Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.877
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(3): 750-763.e20, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38242132

RESUMO

Breastfeeding offers demonstrable benefits to newborns and infants by providing nourishment and immune protection and by shaping the gut commensal microbiota. Although it has been appreciated for decades that breast milk contains complement components, the physiological relevance of complement in breast milk remains undefined. Here, we demonstrate that weanling mice fostered by complement-deficient dams rapidly succumb when exposed to murine pathogen Citrobacter rodentium (CR), whereas pups fostered on complement-containing milk from wild-type dams can tolerate CR challenge. The complement components in breast milk were shown to directly lyse specific members of gram-positive gut commensal microbiota via a C1-dependent, antibody-independent mechanism, resulting in the deposition of the membrane attack complex and subsequent bacterial lysis. By selectively eliminating members of the commensal gut community, complement components from breast milk shape neonate and infant gut microbial composition to be protective against environmental pathogens such as CR.


Assuntos
Proteínas do Sistema Complemento , Microbioma Gastrointestinal , Leite , Animais , Feminino , Humanos , Lactente , Camundongos , Bactérias , Aleitamento Materno , Citrobacter rodentium , Proteínas do Sistema Complemento/análise , Fatores Imunológicos , Saúde do Lactente , Leite Humano , Leite/química , Infecções por Enterobacteriaceae/imunologia
2.
Cell ; 186(16): 3414-3426.e16, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541198

RESUMO

Lateral transduction (LT) is the process by which temperate phages mobilize large sections of bacterial genomes. Despite its importance, LT has only been observed during prophage induction. Here, we report that superantigen-carrying staphylococcal pathogenicity islands (SaPIs) employ a related but more versatile and complex mechanism of gene transfer to drive chromosomal hypermobility while self-transferring with additional virulence genes from the host. We found that after phage infection or prophage induction, activated SaPIs form concatamers in the bacterial chromosome by switching between parallel genomic tracks in replication bubbles. This dynamic life cycle enables SaPIbov1 to piggyback its LT of staphylococcal pathogenicity island vSaα, which encodes an array of genes involved in host-pathogen interactions, allowing both islands to be mobilized intact and transferred in a single infective particle. Our findings highlight previously unknown roles of pathogenicity islands in bacterial virulence and show that their evolutionary impact extends beyond the genes they carry.


Assuntos
Ilhas Genômicas , Fagos de Staphylococcus , Staphylococcus , Genoma Bacteriano , Staphylococcus/genética , Staphylococcus/patogenicidade , Virulência , Transdução Genética
3.
Cell ; 186(24): 5375-5393.e25, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37995657

RESUMO

Itch is an unpleasant sensation that evokes a desire to scratch. The skin barrier is constantly exposed to microbes and their products. However, the role of microbes in itch generation is unknown. Here, we show that Staphylococcus aureus, a bacterial pathogen associated with itchy skin diseases, directly activates pruriceptor sensory neurons to drive itch. Epicutaneous S. aureus exposure causes robust itch and scratch-induced damage. By testing multiple isogenic bacterial mutants for virulence factors, we identify the S. aureus serine protease V8 as a critical mediator in evoking spontaneous itch and alloknesis. V8 cleaves proteinase-activated receptor 1 (PAR1) on mouse and human sensory neurons. Targeting PAR1 through genetic deficiency, small interfering RNA (siRNA) knockdown, or pharmacological blockade decreases itch and skin damage caused by V8 and S. aureus exposure. Thus, we identify a mechanism of action for a pruritogenic bacterial factor and demonstrate the potential of inhibiting V8-PAR1 signaling to treat itch.


Assuntos
Peptídeo Hidrolases , Prurido , Receptor PAR-1 , Infecções Estafilocócicas , Staphylococcus aureus , Animais , Humanos , Camundongos , Peptídeo Hidrolases/metabolismo , Prurido/microbiologia , Receptor PAR-1/metabolismo , Staphylococcus aureus/enzimologia , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/fisiologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia
4.
Cell ; 184(14): 3794-3811.e19, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34166614

RESUMO

The microbiota plays a fundamental role in regulating host immunity. However, the processes involved in the initiation and regulation of immunity to the microbiota remain largely unknown. Here, we show that the skin microbiota promotes the discrete expression of defined endogenous retroviruses (ERVs). Keratinocyte-intrinsic responses to ERVs depended on cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes protein (STING) signaling and promoted the induction of commensal-specific T cells. Inhibition of ERV reverse transcription significantly impacted these responses, resulting in impaired immunity to the microbiota and its associated tissue repair function. Conversely, a lipid-enriched diet primed the skin for heightened ERV- expression in response to commensal colonization, leading to increased immune responses and tissue inflammation. Together, our results support the idea that the host may have co-opted its endogenous virome as a means to communicate with the exogenous microbiota, resulting in a multi-kingdom dialog that controls both tissue homeostasis and inflammation.


Assuntos
Retrovirus Endógenos/fisiologia , Homeostase , Inflamação/microbiologia , Inflamação/patologia , Microbiota , Animais , Bactérias/metabolismo , Cromossomos Bacterianos/genética , Dieta Hiperlipídica , Inflamação/imunologia , Inflamação/virologia , Interferon Tipo I/metabolismo , Queratinócitos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Nucleotidiltransferases/metabolismo , Retroelementos/genética , Transdução de Sinais , Pele/imunologia , Pele/microbiologia , Linfócitos T/imunologia , Transcrição Gênica
5.
Cell ; 180(3): 454-470.e18, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32004459

RESUMO

Metagenomic inferences of bacterial strain diversity and infectious disease transmission studies largely assume a dominant, within-individual haplotype. We hypothesize that within-individual bacterial population diversity is critical for homeostasis of a healthy microbiome and infection risk. We characterized the evolutionary trajectory and functional distribution of Staphylococcus epidermidis-a keystone skin microbe and opportunistic pathogen. Analyzing 1,482 S. epidermidis genomes from 5 healthy individuals, we found that skin S. epidermidis isolates coalesce into multiple founder lineages rather than a single colonizer. Transmission events, natural selection, and pervasive horizontal gene transfer result in population admixture within skin sites and dissemination of antibiotic resistance genes within-individual. We provide experimental evidence for how admixture can modulate virulence and metabolism. Leveraging data on the contextual microbiome, we assess how interspecies interactions can shape genetic diversity and mobile gene elements. Our study provides insights into how within-individual evolution of human skin microbes shapes their functional diversification.


Assuntos
Evolução Molecular , Transferência Genética Horizontal , Interações entre Hospedeiro e Microrganismos/genética , Microbiota/genética , Polimorfismo de Nucleotídeo Único , Pele/microbiologia , Staphylococcus epidermidis/genética , Adulto , DNA Bacteriano/genética , Farmacorresistência Bacteriana/genética , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Staphylococcus epidermidis/isolamento & purificação , Staphylococcus epidermidis/patogenicidade , Virulência/genética , Adulto Jovem
6.
Cell ; 182(5): 1311-1327.e14, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32888495

RESUMO

Staphylococcus aureus bacteremia (SaB) causes significant disease in humans, carrying mortality rates of ∼25%. The ability to rapidly predict SaB patient responses and guide personalized treatment regimens could reduce mortality. Here, we present a resource of SaB prognostic biomarkers. Integrating proteomic and metabolomic techniques enabled the identification of >10,000 features from >200 serum samples collected upon clinical presentation. We interrogated the complexity of serum using multiple computational strategies, which provided a comprehensive view of the early host response to infection. Our biomarkers exceed the predictive capabilities of those previously reported, particularly when used in combination. Last, we validated the biological contribution of mortality-associated pathways using a murine model of SaB. Our findings represent a starting point for the development of a prognostic test for identifying high-risk patients at a time early enough to trigger intensive monitoring and interventions.


Assuntos
Bacteriemia/sangue , Bacteriemia/mortalidade , Infecções Estafilocócicas/sangue , Infecções Estafilocócicas/mortalidade , Staphylococcus aureus/patogenicidade , Animais , Bacteriemia/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Metabolômica/métodos , Camundongos , Pessoa de Meia-Idade , Prognóstico , Proteômica/métodos , Fatores de Risco , Infecções Estafilocócicas/metabolismo
7.
Immunity ; 57(1): 124-140.e7, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38157853

RESUMO

Natural killer (NK) cells are present in the circulation and can also be found residing in tissues, and these populations exhibit distinct developmental requirements and are thought to differ in terms of ontogeny. Here, we investigate whether circulating conventional NK (cNK) cells can develop into long-lived tissue-resident NK (trNK) cells following acute infections. We found that viral and bacterial infections of the skin triggered the recruitment of cNK cells and their differentiation into Tcf1hiCD69hi trNK cells that share transcriptional similarity with CD56brightTCF1hi NK cells in human tissues. Skin trNK cells arose from interferon (IFN)-γ-producing effector cells and required restricted expression of the transcriptional regulator Blimp1 to optimize Tcf1-dependent trNK cell formation. Upon secondary infection, trNK cells rapidly gained effector function and mediated an accelerated NK cell response. Thus, cNK cells redistribute and permanently position at sites of previous infection via a mechanism promoting tissue residency that is distinct from Hobit-dependent developmental paths of NK cells and ILC1 seeding tissues during ontogeny.


Assuntos
Coinfecção , Humanos , Células Matadoras Naturais/metabolismo , Diferenciação Celular
8.
Cell ; 172(4): 784-796.e18, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29358051

RESUMO

Mammalian barrier surfaces are constitutively colonized by numerous microorganisms. We explored how the microbiota was sensed by the immune system and the defining properties of such responses. Here, we show that a skin commensal can induce T cell responses in a manner that is restricted to non-classical MHC class I molecules. These responses are uncoupled from inflammation and highly distinct from pathogen-induced cells. Commensal-specific T cells express a defined gene signature that is characterized by expression of effector genes together with immunoregulatory and tissue-repair signatures. As such, non-classical MHCI-restricted commensal-specific immune responses not only promoted protection to pathogens, but also accelerated skin wound closure. Thus, the microbiota can induce a highly physiological and pleiotropic form of adaptive immunity that couples antimicrobial function with tissue repair. Our work also reveals that non-classical MHC class I molecules, an evolutionarily ancient arm of the immune system, can promote homeostatic immunity to the microbiota.


Assuntos
Imunidade Adaptativa , Bactérias/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Microbiota/imunologia , Pele/imunologia , Linfócitos T/imunologia , Animais , Regulação da Expressão Gênica/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Camundongos , Camundongos Transgênicos
9.
Cell ; 172(5): 1038-1049.e10, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29456081

RESUMO

ß-lactam antibiotics inhibit bacterial cell wall assembly and, under classical microbiological culture conditions that are generally hypotonic, induce explosive cell death. Here, we show that under more physiological, osmoprotective conditions, for various Gram-positive bacteria, lysis is delayed or abolished, apparently because inhibition of class A penicillin-binding protein leads to a block in autolytic activity. Although these cells still then die by other mechanisms, exogenous lytic enzymes, such as lysozyme, can rescue viability by enabling the escape of cell wall-deficient "L-form" bacteria. This protective L-form conversion was also observed in macrophages and in an animal model, presumably due to the production of host lytic activities, including lysozyme. Our results demonstrate the potential for L-form switching in the host environment and highlight the unexpected effects of innate immune effectors, such as lysozyme, on antibiotic activity. Unlike previously described dormant persisters, L-forms can continue to proliferate in the presence of antibiotic.


Assuntos
Antibacterianos/farmacologia , Formas L/efeitos dos fármacos , Muramidase/metabolismo , beta-Lactamas/farmacologia , Animais , Bacillus subtilis/efeitos dos fármacos , Bacteriólise/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Hidrolases/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Viabilidade Microbiana/efeitos dos fármacos , Osmorregulação/efeitos dos fármacos , Penicilina G/farmacologia , Proteínas de Ligação às Penicilinas , Peptidoglicano/metabolismo , Prófagos/efeitos dos fármacos , Células RAW 264.7
10.
Cell ; 174(2): 259-270.e11, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-29937224

RESUMO

Many community- and hospital-acquired bacterial infections are caused by antibiotic-resistant pathogens. Methicillin-resistant Staphylococcus aureus (MRSA) predisposes humans to invasive infections that are difficult to eradicate. We designed a closed-loop gene network programming mammalian cells to autonomously detect and eliminate bacterial infections. The genetic circuit contains human Toll-like receptors as the bacterial sensor and a synthetic promoter driving reversible and adjustable expression of lysostaphin, a bacteriolytic enzyme highly lethal to S. aureus. Immunomimetic designer cells harboring this genetic circuit exhibited fast and robust sense-and-destroy kinetics against live staphylococci. When tested in a foreign-body infection model in mice, microencapsulated cell implants prevented planktonic MRSA infection and reduced MRSA biofilm formation by 91%. Notably, this system achieved a 100% cure rate of acute MRSA infections, whereas conventional vancomycin treatment failed. These results suggest that immunomimetic designer cells could offer a therapeutic approach for early detection, prevention, and cure of pathogenic infections in the post-antibiotic era.


Assuntos
Biomimética/métodos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Infecções Estafilocócicas/prevenção & controle , Fosfatase Alcalina/sangue , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Feminino , Células HEK293 , Humanos , Receptores de Lipopolissacarídeos/genética , Lisostafina/metabolismo , Lisostafina/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos/genética , Plasmídeos/metabolismo , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/veterinária , Receptor 1 Toll-Like/genética , Receptor 2 Toll-Like/genética , Receptor 6 Toll-Like/genética , Fator de Transcrição AP-1/metabolismo
11.
Immunity ; 56(7): 1561-1577.e9, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37402364

RESUMO

Hypodermis is the predominant site of Staphylococcus aureus infections that cause cellulitis. Given the importance of macrophages in tissue remodeling, we examined the hypodermal macrophages (HDMs) and their impact on host susceptibility to infection. Bulk and single-cell transcriptomics uncovered HDM subsets with CCR2-dichotomy. HDM homeostasis required the fibroblast-derived growth factor CSF1, ablation of which abrogated HDMs from the hypodermal adventitia. Loss of CCR2- HDMs resulted in accumulation of the extracellular matrix component, hyaluronic acid (HA). HDM-mediated HA clearance required sensing by the HA receptor, LYVE-1. Cell-autonomous IGF1 was required for accessibility of AP-1 transcription factor motifs that controlled LYVE-1 expression. Remarkably, loss of HDMs or IGF1 limited Staphylococcus aureus expansion via HA and conferred protection against cellulitis. Our findings reveal a function for macrophages in the regulation of HA with an impact on infection outcomes, which may be harnessed to limit the establishment of infection in the hypodermal niche.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/fisiologia , Celulite (Flegmão)/metabolismo , Macrófagos/metabolismo , Matriz Extracelular
12.
Immunity ; 56(6): 1239-1254.e7, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37028427

RESUMO

Early-life establishment of tolerance to commensal bacteria at barrier surfaces carries enduring implications for immune health but remains poorly understood. Here, we showed that tolerance in skin was controlled by microbial interaction with a specialized subset of antigen-presenting cells. More particularly, CD301b+ type 2 conventional dendritic cells (DCs) in neonatal skin were specifically capable of uptake and presentation of commensal antigens for the generation of regulatory T (Treg) cells. CD301b+ DC2 were enriched for phagocytosis and maturation programs, while also expressing tolerogenic markers. In both human and murine skin, these signatures were reinforced by microbial uptake. In contrast to their adult counterparts or other early-life DC subsets, neonatal CD301b+ DC2 highly expressed the retinoic-acid-producing enzyme, RALDH2, the deletion of which limited commensal-specific Treg cell generation. Thus, synergistic interactions between bacteria and a specialized DC subset critically support early-life tolerance at the cutaneous interface.


Assuntos
Células Dendríticas , Pele , Animais , Camundongos , Humanos , Linfócitos T Reguladores , Tolerância Imunológica , Aldeído Oxirredutases/metabolismo
13.
Cell ; 168(5): 789-800.e10, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28235196

RESUMO

The molecular basis of the incomplete penetrance of monogenic disorders is unclear. We describe here eight related individuals with autosomal recessive TIRAP deficiency. Life-threatening staphylococcal disease occurred during childhood in the proband, but not in the other seven homozygotes. Responses to all Toll-like receptor 1/2 (TLR1/2), TLR2/6, and TLR4 agonists were impaired in the fibroblasts and leukocytes of all TIRAP-deficient individuals. However, the whole-blood response to the TLR2/6 agonist staphylococcal lipoteichoic acid (LTA) was abolished only in the index case individual, the only family member lacking LTA-specific antibodies (Abs). This defective response was reversed in the patient, but not in interleukin-1 receptor-associated kinase 4 (IRAK-4)-deficient individuals, by anti-LTA monoclonal antibody (mAb). Anti-LTA mAb also rescued the macrophage response in mice lacking TIRAP, but not TLR2 or MyD88. Thus, acquired anti-LTA Abs rescue TLR2-dependent immunity to staphylococcal LTA in individuals with inherited TIRAP deficiency, accounting for incomplete penetrance. Combined TIRAP and anti-LTA Ab deficiencies underlie staphylococcal disease in this patient.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Lipopolissacarídeos/metabolismo , Glicoproteínas de Membrana/deficiência , Receptores de Interleucina-1/deficiência , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/imunologia , Ácidos Teicoicos/metabolismo , Imunidade Adaptativa , Criança , Feminino , Fibroblastos/metabolismo , Humanos , Imunidade Inata , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Masculino , Glicoproteínas de Membrana/análise , Glicoproteínas de Membrana/genética , Monócitos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Linhagem , Fagócitos/metabolismo , Mutação Puntual , Isoformas de Proteínas/análise , Isoformas de Proteínas/genética , Receptores de Interleucina-1/análise , Receptores de Interleucina-1/genética , Infecções Estafilocócicas/tratamento farmacológico , Ácidos Teicoicos/imunologia , Receptor 2 Toll-Like/metabolismo , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo
14.
Annu Rev Biochem ; 84: 577-601, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26034890

RESUMO

Staphylococcus aureus is a major human and veterinary pathogen worldwide. Methicillin-resistant S. aureus (MRSA) poses a significant and enduring problem to the treatment of infection by such strains. Resistance is usually conferred by the acquisition of a nonnative gene encoding a penicillin-binding protein (PBP2a), with significantly lower affinity for ß-lactams. This resistance allows cell-wall biosynthesis, the target of ß-lactams, to continue even in the presence of typically inhibitory concentrations of antibiotic. PBP2a is encoded by the mecA gene, which is carried on a distinct mobile genetic element (SCCmec), the expression of which is controlled through a proteolytic signal transduction pathway comprising a sensor protein (MecR1) and a repressor (MecI). Many of the molecular and biochemical mechanisms underlying methicillin resistance in S. aureus have been elucidated, including regulatory events and the structure of key proteins. Here we review recent advances in this area.


Assuntos
Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/metabolismo , Infecções Estafilocócicas/microbiologia , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Humanos , Proteínas de Ligação às Penicilinas , Infecções Estafilocócicas/veterinária , Resistência beta-Lactâmica
15.
Mol Cell ; 82(5): 907-919.e7, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35134339

RESUMO

Prokaryotic organisms have developed multiple defense systems against phages; however, little is known about whether and how these interact with each other. Here, we studied the connection between two of the most prominent prokaryotic immune systems: restriction-modification and CRISPR. While both systems employ enzymes that cleave a specific DNA sequence of the invader, CRISPR nucleases are programmed with phage-derived spacer sequences, which are integrated into the CRISPR locus upon infection. We found that restriction endonucleases provide a short-term defense, which is rapidly overcome through methylation of the phage genome. In a small fraction of the cells, however, restriction results in the acquisition of spacer sequences from the cleavage site, which mediates a robust type II-A CRISPR-Cas immune response against the methylated phage. This mechanism is reminiscent of eukaryotic immunity in which the innate response offers a first temporary line of defense and also activates a second and more robust adaptive response.


Assuntos
Bacteriófagos , DNA Viral , Bacteriófagos/metabolismo , Sistemas CRISPR-Cas , Enzimas de Restrição do DNA/genética , DNA Viral/genética , Endonucleases/genética , Imunidade
16.
Immunity ; 53(4): 793-804.e9, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32910906

RESUMO

Allergies are considered to represent mal-directed type 2 immune responses against mostly innocuous exogenous compounds. Immunoglobulin E (IgE) antibodies are a characteristic feature of allergies and mediate hypersensitivity against allergens through activation of effector cells, particularly mast cells (MCs). Although the physiological functions of this dangerous branch of immunity have remained enigmatic, recent evidence shows that allergic immune reactions can help to protect against the toxicity of venoms. Because bacteria are a potent alternative source of toxins, we assessed the possible role of allergy-like type 2 immunity in antibacterial host defense. We discovered that the adaptive immune response against Staphylococcus aureus (SA) skin infection substantially improved systemic host defense against secondary SA infections in mice. Moreover, this acquired protection depended on IgE effector mechanisms and MCs. Importantly, our results reveal a previously unknown physiological function of allergic immune responses, IgE antibodies, and MCs in host defense against a pathogenic bacterium.


Assuntos
Imunidade Adaptativa/imunologia , Imunoglobulina E/imunologia , Mastócitos/imunologia , Infecções Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Alérgenos/imunologia , Animais , Feminino , Hipersensibilidade/imunologia , Hipersensibilidade/microbiologia , Mastócitos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Pele/imunologia , Pele/microbiologia , Infecções Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/microbiologia
17.
Immunity ; 50(1): 121-136.e5, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30594464

RESUMO

Dermal fibroblasts (dFBs) resist infection by locally differentiating into adipocytes and producing cathelicidin antimicrobial peptide in response to Staphylococcus aureus (S. aureus). Here, we show that neonatal skin was enriched with adipogenic dFBs and immature dermal fat that highly expressed cathelicidin. The pool of adipogenic and antimicrobial dFBs declined after birth, leading to an age-dependent loss of dermal fat and a decrease in adipogenesis and cathelidicin production in response to infection. Transforming growth factor beta (TGF-ß), which acted on uncommitted embryonic and adult dFBs and inhibited their adipogenic and antimicrobial function, was identified as a key upstream regulator of this process. Furthermore, inhibition of the TGF-ß receptor restored the adipogenic and antimicrobial function of dFBs in culture and increased resistance of adult mice to S. aureus infection. These results provide insight into changes that occur in the skin innate immune system between the perinatal and adult periods of life.


Assuntos
Envelhecimento/imunologia , Fibroblastos/fisiologia , Pele/metabolismo , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/fisiologia , Gordura Subcutânea/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adipócitos/metabolismo , Adipogenia , Animais , Anti-Infecciosos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Células Cultivadas , Embrião de Mamíferos , Humanos , Imunidade Inata , Camundongos , Catelicidinas
18.
EMBO J ; 42(11): e112140, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37038972

RESUMO

Unregulated cell cycle progression may have lethal consequences and therefore, bacteria have various mechanisms in place for the precise spatiotemporal control of cell cycle events. We have uncovered a new link between chromosome replication/segregation and splitting of the division septum. We show that the DNA translocase domain-containing divisome protein FtsK regulates cellular levels of a peptidoglycan hydrolase Sle1, which is involved in cell separation in the bacterial pathogen Staphylococcus aureus. FtsK interacts with a chaperone (trigger factor, TF) and establishes a FtsK-dependent TF concentration gradient that is higher in the septal region. Trigger factor binds Sle1 and promotes its preferential export at the septal region, while also preventing Sle1 degradation by the ClpXP proteolytic machinery. Upon conditions that lead to paused septum synthesis, such as DNA damage or impaired DNA replication/segregation, TF gradient is dissipated and Sle1 levels are reduced, thus halting premature septum splitting.


Assuntos
Proteínas de Escherichia coli , Infecções Estafilocócicas , Humanos , Segregação de Cromossomos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Proteínas de Membrana/metabolismo , Divisão Celular , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos/genética
19.
Immunity ; 48(5): 963-978.e3, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29768179

RESUMO

Regulated antimicrobial peptide expression in the intestinal epithelium is key to defense against infection and to microbiota homeostasis. Understanding the mechanisms that regulate such expression is necessary for understanding immune homeostasis and inflammatory disease and for developing safe and effective therapies. We used Caenorhabditis elegans in a preclinical approach to discover mechanisms of antimicrobial gene expression control in the intestinal epithelium. We found an unexpected role for the cholinergic nervous system. Infection-induced acetylcholine release from neurons stimulated muscarinic signaling in the epithelium, driving downstream induction of Wnt expression in the same tissue. Wnt induction activated the epithelial canonical Wnt pathway, resulting in the expression of C-type lectin and lysozyme genes that enhanced host defense. Furthermore, the muscarinic and Wnt pathways are linked by conserved transcription factors. These results reveal a tight connection between the nervous system and the intestinal epithelium, with important implications for host defense, immune homeostasis, and cancer.


Assuntos
Acetilcolina/imunologia , Caenorhabditis elegans/imunologia , Mucosa Intestinal/imunologia , Via de Sinalização Wnt/imunologia , Acetilcolina/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Bactérias/imunologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/imunologia , Proteínas de Caenorhabditis elegans/metabolismo , Expressão Gênica/imunologia , Homeostase/genética , Homeostase/imunologia , Interações Hospedeiro-Patógeno/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Neurônios/imunologia , Neurônios/metabolismo , Via de Sinalização Wnt/genética
20.
Proc Natl Acad Sci U S A ; 121(22): e2402764121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38771879

RESUMO

Staphylococcus aureus (S. aureus) can evade antibiotics and host immune defenses by persisting within infected cells. Here, we demonstrate that in infected host cells, S. aureus type VII secretion system (T7SS) extracellular protein B (EsxB) interacts with the stimulator of interferon genes (STING) protein and suppresses the inflammatory defense mechanism of macrophages during early infection. The binding of EsxB with STING disrupts the K48-linked ubiquitination of EsxB at lysine 33, thereby preventing EsxB degradation. Furthermore, EsxB-STING binding appears to interrupt the interaction of 2 vital regulatory proteins with STING: aspartate-histidine-histidine-cysteine domain-containing protein 3 (DHHC3) and TNF receptor-associated factor 6. This persistent dual suppression of STING interactions deregulates intracellular proinflammatory pathways in macrophages, inhibiting STING's palmitoylation at cysteine 91 and its K63-linked ubiquitination at lysine 83. These findings uncover an immune-evasion mechanism by S. aureus T7SS during intracellular macrophage infection, which has implications for developing effective immunomodulators to combat S. aureus infections.


Assuntos
Proteínas de Bactérias , Macrófagos , Proteínas de Membrana , Infecções Estafilocócicas , Staphylococcus aureus , Sistemas de Secreção Tipo VII , Ubiquitinação , Staphylococcus aureus/imunologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/imunologia , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Animais , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/metabolismo , Sistemas de Secreção Tipo VII/metabolismo , Sistemas de Secreção Tipo VII/imunologia , Sistemas de Secreção Tipo VII/genética , Camundongos , Evasão da Resposta Imune , Interações Hospedeiro-Patógeno/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa