Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 260: 110100, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941631

RESUMO

Unconventional oil and gas development (UOG) generates high volumes of flowback and produced water, byproducts of hydraulic fracturing operations, that are often released or spilled on the soil surface. Soil contamination with these wastewaters, commonly referred to as brine, has the potential to inhibit vegetation growth indefinitely. Natural attenuation of brine is not expedient in arid and semi-arid regions where most United States UOG developments are located, including the Bakken region of North Dakota. In situ (at-site) and ex situ (off-site) soil treatment techniques are commonly employed to remediate brine-contaminated soils in the Bakken. However, little is known regarding each technique's efficacy despite differences in application, cost, and efficiency. We selected 10 sites previously remediated with chemical amendments (in situ) and 11 sites with topsoil excavation (ex situ) in the United States Forest Service Little Missouri National Grasslands. We paired each remediated site with a reference to examine the ability of each strategy to return brine-contaminated sites to conditions reflective of the current state of the surrounding semi-arid rangeland ecosystem. At each site, we quantified soil electrical conductivity (ECe) as an indicator of soil salinity and measured vegetation cover, biomass production, bare ground, and litter. The difference between paired reference and remediated sites was used for analysis. Brine contamination was still evident as soil ECe was similarly increased on chemical amendment and topsoil excavation remediated sites over paired references at all soil depths tested. Due to the nature of the topsoil excavation treatment, elevated ECe in the 0-15 cm depth suggested resalinization of the new topsoil. Remediation techniques also resulted in similar plant community composition marked by an increase in exotic forb biomass, largely due to the invasion of kochia (Bassia scoparia) which was absent from reference sites. However, remediation techniques differed substantially in vegetation establishment. We found 15% more bare ground on sites remediated with chemical amendment treatment than paired references and 55% more with topsoil excavation. Our results indicate that in situ strategies may be more suitable than ex situ strategies for brine-spill remediation in semi-arid rangelands like the Bakken in North Dakota as they cause less disturbance and likely require less post-remediation management to establish adequate vegetation cover to protect the soil from further erosion.


Assuntos
Poluentes do Solo , Solo , Ecossistema , Missouri , North Dakota , Sais
2.
Environ Sci Pollut Res Int ; 31(25): 36986-36994, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38758443

RESUMO

In this study, inexpensive magnetite nanoparticles (Fe3O4) were prepared and applied to oil spill remediation. To do so, two novel hydrophobic amides, HADN and HATN, were prepared and applied to Fe3O4 surface modification, producing HAN-Fe3O4 and HAT-Fe3O4, respectively. The efficiency of HAN-Fe3O4 and HAT-Fe3O4 for oil spill remediation (EOSR) was investigated using different HAN-Fe3O4 and HAT-Fe3O4 weights and at various contact times. The data indicated that the EOSR increased with increased HAN-Fe3O4 and HAT-Fe3O4 weights, as their EOSR reached 100% and 89%, respectively, using 100 mg. The results also revealed that the optimum time for HAN-Fe3O4 and HAT-Fe3O4 (50 mg) to achieve the highest EOSR is 8 min, as their EOSR reached 98% and 84%, respectively, at this time. In addition, HAN-Fe3O4 exhibited higher EOSR than HAT-Fe3O4, which could be linked to the presence of an aromatic ring in HADN that is used for surface modification of Fe3O4, making them more compatible with crude oil components.


Assuntos
Amidas , Recuperação e Remediação Ambiental , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas de Magnetita , Poluição por Petróleo , Nanopartículas de Magnetita/química , Amidas/química , Recuperação e Remediação Ambiental/métodos , Petróleo
3.
Carbohydr Polym ; 336: 122140, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670764

RESUMO

Developing novel absorbent materials targeting high-efficiency, low-energy-consumption, and environmental-friendly oil spill cleanup is still a global issue. Porous absorbents endowed with self-heating function are an attractive option because of that they are able to in-situ heat crude oil and dramatically reduce oil viscosity for efficient remediation. Herein, we facilely prepared an eco-friendly multifunctional bacterial cellulose/MXene aerogel (P-SBC/MXene aerogel) for rapid oil recovery. Thanks to excellent full solar spectrum absorption (average absorbance = 96.6 %), efficient photo-thermal conversion, and superior electrical conductivity (electrical resistance = 36 Ω), P-SBC/MXene aerogel exhibited outstanding photothermal and electrothermal capabilities. Its surface temperature could quickly reach 93 °C under 1.0 kW/m2 solar irradiation and 124 °C under 3.0 V voltage respectively, enabling effective heat transfer toward spilled oil. The produced heat significantly decreased crude oil viscosity, allowing P-SBC/MXene aerogel to rapidly absorb oil. By combining solar heating and Joule heating, P-SBC/MXene aerogel connected to a pump-assisted absorption device was capable of achieving all-weather crude oil removal from seawater (crude oil flux = 630 kg m-2 h-1). More notably, P-SBC/MXene aerogel showed splendid outdoor crude oil separation performance. Based on remarkable crude oil/seawater separation ability, the versatile aerogel provides a promising way to deal with large-area oil spills.

4.
J Hazard Mater ; 460: 132523, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703741

RESUMO

Adsorbents play a vital role in responding to marine oil spills, yet effectively cleaning up viscous oil spills remains a technical challenge. Herein, we present a superhydrophobic oil-adsorbing felt prepared using melt-blown technology and functionally enhanced with a photoelectric composite CNT/PANI coating for effectively cleaning up high-viscosity oil spills. By virtue of its superior solar/Joule heating ability and thermally conductive fiber network, p-CNT/PANI@PP notably reduced crude oil viscosity and enhanced the oil diffusion coefficient within pores. Leveraging primarily solar heating and supplemented by Joule heating, p-CNT/PANI@PP demonstrates an impressive in-situ adsorption rate of up to 560 g/h for ultra-high-viscosity crude oil (c.a. 138000 mPa·s), alongside an adsorption capacity of 15.57 g/g. This measure enables efficient viscosity reduction and continuous day-and-night recovery of viscous crude oil, addressing the challenges posed by seasonal fluctuations in seawater temperature and adverse weather conditions. Moreover, a conveyorized collector integrated with an oil-adsorbing felt realizes continuous recovery of viscous oil spills with speed control to tackle varying thicknesses of oil film. Given the top-down material design, superior functionality, and applicability to applications, this work provides a comprehensive and feasible solution to catastrophic large-area viscous oil spills.

5.
Sci Total Environ ; 892: 164601, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37269989

RESUMO

The high-efficient, eco-friendly and low-energy cleanup of viscous crude oil spills is still a global challenge. Emerging absorbents with self-heating function are promising candidates due to that they can significantly decrease crude oil viscosity via in-situ heat transfer so as to accelerate remediation. Herein we developed a novel multifunctional magnetic sponge (P-MXene/Fe3O4@MS) with outstanding solar/electro-thermal performance by facilely coating Ti3C2TX MXene, nano-Fe3O4 and polydimethylsiloxane onto melamine sponge for fast crude oil recovery. Superior hydrophobicity (water contact angle of 147°) and magnetic responsivity allowed P-MXene/Fe3O4@MS to be magnetically driven for oil/water separation and easy recycling. Owing to excellent full-solar-spectrum absorption (average absorptivity of 96.5 %), effective photothermal conversion and high conductivity (resistance of 300 Ω), P-MXene/Fe3O4@MS possessed remarkable solar/Joule heating capability. The maximum surface temperature of P-MXene/Fe3O4@MS could quickly reach 84 °C under a solar irradiation of 1.0 kW/m2 and 100 °C after applying a voltage of 20 V. The generated heat induced a significant decrease of crude oil viscosity, enabling the composite sponge to absorb more than 27 times its weight of crude oil within 2 min (1.0 kW/m2 irradiation). More importantly, by means of the synergistic effect of Joule heating and solar heating, a pump-assisted absorption device based on P-MXene/Fe3O4@MS was able to realize the high-efficiency and all-day continuous separation of high-viscosity oil on water surface (crude oil flux = 710 kg m-2 h-1). The new-typed multifunctional sponge provides a competitive approach for dealing with large-area crude oil pollution.


Assuntos
Poluição por Petróleo , Energia Solar , Viscosidade , Condutividade Elétrica
6.
Materials (Basel) ; 15(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35806526

RESUMO

The spills of crude oil and other organic chemicals are common around the world, resulting in severe damage to the environment and ecosystem. Therefore, developing low-cost and eco-friendly absorption material is in urgent need. In this study, we report a superhydrophobic and oleophilic porous material using biomass cuttlebone as the scaffold. A layer of polydopamine is grafted on the cuttlebone as the adhesion layer between the cuttlebone and the superhydrophobic coating. The in situ grown silica micro/nanoparticles on top of the adhesion layer provide the anchoring spots for grafting the fluorinated hydrocarbon and a rough topography for realizing superhydrophobicity. The static water contact angle of the superhydrophobic cuttlebone reaches 152°, and its oil contact angle is ~0°. The excellent oil-water separation efficiency of the prepared superhydrophobic cuttlebone is demonstrated using high-density oil/water mixtures and low-density oil/water mixtures.

7.
J Hazard Mater ; 432: 128740, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35338936

RESUMO

Rapid and efficient clean-up of viscous crude oil spills is still a global challenge due to its high viscous and poor flowability at room temperature. The hydrophobic/oleophilic absorbents with three-dimensional porous structure have been considered as a promising candidate to handle oil spills. However, they still have limited application in recovering the high viscous oil. Inspired by the viscosity of crude oil depended on the temperature, a solar-heated ink modified plant fiber sponge (PFS@GC) is fabricated via a simple and environmentally friendly physical foaming strategy combined with in-situ ink coating treatment. After wrapping by the polydimethylsiloxane (PDMS), the modified PFS@GC (PFS@GC@PDMS) exhibits excellent compressibility, high hydrophobic (141° in water contact angle), solar absorption (> 96.0%), and oil absorptive capacity (12.0-27.8 g/g). Benefiting from the favorable mechanical property and photothermal conversion capacity, PFS@GC@PDMS is demonstrated as a high-performance absorbent for crude oil clean-up and recovery. In addition, PFS@GC@PDMS can also be applied in a continuous absorption system for uninterrupted recovering of oil spills on the water surface. The proposed solar-heated absorbent design provides a new opportunity for exploring biomass in addressing large-scale oil spill disasters.


Assuntos
Poluição por Petróleo , Petróleo , Tinta , Poluição por Petróleo/análise , Poluição por Petróleo/prevenção & controle , Viscosidade , Água/química
8.
Sci Total Environ ; 761: 143209, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33160671

RESUMO

The environmental hazards of oil spills cannot be underestimated. Bioremediation holds promise among various approaches to tackle oil spills in soils and sediments. In particular, using oil-degrading bacteria is an efficient and self-regulating way to remove oil spills. Using animals for oil spills remediation is in its infancy, mostly due to the lack of efficient oil-degrading capabilities in eukaryotes. Here we show that Caenorhabditis elegans nematodes survive for extended periods (up to 22 days) on pure crude oil diet. Moreover, we report for the first time the use of Alcanivorax borkumensis hydrocarbonoclastic bacteria for colonisation of C. elegans intestines, which allows for effective digestion of crude oil by the nematodes. The worms fed and colonised by A. borkumensis demonstrated the similar or even better longevity, resistance against oxidative and thermal stress and reproductivity as those animals fed with Escherichia coli bacteria (normal food). Importantly, A. borkumensis-carrying nematodes were able to accumulate oil droplet from oil-contaminated soils. Artificial colonisation of soil invertebrates with oil-degrading bacteria will be an efficient way to distribute microorganisms in polluted soil, thus opening new avenues for oil spills zooremediation.


Assuntos
Alcanivoraceae , Poluição por Petróleo , Petróleo , Animais , Biodegradação Ambiental , Caenorhabditis elegans , Intestinos
9.
J Hazard Mater ; 403: 124090, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33265067

RESUMO

Fast and efficient cleanup of high-viscosity oil spills on the sea is still a global challenge today. Traditional recycling methods are either energy demanding or inefficient. Hydrophobic/oleophilic sorbents are promising candidates to handle oil spills, but they have limited ability to recover high viscosity oil. In this work, we report a superhydrophobic/oleophilic carbon nanotubes (CNT) and polypyrrole (PPy) coated melamine sponge (m-CNT/PPy@MS). The CNT/PPy coating enables the sponge to convert light and electricity to heat, ensuring that the absorbent can adapt to various working environments. The rapid heat generation on the sponge surface can significantly reduce the viscosity of crude oil and accelerate the absorption rate, thereby achieving the purpose of rapid recovery of oil spills. Under one sun illumination (1.0 kW/m2) and an applied voltage (8 V), the surface temperature of the m-CNT/PPy@MS can reach 118.6 °C. The complete penetration time of oil droplets is 93.5% less than that of an unheated sponge. In addition, under half sun irradiation intensity and 11 V, the porous sponge absorbed 6.92kg/m2 of crude oil in the first minute, which is about 31 times as much as that of an unheated sponge. Finally, we demonstrate a continuous absorption system, consisting of a self-heating m-CNT/PPy@MS and peristaltic pump, that can continuously recover oil spills on the sea surface. In view of its unique design, lower cost and fast oil absorption speed, this work provides a new option to tackle large-scale oil spill disasters on the sea surface.

10.
Chemosphere ; 247: 126098, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32088008

RESUMO

The release of concentrated acid solutions by chemical accidents is disastrous to our environmental integrity. Alkaline agents applied to remedy the acid spill catastrophe may lead to secondary damages such as vaporization or spread out of the fumes unless substantial amount of neutralization heat is properly controlled. Using a rigorous thermodynamic formalism proposed by Pitzer to account short-range ion interactions and various subsidiary reactions, we develop a systematic computational model enabling quantitative prediction of reaction heat and the temperature change over neutralization of strongly concentrated acid solutions. We apply this model to four acid solutions (HCl, HNO3, H2SO4, and HF) of each 3 M-equivalent concentration with two neutralizing agents of calcium hydroxide (Ca(OH)2) and sodium bicarbonate (NaHCO3). Predicted reaction heat and temperature are remarkably consistent with the outcomes measured by our own experiments, showing a linear correlation factor R2 greater than 0.98. We apply the model to extremely concentrated acid solutions as high as 50 wt% where an experimental approach is practically restricted. In contrast to the extremely exothermic Ca(OH)2 agent, NaHCO3 even lowers solution temperatures after neutralization reactions. Our model enables us to identify a promising neutralizer NaHCO3 for effectively controlling concentrated acid spills and may be useful for establishment of proper strategy for other chemical accidents.


Assuntos
Ácidos , Vazamento de Resíduos Químicos , Simulação por Computador , Recuperação e Remediação Ambiental/métodos , Hidróxido de Cálcio , Temperatura Alta , Bicarbonato de Sódio
11.
ACS Appl Mater Interfaces ; 12(1): 1840-1849, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31820921

RESUMO

The use of chemical dispersants is a well-established approach to oil spill remediation where surfactants in an appropriate solvent are contacted with the oil to reduce the oil-water interfacial tension and create small oil droplets capable of being sustained in the water column. Dispersant formulations typically include organic solvents, and to minimize environmental impacts of dispersant use and avoid surfactant wastage it is beneficial to use water-based systems and target the oil-water interface. The approach here involves the tubular clay minerals known as halloysite nanotubes (HNTs) that serve as nanosized reservoir for surfactants. Such particles generate Pickering emulsions with oil, and the release of surfactant reduces the interfacial tension to extremely low values allowing small droplets to be formed that are colloidally stable in the water column. We report new findings on engineering the surfactant-loaded halloysite nanotubes to be stimuli responsive such that the release of surfactant is triggered by contact with oil. This is achieved by forming a thin coating of wax to stopper the nanotubes to prevent the premature release of surfactant. Surfactant release only occurs when the wax dissolves upon contact with oil. The system thus represents an environmentally benign approach where the wax coated HNTs are dispersed in an aqueous solvent and delivered to an oil spill whereupon they release surfactant to the oil-water interface upon contact with oil.

12.
Heliyon ; 6(11): e05465, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33235937

RESUMO

Solidifiers are dry, granular hydrophobic polymers that form physical bonds with hydrocarbons by molecular interactions (hydrogen bonding, London forces), and are used to immobilize hydrocarbon spill propagation and dispersion. CIAgent© is a non-toxic, proprietary polymer blend listed as an "Oil Solidifier" on the EPA's National Contingency Plan Product Schedule for use on hydrocarbon spills in the navigable waterways of United States. CIAgent solidifies the liquid hydrocarbons through a rapid transformation into a cohesive rubber-like inert mass upon contact and retains the liquid for easier removal and disposal. The objective of this paper is to determine the effectiveness of the solidifier with a variety of hydrocarbon liquids that could be encountered in an oil spill scenario. The effectiveness of the solidifier was characterized in terms of the application rate, temperature change, solubility parameters and solidification time for a variety of hydrocarbon liquids (e. g., gasoline, diesel fuel, crude oil) that could be encountered by measuring the heat of solidification using a solution calorimeter. A thermogram was obtained and the heat of solidification was calculated using the temperature difference upon solidification. The temperature change and the degree of swelling in the solidifier were used to determine the solubility parameter of the solidifier (6.77 Hildebrands). The heat of solidification value was used to determine the ease and speed of the solidification of the hydrocarbon liquids. Solidification times ranged from 40 to 120 s for the liquids tested. The average application ratio in weight of solidifier to weight of hydrocarbon ranged was 3.35.

13.
ACS Appl Mater Interfaces ; 11(31): 27944-27953, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31306577

RESUMO

Halloysite nanotubes (HNTs), naturally occurring and environmental benign clay nanoparticles, have been successfully functionalized with amphiphilic polypeptoid polymers by surface-initiated polymerization methods and investigated as emulsion stabilizers toward oil spill remediation. The hydrophilicity and lipophilicity balance (HLB) of the grafted polypeptoids was shown to affect the wettability of functionalized HNTs and their performance as stabilizers for oil-in-water emulsions. The functionalized HNTs having relatively high hydrophobic content (HLB = 12.0-15.0) afforded the most stable oil-in-water emulsions containing the smallest oil droplet sizes. This has been attributed to the augmented interfacial activities of polypeptoid-functionalized HNTs, resulting in more effective reduction of interfacial tension, enhancement of thermodynamic propensity of the HNT particles to partition at the oil-water interface, and increased emulsion viscosity relative to the pristine HNTs. Cell culture studies have revealed that polypeptoid-functionalized HNTs are noncytotoxic toward Alcanivorax borkumensis, a dominant alkane degrading bacterium found in the ocean after oil spill. Notably, the functionalized HNTs with higher hydrophobic polypeptoid content (HLB = 12.0-14.3) were shown to induce more cell proliferation than either pristine HNTs or those functionalized with less hydrophobic polypeptoids. It was postulated that the functionalized HNTs with higher hydrophobic polypeptoid content may promote the bacterial proliferation by providing larger oil-water interfacial area and better anchoring of bacteria at the interface.

14.
Environ Sci Pollut Res Int ; 26(18): 18071-18083, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26315588

RESUMO

This paper presents the oil-suspended particulate matter aggregate (OSA) resulted from the interaction of droplets of dispersed oil in a water column and particulate matter. This structure reduces the adhesion of oil on solid surfaces, promotes dispersion, and may accelerate degradation processes. The effects of the addition of fine sediments (clay + silt) on the formation of OSA, their impact on the dispersion and degradation of the oil, and their potential use in recovering reflective sandy beaches were evaluated in a mesoscale simulation model. Two simulations were performed (21 days), in the absence and presence of fine sediments, with four units in each simulation using oil from the Recôncavo Basin. The results showed that the use of fine sediment increased the dispersion of the oil in the water column up to four times in relation to the sandy sediment. There was no evidence of the transport of hydrocarbons in bottom sediments associated with fine sediments that would have accelerated the dispersion and degradation rates of the oil. Most of the OSA that formed in this process remained in the water column, where the degradation processes were more effective. Over the 21 days of simulation, we observed a 40 % reduction on average of the levels of saturated hydrocarbons staining the surface oil.


Assuntos
Recuperação e Remediação Ambiental/métodos , Sedimentos Geológicos/química , Material Particulado/química , Poluição por Petróleo/análise , Petróleo/análise , Poluentes Químicos da Água/análise , Adsorção , Cinética , Modelos Teóricos , Propriedades de Superfície
15.
Water Res ; 127: 11-21, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29020640

RESUMO

Marine sediments represent an important sink for a number of anthropogenic organic contaminants, including petroleum hydrocarbons following an accidental oil spill. Degradation of these compounds largely depends on the activity of sedimentary microbial communities linked to biogeochemical cycles, in which abundant elements such as iron and sulfur are shuttled between their oxidized and reduced forms. Here we show that introduction of a small electrically conductive graphite rod ("the electrochemical snorkel") into an oil-contaminated River Tyne (UK) sediment, so as to create an electrochemical connection between the anoxic contaminated sediment and the oxygenated overlying water, has a large impact on the rate of metabolic reactions taking place in the bulk sediment. The electrochemical snorkel accelerated sulfate reduction processes driven by organic contaminant oxidation and suppressed competitive methane-producing reactions. The application of a comprehensive suite of chemical, spectroscopic, biomolecular and thermodynamic analyses suggested that the snorkel served as a scavenger of toxic sulfide via a redox interaction with the iron cycle. Taken as a whole, the results of this work highlight a new strategy for controlling biological processes, such as bioremediation, through the manipulation of the electron flows in contaminated sediments.


Assuntos
Biodegradação Ambiental , Sedimentos Geológicos/química , Poluição por Petróleo , Petróleo/metabolismo , Rios/química , Sedimentos Geológicos/microbiologia , Hidrocarbonetos , Oxirredução , Rios/microbiologia , Reino Unido
16.
ACS Appl Mater Interfaces ; 9(39): 33549-33553, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28895716

RESUMO

A new deep eutectic solvent (DES) was developed as a phase-selective gelator for oil-spill remediation. The newly designed nonionic DES is based on a combination of an amide (N-methylacetamide) and a long chain carboxylic acid (lauric acid) and does not require any synthetic procedure besides mixing. Our studies show that the DES works as gelator by forming a gel between lauric acid and the hydrocarbon, whereas the amide serves to form the DES and dissolves in water during the gelation process. In addition, the DES material has gelation properties comparable to those considered as state-of-the-art. Overall, the newly developed material shows a promising future in oil recovery methodologies.

17.
ACS Appl Mater Interfaces ; 8(48): 32862-32868, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27934148

RESUMO

We prepared a cost-effective, environmentally friendly carbonaceuous oil sorbent with a lotus effect structure using a simple one-pot hydrothermal reaction and a mild modification process. The carbonaceous oil sorbent can rapidly, efficiently, and continuously collect oil in situ from a water surface. This sorbent was unlike traditional sorbents because it was not dependent on the weight and volume of the sorption material. The sorbent was also successfully used to separate and collect crude oil from the water surface and can collect organic solvents underwater. This novel oil sorbent and oil-collection device can be used in case of emergency for organic solvent leakages, as well as leakages in tankers and offshore drilling platforms.

18.
J Colloid Interface Sci ; 450: 127-134, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25814100

RESUMO

New studies regarding the sorption of fluids by solids are published every day. In performance testing, after the sorbent has reached saturation, it is usually removed from the sorbate bath and allowed to drain. The loss of liquid from the sorbents with time is of prime importance in the real-world application of sorbents, such as in oil spill response. However, there is currently no equation used for modeling the unsteady state loss of the liquid from the dripping sorbent. Here, an analytical model has been provided for modeling the dynamic loss of liquid from the sorbent in dripping experiments. Data from more than 60 sorbent-sorbate systems has been used to validate the model. The proposed model shows excellent agreement with experimental results and is expressed as: U(t)=U(L)e(-Kt)+U(e) In which U(t) (kg/kg) is the uptake capacity of the sorbent at any time t (s) during dripping, U(L) (kg/kg) is the uptake capacity lost due to dripping, and U(e) (kg/kg) is the equilibrium uptake capacity reached after prolonged dripping. K (1/s) is defined as the Kamaan coefficient and controls the curvature of the retention profile. Kamaan ([symbol: see text] IPA phonetics: kæmɒn) is an Iranian (Farsi/Persian) word meaning "arc" or "curve" and hence the letter K has been designated.

19.
ACS Nano ; 9(9): 9188-98, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26260326

RESUMO

Herein we report a self-cleaning coating derived from zwitterionic poly(2-methacryloyloxylethyl phosphorylcholine) (PMPC) brushes grafted on a solid substrate. The PMPC surface not only exhibits complete oil repellency in a water-wetted state (i.e., underwater superoleophobicity), but also allows effective cleaning of oil fouled on dry surfaces by water alone. The PMPC surface was compared with typical underwater superoleophobic surfaces realized with the aid of surface roughening by applying hydrophilic nanostructures and those realized by applying smooth hydrophilic polyelectrolyte multilayers. We show that underwater superoleophobicity of a surface is not sufficient to enable water to clean up oil fouling on a dry surface, because the latter circumstance demands the surface to be able to strongly bond water not only in its pristine state but also in an oil-wetted state. The PMPC surface is unique with its described self-cleaning performance because the zwitterionic phosphorylcholine groups exhibit exceptional binding affinity to water even when they are already wetted by oil. Further, we show that applying this PMPC coating onto steel meshes produces oil-water separation membranes that are resilient to oil contamination with simply water rinsing. Consequently, we provide an effective solution to the oil contamination issue on the oil-water separation membranes, which is an imperative challenge in this field. Thanks to the self-cleaning effect of the PMPC surface, PMPC-coated steel meshes can not only separate oil from oil-water mixtures in a water-wetted state, but also can lift oil out from oil-water mixtures even in a dry state, which is a very promising technology for practical oil-spill remediation. In contrast, we show that oil contamination on conventional hydrophilic oil-water separation membranes would permanently induce the loss of oil-water separation function, and thus they have to be always used in a completely water-wetted state, which significantly restricts their application in practice.

20.
Enzyme Microb Technol ; 55: 31-9, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24411443

RESUMO

Two biosurfactants, surfactin and fatty acyl-glutamate, were produced from genetically-modified strains of Bacillus subtilis on 2% glucose and mineral salts media in shake-flasks and bioreactors. Biosurfactant synthesis ceased when the main carbohydrate source was completely depleted. Surfactin titers were ∼30-fold higher than fatty acyl-glutamate in the same medium. When bacteria were grown in large aerated bioreactors, biosurfactants mostly partitioned to the foam fraction, which was recovered. Dispersion effectiveness of surfactin and fatty acyl-glutamate was evaluated by measuring the critical micelle concentration (CMC) and dispersant-to-oil ratio (DOR). The CMC values for surfactin and fatty acyl-glutamate in double deionized distilled water were 0.015 and 0.10 g/L, respectively. However, CMC values were higher, 0.02 and 0.4 g/L for surfactin and fatty acyl-glutamate, respectively, in 12 parts per thousand Instant Ocean®[corrected].sea salt, which has been partly attributed to saline-induced conformational changes in the solvated ionic species of the biosurfactants. The DORs for surfactin and fatty acyl-glutamate were 1:96 and 1:12, respectively, in water. In Instant Ocean® solutions containing 12 ppt sea salt, these decreased to 1:30 and 1:4, respectively, suggesting reduction in oil dispersing efficiency of both surfactants in saline. Surfactant toxicities were assessed using the Gulf killifish, Fundulus grandis, which is common in estuarine habitats of the Gulf of Mexico. Surfactin was 10-fold more toxic than fatty acyl-glutamate. A commercial surfactant, sodium laurel sulfate, had intermediate toxicity. Raising the salinity from 5 to 25 ppt increased the toxicity of all three surfactants; however, the increase was the lowest for fatty acyl-glutamate.


Assuntos
Glutamatos/isolamento & purificação , Lipopeptídeos/isolamento & purificação , Peptídeos Cíclicos/isolamento & purificação , Poluição por Petróleo , Tensoativos/isolamento & purificação , Poluentes Químicos da Água , Animais , Bacillus subtilis/metabolismo , Biodegradação Ambiental , Reatores Biológicos , Fermentação , Fundulidae/crescimento & desenvolvimento , Glutamatos/biossíntese , Glutamatos/farmacologia , Glutamatos/toxicidade , Larva/efeitos dos fármacos , Lipopeptídeos/biossíntese , Lipopeptídeos/farmacologia , Lipopeptídeos/toxicidade , Micelas , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/toxicidade , Salinidade , Tensão Superficial , Tensoativos/metabolismo , Tensoativos/farmacologia , Tensoativos/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa