Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202410881, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126280

RESUMO

Industrial fermentation applications typically require enzymes that exhibit high stability and activity at high temperatures. However, efforts to simultaneously improve these properties are usually limited by a trade-off between stability and activity. This report describes a computational strategy to enhance both activity and thermal stability of the mesophilic organophosphate-degrading enzyme, methyl parathion hydrolase (MPH). To predict hotspot mutation sites, we assembled a library of features associated with the target properties for each residue and then prioritized candidate sites by hierarchical clustering. Subsequent in silico screening with multiple algorithms to simulate selective pressures yielded a subset of 23 candidate mutations. Iterative parallel screening of mutations that improved thermal stability and activity yielded, MPHase-m5b, which exhibited 13.3 °C higher Tm and 4.2 times higher catalytic activity than wild-type (WT) MPH over a wide temperature range. Systematic analysis of crystal structures, molecular dynamics (MD) simulations, and quantum mechanics/molecular mechanics (QM/MM) calculations revealed a wider entrance to the active site that increased substrate access with an extensive network of interactions outside the active site that reinforced αß/ßα sandwich architecture to improve thermal stability. This study thus provides an advanced, rational design framework to improve efficiency in engineering highly active, thermostable biocatalysts for industrial applications.

2.
Arch Biochem Biophys ; 584: 42-50, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26325080

RESUMO

The cellular environment is crowded with different kinds of molecules with varying sizes, shapes and compositions. Most of the experiments studying the nature and behaviour of a protein have been done on the isolated protein in dilute buffer solutions which actually do not imitate the in vivo situation. To understand the consequences of such crowded environment, we investigated the effect of macromolecular crowding on the stability and activity of hen egg white lysozyme. Two crowding agents, dextran 70 and ficoll 70 which have different shapes and composition, have been employed in this study. To mimic the cellular condition from physiological point of view, the effect of mixtures of both the crowding agents has been also studied. The results indicate that owing to volume exclusion, lysozyme is stabilized while its activity decays with the increasing concentration of both the crowders elucidating the hypothesis of stability-activity trade-off. Mixed macromolecular crowding exerts greater effect than the sum of constituent crowding agents (dextran 70 and ficoll 70).


Assuntos
Proteínas Aviárias/química , Dextranos/química , Ficoll/química , Muramidase/química , Animais , Galinhas , Estabilidade Proteica
3.
J Agric Food Chem ; 72(12): 6454-6462, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38477968

RESUMO

In this study, the phenomenon of the stability-activity trade-off, which is increasingly recognized in enzyme engineering, was explored. Typically, enhanced stability in enzymes correlates with diminished activity. Utilizing Rosa roxburghii copper-zinc superoxide dismutase (RrCuZnSOD) as a model, single-site mutations were introduced based on a semirational design derived from consensus sequences. The initial set of mutants was selected based on activity, followed by combinatorial mutation. This approach yielded two double-site mutants, D25/A115T (18,688 ± 206 U/mg) and A115T/S135P (18,095 ± 1556 U/mg), exhibiting superior enzymatic properties due to additive and synergistic effects. These mutants demonstrated increased half-lives (T1/2) at 80 °C by 1.2- and 1.6-fold, respectively, and their melting temperatures (Tm) rose by 3.4 and 2.5 °C, respectively, without any loss in activity relative to the wild type. Via an integration of structural analysis and molecular dynamics simulations, we elucidated the underlying mechanism facilitating the concurrent enhancement of both thermostability and enzymatic activity.


Assuntos
Simulação de Dinâmica Molecular , Engenharia de Proteínas , Estabilidade Enzimática , Temperatura , Sequência Consenso
4.
Int J Biol Macromol ; 273(Pt 2): 132685, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823749

RESUMO

To overcome the trade-off challenge encountered in the engineering of alginate lyase AlyG2 from Seonamhaeicola algicola Gy8T and to expand its potential industrial applications, we devised a two-step strategy encompassing activity enhancement followed by thermal stability engineering. To enhance the specific activity of efficient AlyG2, we strategically substituted residues with bulky steric hindrance proximal to the active pocket with glycine or alanine. This led to the generation of three promising positive mutants, with particular emphasis on the T91S mutant, exhibiting a 1.91-fold specific activity compared to the wild type. To mitigate the poor thermal stability of T91S, mutants with negative ΔΔG values in the thermal flexibility region were screened out. Notably, the S72Ya mutant not only displayed 17.96 % further increase in specific activity but also exhibited improved stability compared to T91S, manifesting as a remarkable 30.97 % increase in relative activity following a 1-hour incubation at 42 °C. Furthermore, enhanced kinetic stability was observed. To gain deeper insights into the mechanism underlying the enhanced thermostability of the S72Ya mutant, we conducted molecular dynamics simulations, principal component analysis (PCA), dynamic cross-correlation map (DCCM), and free energy landscape (FEL) analysis. The results unveiled a reduction in the flexibility of the surface loop, a stronger correlation dynamic and a narrower motion subspace in S72Ya system, along with the formation of more stable hydrogen bonds. Collectively, our findings suggest amino acids substitutions resulting in smaller side chains proximate to the active site can positively impact enzyme activity, while reducing the flexibility of surface loops emerges as a pivotal factor in conferring thermal stability. These insights offer valuable guidance and a framework for the engineering of other enzyme types.


Assuntos
Estabilidade Enzimática , Simulação de Dinâmica Molecular , Polissacarídeo-Liases , Polissacarídeo-Liases/química , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Cinética , Temperatura , Engenharia de Proteínas/métodos , Mutação , Substituição de Aminoácidos , Mutagênese Sítio-Dirigida
5.
Food Chem ; 423: 136241, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37178594

RESUMO

The widespread trade-off between stability and activity severely limits enzyme evolution. Although some progresses have been made to overcome this limitation, the counteraction mechanism for enzyme stability-activity trade-off remains obscure. Here, we clarified the counteraction mechanism of the Nattokinase stability-activity trade-off. A combinatorial mutant M4 was obtained by multi-strategy engineering, exhibiting a 20.7-fold improved half-life; meanwhile, the catalytic efficiency was doubled. Molecular dynamics simulation revealed that an obvious flexible region shifting in the structure of mutant M4 was occurred. The flexible region shifting which contributed to maintain the global structural flexibility, was considered to be the key factor for counteracting the stability-activity trade-off. Further analysis illustrated that the flexible region shifting was driven by region dynamical networks reshaping. This work provided deep insight into the counteraction mechanism of enzyme stability-activity trade-off, suggesting that flexible region shifting would be an effective strategy for enzyme evolution through computational protein engineering.


Assuntos
Simulação de Dinâmica Molecular , Engenharia de Proteínas , Subtilisinas/metabolismo , Estabilidade Enzimática
6.
Protein Eng Des Sel ; 28(2): 37-44, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25573534

RESUMO

This study aimed to improve the hydrolase activity of the well-characterised bacterial sialidase from Micromonospora viridifaciens. The enzyme and its mutated versions were produced in Bacillus subtilis and secreted to the growth medium. Twenty amino acid positions in or near the active site were subjected to site-saturation mutagenesis and evaluated on the artificial sialidase substrate 2-O-(p-nitrophenyl)-α-d-N-acetylneuraminic acid and on the natural substrate casein glycomacropeptide. A considerably higher fraction of the mutants exhibited increased activity on the artificial substrate compared with the natural one, with the most proficient mutant showing a 13-fold improvement in kcat/Km. In contrast, no mutants displayed more than a 2-fold increase in activity on the natural substrate. To gain further insight into this important discrepancy, we analysed the stability of mutants using the PoPMuSiC software, a property that also correlates with the potential for introducing chemical variation, after validating the method with a set of experimental stability estimates. We found a significant correlation between improved hydrolase activity on the artificial substrate and reduced apparent stability. Together with the minor improvement on the natural substrate this shows an important difference between naturally evolved functionality and new laboratory functionality. Our results suggest that when engineering sialidases and potentially other proteins towards non-natural substrates that are not optimized by natural evolution, major changes in chemical properties are advantageous, and these changes tend to correlate with decreased stability, partly explaining commonly observed trade-offs between stability and proficiency.


Assuntos
Proteínas de Bactérias/química , Evolução Molecular , Micromonospora/enzimologia , Mutação , Neuraminidase/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Micromonospora/genética , Ácidos Murâmicos/química , Ácidos Murâmicos/metabolismo , Neuraminidase/genética , Neuraminidase/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa