CNM), a subtype of congenital myopathy (CM), is a group of clinical and genetically heterogeneous muscle disorders. Since the discovery of the SPEG gene and disease-causing variants, only a few additional patients have been reported. CASE PRESENTATION: The child, a 13-year-old female, had delayed motor development since childhood, weakness of both lower extremities for 10 years, gait swinging, and a positive Gower sign. Her distal muscle strength of both lower extremities was grade IV. The electromyography showed myogenic damage and electromyographic changes. Her 11-year-old sister had a similar muscle weakness phenotype. Gene sequencing revealed that both sisters had SPEG compound heterozygous mutations, and the mutation sites were c.3715 + 4C > T and c.3588delC, which were derived from their parents. These variant sites have not been reported before. The muscle biopsy showed the nucleic (> 20% of fibers) were located in the center of the cell, the average diameter of type I myofibers was slightly smaller than that of type II myofibers, and the pathology of type I myofibers was dominant, which agreed with the pathological changes of centronuclear myopathy. CONCLUSIONS: The clinical phenotypes of CNM patients caused by mutations at different sites of the SPEG gene are also different. In this case, there was no cardiomyopathy. This study expanded the number of CNM cases and the mutation spectrum of the SPEG gene to provide references for prenatal diagnosis and genetic counseling.


Assuntos
Miopatias Congênitas Estruturais , Adolescente , Criança , Feminino , Testes Genéticos , Humanos , Proteínas Musculares/genética , Debilidade Muscular , Músculo Esquelético , Mutação , Miopatias Congênitas Estruturais/diagnóstico , Miopatias Congênitas Estruturais/genética , Fenótipo , Gravidez , Proteínas Serina-Treonina Quinases/genética
6.
Int J Mol Sci ; 22(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069262

RESUMO

Aberrant glycosylation has long been known to be associated with cancer, since it is involved in key mechanisms such as tumour onset, development and progression. This review will focus on protein glycosylation studies in cells, tissue, urine and serum in the context of prostate cancer. A dedicated section will cover the glycoforms of prostate specific antigen, the molecule that, despite some important limitations, is routinely tested for helping prostate cancer diagnosis. Our aim is to provide readers with an overview of mass spectrometry-based glycoproteomics of prostate cancer. From this perspective, the first part of this review will illustrate the main strategies for glycopeptide enrichment and mass spectrometric analysis. The molecular information obtained by glycoproteomic analysis performed by mass spectrometry has led to new insights into the mechanism linking aberrant glycosylation to cancer cell proliferation, migration and immunoescape.


Assuntos
Biomarcadores Tumorais/análise , Espectrometria de Massas/métodos , Neoplasias da Próstata/metabolismo , Proteômica/métodos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/urina , Glicosilação , Humanos , Masculino , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/urina
7.
J Struct Biol ; 210(3): 107506, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32283314

RESUMO

Polyamines are important for regulating biofilms and the exopolysaccharide of the biofilm matrix of Bacillus subtilis. Understanding how enzymes can regulate polyamine concentrations is critical for learning more about how these processes occur in diverse bacteria. Here, we describe the structure and function of another member of the spermidine/spermine acetyltransferases (SSAT) found in Bacilli. The SpeG enzyme from B. thuringiensis (BtSpeG) binds polyamines in its allosteric site and adopts a dodecameric oligomeric state similar to other SpeG enzymes from Gram-negative bacteria. Our kinetic results show the catalytic efficiency of BtSpeG was greater than any previously characterized SpeG to date, and in contrast to other SpeG proteins it exhibited very similar kinetic properties toward both spermine and spermidine. Similar to the SpeG enzyme from E. coli, BtSpeG was able to acetylate spermidine on the N1 and N8 positions. The turnover of BtSpeG toward spermine and spermidine was also two to three orders of magnitude greater than any other Bacilli SSAT enzyme that has been previously characterized. SpeG proteins from Bacilli, including B. cereus, B. thuringiensis and B. anthracis share nearly identical sequences and therefore our results likely provide insight into the structure/function relationship across multiple Bacillus species.


Assuntos
Acetiltransferases/metabolismo , Bacillus thuringiensis/metabolismo , Acetiltransferases/genética , Bacillus thuringiensis/genética , Catálise , Cinética , Poliaminas/metabolismo , Espermidina/metabolismo , Espermina/metabolismo
8.
J Clin Lab Anal ; 34(2): e23054, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31625632

RESUMO

BACKGROUND: Centronuclear myopathy (CNM), a subtype of congenital myopathy (CM), is a group of clinical and genetically heterogeneous muscle disorders. Centronuclear myopathy is a kind of disease difficult to diagnose due to its genetic diversity. Since the discovery of the SPEG gene and disease-causing variants, only a few additional patients have been reported. METHODS: A radiograph test, ultrasonic test, and biochemical tests were applied to clinical diagnosis of CNM. We performed trio medical exome sequencing of the family and conservation analysis to identify variants. RESULTS: We report a pair of severe CNM twins with the same novel homozygous SPEG variant c. 8710A>G (p.Thr2904Ala) identified by clinical trio medical exome sequencing of the family and conservation analysis. The twins showed clinical symptoms of facial weakness, hypotonia, arthrogryposis, strephenopodia, patent ductus arteriosus, and pulmonary arterial hypertension. CONCLUSIONS: Our report expands the clinical and molecular repertoire of CNM and enriches the variant spectrum of the SPEG gene in the Chinese population and helps us further understand the pathogenesis of CNM.


Assuntos
Proteínas Musculares/genética , Mutação , Miopatias Congênitas Estruturais/genética , Proteínas Serina-Treonina Quinases/genética , Povo Asiático/genética , Doenças em Gêmeos/genética , Feminino , Estudos de Associação Genética , Homozigoto , Humanos , Recém-Nascido , Masculino , Miopatias Congênitas Estruturais/etiologia , Gravidez , Splicing de RNA
9.
Muscle Nerve ; 59(3): 357-362, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30412272

RESUMO

INTRODUCTION: Centronuclear myopathies (CNMs) are a subtype of congenital myopathies (CMs) characterized by muscle weakness, predominant type 1 fibers, and increased central nuclei. SPEG (striated preferentially expressed protein kinase) mutations have recently been identified in 7 CM patients (6 with CNMs). We report 2 additional patients with SPEG mutations expanding the phenotype and evaluate genotype-phenotype correlations associated with SPEG mutations. METHODS: Using whole exome/genome sequencing in CM families, we identified novel recessive SPEG mutations in 2 patients. RESULTS: Patient 1, with severe muscle weakness requiring respiratory support, dilated cardiomyopathy, ophthalmoplegia, and findings of nonspecific CM on muscle biopsy carried a homozygous SPEG mutation (p.Val3062del). Patient 2, with milder muscle weakness, ophthalmoplegia, and CNM carried compound heterozygous mutations (p.Leu728Argfs*82) and (p.Val2997Glyfs*52). CONCLUSIONS: The 2 patients add insight into genotype-phenotype correlations of SPEG-associated CMs. Clinicians should consider evaluating a CM patient for SPEG mutations even in the absence of CNM features. Muscle Nerve 59:357-362, 2019.


Assuntos
Proteínas Musculares/genética , Miopatias Congênitas Estruturais/congênito , Miopatias Congênitas Estruturais/genética , Proteínas Serina-Treonina Quinases/genética , Biópsia , Criança , Pré-Escolar , Consanguinidade , Exoma/genética , Feminino , Estudos de Associação Genética , Humanos , Lactente , Masculino , Debilidade Muscular/etiologia , Debilidade Muscular/genética , Músculo Esquelético/patologia , Mutação/genética , Análise de Sequência
10.
Stud Mycol ; 87: 257-421, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29180830

RESUMO

The Mycosphaerellaceae represent thousands of fungal species that are associated with diseases on a wide range of plant hosts. Understanding and stabilising the taxonomy of genera and species of Mycosphaerellaceae is therefore of the utmost importance given their impact on agriculture, horticulture and forestry. Based on previous molecular studies, several phylogenetic and morphologically distinct genera within the Mycosphaerellaceae have been delimited. In this study a multigene phylogenetic analysis (LSU, ITS and rpb2) was performed based on 415 isolates representing 297 taxa and incorporating ex-type strains where available. The main aim of this study was to resolve the phylogenetic relationships among the genera currently recognised within the family, and to clarify the position of the cercosporoid fungi among them. Based on these results many well-known genera are shown to be paraphyletic, with several synapomorphic characters that have evolved more than once within the family. As a consequence, several old generic names including Cercosporidium, Fulvia, Mycovellosiella, Phaeoramularia and Raghnildiana are resurrected, and 32 additional genera are described as new. Based on phylogenetic data 120 genera are now accepted within the family, but many currently accepted cercosporoid genera still remain unresolved pending fresh collections and DNA data. The present study provides a phylogenetic framework for future taxonomic work within the Mycosphaerellaceae.

11.
Stud Mycol ; 83: 49-163, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27570325

RESUMO

Ramularia is a species-rich genus that harbours plant pathogens responsible for yield losses to many important crops, including barley, sugar beet and strawberry. Species of Ramularia are hyphomycetes with hyaline conidiophores and conidia with distinct, thickened, darkened, refractive conidiogenous loci and conidial hila, and Mycosphaerella sexual morphs. Because of its simple morphology and general lack of DNA data in public databases, several allied genera are frequently confused with Ramularia. In order to improve the delimitation of Ramularia from allied genera and the circumscription of species within the genus Ramularia, a polyphasic approach based on multilocus DNA sequences, morphological and cultural data were used in this study. A total of 420 isolates belonging to Ramularia and allied genera were targeted for the amplification and sequencing of six partial genes. Although Ramularia and Ramulariopsis proved to be monophyletic, Cercosporella and Pseudocercosporella were polyphyletic. Phacellium isolates clustered within the Ramularia clade and the genus is thus tentatively reduced to synonymy under Ramularia. Cercosporella and Pseudocercosporella isolates that were not congeneric with the ex-type strains of the type species of those genera were assigned to existing genera or to the newly introduced genera Teratoramularia and Xenoramularia, respectively. Teratoramularia is a genus with ramularia-like morphology belonging to the Teratosphaeriaceae, and Xenoramularia was introduced to accommodate hyphomycetous species closely related to Zymoseptoria. The genera Apseudocercosporella, Epicoleosporium, Filiella, Fusidiella, Neopseudocercosporella, and Mycosphaerelloides were also newly introduced to accommodate species non-congeneric with their purported types. A total of nine new combinations and 24 new species were introduced in this study.

12.
Proteomics ; 15(2-3): 567-79, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25141849

RESUMO

Conduction abnormalities can lead to dyssynchronous contraction, which significantly worsens morbidity and mortality of heart failure. Cardiac resynchronization therapy (CRT) can reverse ventricular remodeling and improve cardiac function. Although the underlying molecular changes are unknown, the use of a canine model of dyssynchronous heart failure (DHF) and CRT has shown that there are global changes across the cardiac proteome. This study determines changes in serum glycoprotein concentration from DHF and CRT compared to normal. We hypothesize that CRT invokes protective or advantageous pathways that can be reflected in the circulating proteome. Two prong discovery approaches were carried out on pooled normal, DHF, and CRT samples composed of individual canine serum to determine the overall protein concentration and the N-linked glycosites of circulating glycoproteins. The level of the glycoproteins was altered in DHF and CRT compared to control sera, with 63 glycopeptides substantially increased in DHF and/or CRT. Among the 32 elevated glycosite-containing peptides in DHF, 13 glycopeptides were reverted to normal level after CRT therapy. We further verify the changes of glycopeptides using label-free LC-MS from individual canine serum. Circulating glycoproteins such as alpha-fetoprotein, alpha-2-macroglobulin, galectin-3-binding protein, and collectin-10 show association to failing heart and CRT treatment model.


Assuntos
Proteínas Sanguíneas/metabolismo , Terapia de Ressincronização Cardíaca , Glicoproteínas/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/terapia , Sequência de Aminoácidos , Animais , Proteínas Sanguíneas/análise , Cães , Glicoproteínas/sangue , Insuficiência Cardíaca/sangue , Dados de Sequência Molecular , Proteoma/análise , Proteoma/metabolismo , Proteômica , Remodelação Ventricular
13.
Stud Mycol ; 80: 189-245, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26955195

RESUMO

The ascomycete family Nectriaceae (Hypocreales) includes numerous important plant and human pathogens, as well as several species used extensively in industrial and commercial applications as biodegraders and biocontrol agents. Members of the family are unified by phenotypic characters such as uniloculate ascomata that are yellow, orange-red to purple, and with phialidic asexual morphs. The generic concepts in Nectriaceae are poorly defined, since DNA sequence data have not been available for many of these genera. To address this issue we performed a multi-gene phylogenetic analysis using partial sequences for the 28S large subunit (LSU) nrDNA, the internal transcribed spacer region and intervening 5.8S nrRNA gene (ITS), the large subunit of the ATP citrate lyase (acl1), the RNA polymerase II largest subunit (rpb1), RNA polymerase II second largest subunit (rpb2), α-actin (act), ß-tubulin (tub2), calmodulin (cmdA), histone H3 (his3), and translation elongation factor 1-alpha (tef1) gene regions for available type and authentic strains representing known genera in Nectriaceae, including several genera for which no sequence data were previously available. Supported by morphological observations, the data resolved 47 genera in the Nectriaceae. We re-evaluated the status of several genera, which resulted in the introduction of six new genera to accommodate species that were initially classified based solely on morphological characters. Several generic names are proposed for synonymy based on the abolishment of dual nomenclature. Additionally, a new family is introduced for two genera that were previously accommodated in the Nectriaceae.

14.
Stud Mycol ; 81: 55-83, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26955198

RESUMO

The subphylum Ustilaginomycotina (Basidiomycota, Fungi) comprises mainly plant pathogenic fungi (smuts). Some of the lineages possess cultivable unicellular stages that are usually classified as yeast or yeast-like species in a largely artificial taxonomic system which is independent from and largely incompatible with that of the smut fungi. Here we performed phylogenetic analyses based on seven genes including three nuclear ribosomal RNA genes and four protein coding genes to address the molecular phylogeny of the ustilaginomycetous yeast species and their filamentous counterparts. Taxonomic revisions were proposed to reflect this phylogeny and to implement the 'One Fungus = One Name' principle. The results confirmed that the yeast-containing classes Malasseziomycetes, Moniliellomycetes and Ustilaginomycetes are monophyletic, whereas Exobasidiomycetes in the current sense remains paraphyletic. Four new genera, namely Dirkmeia gen. nov., Kalmanozyma gen. nov., Golubevia gen. nov. and Robbauera gen. nov. are proposed to accommodate Pseudozyma and Tilletiopsis species that are distinct from the other smut taxa and belong to clades that are separate from those containing type species of the hitherto described genera. Accordingly, new orders Golubeviales ord. nov. with Golubeviaceae fam. nov. and Robbauerales ord. nov. with Robbaueraceae fam. nov. are proposed to accommodate the sisterhood of Golubevia gen. nov. and Robbauera gen. nov. with other orders of Exobasidiomycetes. The majority of the remaining anamorphic yeast species are transferred to corresponding teleomorphic genera based on strongly supported phylogenetic affinities, resulting in the proposal of 28 new combinations. The taxonomic status of a few Pseudozyma species remains to be determined because of their uncertain phylogenetic positions. We propose to use the term pro tempore or pro tem. in abbreviation to indicate the single-species lineages that are temporarily maintained.

15.
Stud Mycol ; 82: 137-217, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26955202

RESUMO

The Didymellaceae was established in 2009 to accommodate Ascochyta, Didymella and Phoma, as well as several related phoma-like genera. The family contains numerous plant pathogenic, saprobic and endophytic species associated with a wide range of hosts. Ascochyta and Phoma are morphologically difficult to distinguish, and species from both genera have in the past been linked to Didymella sexual morphs. The aim of the present study was to clarify the generic delimitation in Didymellaceae by combing multi-locus phylogenetic analyses based on ITS, LSU, rpb2 and tub2, and morphological observations. The resulting phylogenetic tree revealed 17 well-supported monophyletic clades in Didymellaceae, leading to the introduction of nine genera, three species, two nomina nova and 84 combinations. Furthermore, 11 epitypes and seven neotypes were designated to help stabilise the taxonomy and use of names. As a result of these data, Ascochyta, Didymella and Phoma were delineated as three distinct genera, and the generic circumscriptions of Ascochyta, Didymella, Epicoccum and Phoma emended. Furthermore, the genus Microsphaeropsis, which is morphologically distinct from the members of Didymellaceae, grouped basal to the Didymellaceae, for which a new family Microsphaeropsidaceae was introduced.

16.
Front Genet ; 13: 1041470, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685827

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to more than 6.4 million deaths worldwide. The prevalent comorbidity between hypertension and severe COVID-19 suggests common genetic factors may affect the outcome of both diseases. As both hypertension and severe COVID-19 demonstrate sex-biased prevalence, common genetic factors between the two diseases may display sex-biased differential associations. By evaluating COVID-19 association signals of 172-candidate hypertension single nucleotide polymorphisms (SNPs) derived from more than 1 million European individuals in two sex-stratified severe COVID-19 genome-wide association studies from UK BioBank with European ancestry, we revealed one functional cis expression quantitative trait locus of SPEG (rs12474050) showing sex-biased association with severe COVID-19 in women. The risk allele rs12474050*T associates with higher blood pressure. In our study, we found it is significantly correlated with lower SPEG expression in muscle-skeletal but with higher expression in both brain cerebellum and cerebellar hemisphere. Additionally, nominal significances were detected for the association between rs12474050*T and lower SPEG expression in both heart left ventricle and atrial appendage; among these tissues, the SPEG expression is nominally significantly higher in females than in males. Further analysis revealed SPEG is mainly expressed in cardiomyocytes in heart and is upregulated upon SARS-CoV-2 infection, with significantly higher upregulation of SPEG only observed in female but not in male COVID-19 patients compared to both normal female and male individuals, suggesting upregulation of SPEG is a female-specific protective mechanism against COVID-19 induced heart damage. Taken together, our analyses suggest the involvement of SPEG in both hypertension and severe COVID-19 in women, which provides new insights for sex-biased effect of severe COVID-19 in women.

17.
Front Neurol ; 13: 1026904, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36733447

RESUMO

Objective: Through transcriptomic and metabolomic analyses, this study examined the role of high-fiber diet in obesity complicated by diabetes and neurodegenerative symptoms. Method: The expression matrix of high-fiber-diet-related metabolites, blood methylation profile associated with pre-symptomatic dementia in elderly patients with type 2 diabetes mellitus (T2DM), and high-throughput single-cell sequencing data of hippocampal samples from patients with Alzheimer's disease (AD) were retrieved from the Gene Expression Omnibus (GEO) database and through a literature search. Data were analyzed using principal component analysis (PCA) after quality control and data filtering to identify different cell clusters and candidate markers. A protein-protein interaction network was mapped using the STRING database. To further investigate the interaction among high-fiber-diet-related metabolites, methylation-related DEGs related to T2DM, and single-cell marker genes related to AD, AutoDock was used for semi-flexible molecular docking. Result: Based on GEO database data and previous studies, 24 marker genes associated with high-fiber diet, T2DM, and AD were identified. Top 10 core genes include SYNE1, ANK2, SPEG, PDZD2, KALRN, PTPRM, PTPRK, BIN1, DOCK9, and NPNT, and their functions are primarily related to autophagy. According to molecular docking analysis, acetamidobenzoic acid, the most substantially altered metabolic marker associated with a high-fiber diet, had the strongest binding affinity for SPEG. Conclusion: By targeting the SPEG protein in the hippocampus, acetamidobenzoic acid, a metabolite associated with high-fiber diet, may improve diabetic and neurodegenerative diseases in obese people.

18.
Dis Model Mech ; 15(5)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35293586

RESUMO

Centronuclear myopathy (CNM) is a congenital neuromuscular disorder caused by pathogenic variation in genes associated with membrane trafficking and excitation-contraction coupling (ECC). Bi-allelic autosomal-recessive mutations in striated muscle enriched protein kinase (SPEG) account for a subset of CNM patients. Previous research has been limited by the perinatal lethality of constitutive Speg knockout mice. Thus, the precise biological role of SPEG in developing skeletal muscle remains unknown. To address this issue, we generated zebrafish spega, spegb and spega;spegb (speg-DKO) mutant lines. We demonstrated that speg-DKO zebrafish faithfully recapitulate multiple phenotypes associated with CNM, including disruption of the ECC machinery, dysregulation of calcium homeostasis during ECC and impairment of muscle performance. Taking advantage of zebrafish models of multiple CNM genetic subtypes, we compared novel and known disease markers in speg-DKO with mtm1-KO and DNM2-S619L transgenic zebrafish. We observed Desmin accumulation common to all CNM subtypes, and Dnm2 upregulation in muscle of both speg-DKO and mtm1-KO zebrafish. In all, we establish a new model of SPEG-related CNM, and identify abnormalities in this model suitable for defining disease pathomechanisms and evaluating potential therapies. This article has an associated First Person interview with the joint first authors of the paper.


Assuntos
Miopatias Congênitas Estruturais , Peixe-Zebra , Animais , Dinamina II/genética , Dinamina II/metabolismo , Humanos , Camundongos , Proteínas Musculares/metabolismo , Músculo Esquelético/patologia , Mutação , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/patologia , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
19.
FEMS Microbiol Lett ; 369(1)2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35167684

RESUMO

We evaluated the antibiotic minimum inhibitory concentrations (MICs) of 123 Bacillus velezensis strains predominantly isolated from fermented soybean foods from Korea. When the 2018 European Food Safety Authority breakpoint values for Bacillus spp. were applied, all the strains were sensitive to chloramphenicol, clindamycin, erythromycin, gentamicin, kanamycin, tetracycline and vancomycin, and eight strains (6.5%) were resistant to streptomycin. The population distribution in MIC tests with streptomycin was continuous and the profile was clearly different from that expected for acquired antibiotic resistance. As of 25 October 2021, there were 181 complete published genomes of B. velezensis strains; 175 (96.7%) and 136 (75.2%) of these strains, respectively, possess potential tetracycline and streptomycin resistance genes tetL and ant(6) in the chromosome. In Bacillus licheniformis, SpeG confers resistance to clindamycin and there is an 'speG' gene annotated in the genomes of 180 B. velezensis strains; however, the gene products exhibit ≤26.6% amino acid identity with that from B. licheniformis DSM 13T. All the potential antibiotic resistance genes in the 181 B. velezensis strains were intrinsic, and traits of lateral gene transfer were not found. In this context, B. velezensis may not present a high risk in terms of antibiotic resistance in food fermentation or human use.


Assuntos
Bacillus , Clindamicina , Antibacterianos/farmacologia , Bacillus/genética , Farmacorresistência Bacteriana/genética , Humanos , Estreptomicina , Tetraciclina/farmacologia
20.
Elife ; 112022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35416771

RESUMO

Spermidine and other polyamines alleviate oxidative stress, yet excess spermidine seems toxic to Escherichia coli unless it is neutralized by SpeG, an enzyme for the spermidine N-acetyl transferase function. Thus, wild-type E. coli can tolerate applied exogenous spermidine stress, but ΔspeG strain of E. coli fails to do that. Here, using different reactive oxygen species (ROS) probes and performing electron paramagnetic resonance spectroscopy, we provide evidence that although spermidine mitigates oxidative stress by lowering overall ROS levels, excess of it simultaneously triggers the production of superoxide radicals, thereby causing toxicity in the ΔspeG strain. Furthermore, performing microarray experiment and other biochemical assays, we show that the spermidine-induced superoxide anions affected redox balance and iron homeostasis. Finally, we demonstrate that while RNA-bound spermidine inhibits iron oxidation, free spermidine interacts and oxidizes the iron to evoke superoxide radicals directly. Therefore, we propose that the spermidine-induced superoxide generation is one of the major causes of spermidine toxicity in E. coli.


Assuntos
Espermidina , Superóxidos , Escherichia coli/genética , Ferro/toxicidade , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa