RESUMO
SELF-PRUNING 6A (SP6A), a homolog of FLOWERING LOCUS T (FT), has been identified as tuberigen in potato. StSP6A is a mobile signal synthesized in leaves and transmitted to the stolon through phloem, and plays multiple roles in the growth and development of potato. However, the global StSP6A protein interaction network in potato remains poorly understood. In this study, BK-StSP6A was firstly used as the bait to investigate the StSP6A interaction network by screening the yeast two-hybrid (Y2H) library of potato, resulting in the selection of 200 independent positive clones and identification of 77 interacting proteins. Then, the interaction between StSP6A and its interactors was further confirmed by the Y2H and BiFC assays, and three interactors were selected for further expression analysis. Finally, the expression pattern of Flowering Promoting Factor 1.1 (StFPF1.1), No Flowering in Short Days 1 and 2 (StNFL1 and StNFL2) was studied. The three genes were highly expressed in flowers or flower buds. StFPF1.1 exhibited an expression pattern similar to that of StSP6A at the stolon swelling stages. StPHYF-silenced plants showed up-regulated expression of StFPF1.1 and StSP6A, while expression of StNFL1 and StNFL2 was down-regulated in the stolon. The identification of these interacting proteins lays a solid foundation for further functional studies of StSP6A.
Assuntos
Solanum tuberosum , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos/genética , Solanum tuberosum/metabolismoRESUMO
Yield of harvestable plant organs depends on photosynthetic assimilate production in source leaves, long-distance sucrose transport and sink-strength. While photosynthesis optimization has received considerable interest for optimizing plant yield, the potential for improving long-distance sucrose transport has received far less attention. Interestingly, a recent potato study demonstrates that the tuberigen StSP6A binds to and reduces activity of the StSWEET11 sucrose exporter. While the study suggested that reducing phloem sucrose efflux may enhance tuber yield, the precise mechanism and physiological relevance of this effect remained an open question. Here, we develop the first mechanistic model for sucrose transport, parameterized for potato plants. The model incorporates SWEET-mediated sucrose export, SUT-mediated sucrose retrieval from the apoplast and StSP6A-StSWEET11 interactions. Using this model, we were able to substantiate the physiological relevance of the StSP6A-StSWEET11 interaction in the long-distance phloem for potato tuber yield, as well as to show the non-linear nature of this effect.
Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Floema/metabolismo , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Sacarose/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Modelos Biológicos , Floema/fisiologia , Proteínas de Plantas/fisiologia , Solanum tuberosum/fisiologiaRESUMO
For many potato cultivars, tuber yield is optimal at average daytime temperatures in the range 14-22 °C. Above this range, tuber yield is reduced for most cultivars. We previously reported that moderately elevated temperature increases steady-state expression of the core circadian clock gene TIMING OF CAB EXPRESSION 1 (StTOC1) in developing tubers, whereas expression of the StSP6A tuberization signal is reduced, along with tuber yield. In this study we provide evidence that StTOC1 links environmental signalling with potato tuberization by suppressing StSP6A autoactivation in the stolons. We show that transgenic lines silenced in StTOC1 expression exhibit enhanced StSP6A transcript levels and changes in gene expression in developing tubers that are indicative of an elevated sink strength. Nodal cuttings of StTOC1 antisense lines displayed increased tuber yields at moderately elevated temperatures, whereas tuber yield and StSP6A expression were reduced in StTOC1 overexpressor lines. Here we identify a number of StTOC1 binding partners and demonstrate that suppression of StSP6A expression is independent of StTOC1 complex formation with the potato homolog StPIF3. Down-regulation of StTOC1 thus provides a strategy to mitigate the effects of elevated temperature on tuber yield.
Assuntos
Proteínas de Plantas/metabolismo , Tubérculos/fisiologia , Solanum tuberosum/fisiologia , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Temperatura Alta , Proteínas de Plantas/genética , Tubérculos/genética , Solanum tuberosum/genética , TemperaturaRESUMO
BACKGROUND: MADS-box genes encode transcription factors that are known to be involved in several aspects of plant growth and development, especially in floral organ specification. To date, the comprehensive analysis of potato MADS-box gene family is still lacking after the completion of potato genome sequencing. A genome-wide characterization, classification, and expression analysis of MADS-box transcription factor gene family was performed in this study. RESULTS: A total of 153 MADS-box genes were identified and categorized into MIKC subfamily (MIKCC and MIKC*) and M-type subfamily (Mα, Mß, and Mγ) based on their phylogenetic relationships to the Arabidopsis and rice MADS-box genes. The potato M-type subfamily had 114 members, which is almost three times of the MIKC members (39), indicating that M-type MADS-box genes have a higher duplication rate and/or a lower loss rate during potato genome evolution. Potato MADS-box genes were present on all 12 potato chromosomes with substantial clustering that mainly contributed by the M-type members. Chromosomal localization of potato MADS-box genes revealed that MADS-box genes, mostly MIKC, were located on the duplicated segments of the potato genome whereas tandem duplications mainly contributed to the M-type gene expansion. The potato MIKC subfamily could be further classified into 11 subgroups and the TT16-like, AGL17-like, and FLC-like subgroups found in Arabidopsis were absent in potato. Moreover, the expressions of potato MADS-box genes in various tissues were analyzed by using RNA-seq data and verified by quantitative real-time PCR, revealing that the MIKCC genes were mainly expressed in flower organs and several of them were highly expressed in stolon and tubers. StMADS1 and StMADS13 were up-regulated in the StSP6A-overexpression plants and down-regulated in the StSP6A-RNAi plant, and their expression in leaves and/or young tubers were associated with high level expression of StSP6A. CONCLUSION: Our study identifies the family members of potato MADS-box genes and investigate the evolution history and functional divergence of MADS-box gene family. Moreover, we analyze the MIKCC expression patterns and screen for genes involved in tuberization. Finally, the StMADS1 and StMADS13 are most likely to be downstream target of StSP6A and involved in tuber development.
Assuntos
Genômica , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Motivos de Aminoácidos , Sequência Conservada , Evolução Molecular , Genoma de Planta/genética , Proteínas de Domínio MADS/química , Proteínas de Domínio MADS/genética , Especificidade de Órgãos , Filogenia , Tubérculos/crescimento & desenvolvimento , Tubérculos/metabolismo , Solanum tuberosum/crescimento & desenvolvimentoRESUMO
Tuberization is an important developmental process in potatoes, but it is highly affected by environmental conditions. Temperature is a major environmental factor affecting tuberization, with high temperatures suppressing tuber development. However, the temporal aspects of thermo-responsive tuberization remain elusive. In this study, we show that FT homolog StSP6A is suppressed by temporally distinct regulatory pathways. Experiments using StSP6A-overexpressing plants show that post-transcriptional regulation plays a major role at the early stage, while transcriptional regulation is an important late-stage factor, suppressing StSP6A at high temperatures in leaves. Overexpression of StSP6A in leaves restores tuber formation but does not recover tuber yield at the late stage, possibly because of suppressed sugar transport at high temperatures. Transcriptome analyses lead to the identification of potential regulators that may be involved in thermo-responsive tuberization at different stages. Our work shows that potato has temporally distinct molecular mechanisms that finely control tuber development at high temperatures.